
Version control:  git with it
Dave Messina!

originally by Jessen Bredeson

v2 2014

1

What is version control and why is it important?

• The gist: keeping a history of our code development so we can recall previous 
versions of that code at a later date.!

• Why do we care about the history of our code?!

1.Provides a safety net against breaking our code.!

2.Allows us to explore different ways to solve the same problem.!

3.Easier to collaborate writing/sharing code with others.!

4.It’s the like a notebook, and the scripts are the methods.

2



• Must cd into git repo directory to run git commands.!
• We can check the current status of the repo (and its “tracked” files)!

git into the habit of committing your 
changes to the repo: creating a repo

$ git status!
# On branch master!
#!
# Initial commit!
#!
# Untracked files:!
#   (use "git add <file>..." to include in what will be committed)!
#!
#! myscript.pl!
nothing added to commit but untracked files present (use "git add" to track)

git gives us 
useful hints for 

what to do next!

• Creating a new git repository (only need to do this once for every repo)

git init <repo_name>

• Files have “tracked” status if they have been committed (more on what this 
means on the next slide).  They are said to be “untracked” if the files exist 
within the repo directory, but have not yet been committed.

## Create a file in our repository, then:

creates new directory if necessary

3

git into the habit of committing your changes 
to the repo: add and commit overview

• git uses an add and commit framework for saving code changes to the repo.  !

git add file1.pl [file2.pl [...]]!
git commit -m “useful description of changes”

git add
git commit

#!/usr/bin/
perl

#!/usr/bin/
perl

#!/usr/bin/
perl

#!/usr/bin/
perl

#!/usr/bin/
perl

#!/usr/bin/
perl

repo

staging area
unstaged or untracked 

changes

• adding adds new files, 
or changes in existing 
files, to a “staging 
area” where they wait 
to be committed en 
masse.!

• committing saves all 
of the added changes 
to the repo.!

• A commit message 
(-m “message”) is 
mandatory.!

4



Remote repositories

• Why would we want a remote repository?!
• It’s our repo’s backup (exact copy).!
• Easiest way to share code with collaborators.!
• Easiest way to copy code between machines (local-local, local-server, etc).!

• Free cloud-based remote repositories:!
• github.com!

• Free GUI repo management client!
• Unlimited number of collaborators!
• Unlimited public repos!
• Repos must be public (no private repos)!
• Wikis, issue tracking, project front pages!

• bitbucket.org!
• compatible with both git and mercurial!
• Free GUI repo management client!
• Unlimited private repos!
• Unlimited public repos!
• Small collaboration teams only (unlimited when registered with academic email)!
• Wiki, JIRA integration (issue tracking)!

5

• If we also have a remote repository (at github, bitbucket, etc.), we occasionally want 
to sync the histories between the two repos.  This is called pushing, but before we 
do that, it is wise to pull down any changes that may have been made by 
someone else or that we made on a different machine.

Syncing with remote repositories

$ git status!
# On branch master!
# Your branch is ahead of 'origin/master' by 1 commits.!
# Changes not staged for commit:!
#   (use "git add <file>..." to update what will be committed)!
#   (use "git checkout -- <file>..." to discard changes in working directory)!
#!
#! modified:   myscript.pl!
#!
no changes added to commit (use "git add" and/or "git commit -a")!
$ git pull!
Already up-to-date.!
$ git push!
Counting objects: 1, done.!
Delta compression using up to 8 threads.!
Compressing objects: 100% (1/1), done.!
Writing objects: 100% (1/1), 1.36 KiB | 0 bytes/s, done.!
Total 1 (delta 1), reused 0 (delta 0)!
To git@bitbucket.org:username/repo.git!
   25f9c25..c5b98ce  master -> master

We have changes in our 
local repos that our 

remote repo does not.

6



git into the habit of committing your changes 
to the repo: add and commit in detail

$ git add myscript.pl !
$ git status!
# On branch master!
#!
# Initial commit!
#!
# Changes to be committed:!
#   (use "git rm --cached <file>..." to unstage)!
#!
#! new file:   myscript.pl!
!
$ git commit -m 'new script "myscript.pl"'!
[master (root-commit) 0c7f52c] new script "myscript.pl"!
 1 file changed, 0 insertions(+), 0 deletions(-)!
 create mode 100644 myscript.pl!
!
$ git status!
# On branch master!
nothing to commit, working directory clean!
!
# sync with remote repository!
$ git push origin master

Another useful hint: If 
we want to remove the 
untracked script from 

the staging area.

All changes committed 
and no untracked files.

Summary of changes 
made to all files.

We git add the 
script, and now it is 

staged and waiting to be 
committed.

7

Comparing version differences

$ git diff myscript.pl!
diff --git a/myscript.pl b/myscript.pl!
index e69de29..1f1c293 100644!
--- a/myscript.pl!
+++ b/myscript.pl!
@@ -0,0 +1 @@!
+#!/usr/bin/perl inserted lines will be green, deletions red.

one line inserted, relative to repo.

• Look at the differences between your latest version and what is in the repo.!
• Useful if we want to review the changes we have made.!
!

git diff [file_name]
git diff --cached [file_name] if the code is committed.

if the code is added to the staging area.

## Make some changes to our code, then:

8



Unstaging additions to staging area

$ git add myscript.pl !
$ git status!
# On branch master!
# Changes to be committed:!
#   (use "git reset HEAD <file>..." to unstage)!
#!
#! modified:   myscript.pl!
#!
 
$ git reset HEAD myscript.pl!
Unstaged changes after reset:!
M! myscript.pl

git reminds you how to do it.

Indicates the file has been modified, but changes 
have not been added or committed.

• If we decide we do not want to commit the changes added to the staging area, 
we can remove those changes from the staging area.!

git reset HEAD

#!/usr/bin/
perl

#!/usr/bin/
perl

staging area
previously added 
changes become 

unstaged

9

• We may also examine the history of our changes.!

$ git add myscript.pl !
$ git commit -m 'my useful message'!
$ git log!
commit 6b0063cba5f0de7b74fcc39357d0bd708a6c3f68!
Author: username <youremail@host.com>!
Date:   Tue Oct 15 21:40:01 2013 -0400!
!
    added shebang line to script!
!
commit 0c7f52c6b231f42e9100a1809a56aa2b2618bdf1!
Author: username <youremail@host.com>!
Date:   Tue Oct 15 20:57:01 2013 -0400!
!
    new script "myscript.pl"

git commit history

Commits stored as 
SHA1 checksums; 

very secure.

git records the 
relevant meta-data 
on your commits.

• Two months from now, you may want to pick back up on a project you 
started, but need to remember where you were in development; 
descriptive commit messages make your life easier!!

10



• Sometimes we experiment with writing new features into our code, and if we 
discover that these changes introduced bugs, or we just couldn’t get the feature 
to work, we can recover the version of the code that did work.

undoing mistakes

# find the checksum of the last commit !
$ git log | head -1!
commit 6b0063cba5f0de7b74fcc39357d0bd708a6c3f68!
!
# revert that commit!
$ git revert 6b0063cba5f0de7b74fcc39357d0bd708a6c3f68!
!
[master 6a72a1f] Revert "adding some comments"!
 1 file changed, 3 deletions(-)!
!
$ git log!
commit 6a72a1f03debd05945cf7a8200f82aa92145a0cf!
Author: Dave Messina!
Date:   Fri Oct 17 15:26:06 2014 -0400!
!
    Revert "adding some comments"!
!
    This reverts commit aa6b055a6794fe339ed33f4d23ace511eec25050.

11


