
The Perl Debugger

• Perl has a built-in debugger.

• It runs perl scripts interactively, one command at a time.

• It will only run if your script is free of syntax errors.

• The debugger can help you find run-time errors.

• Also can run perl as an interactive shell

• These tools are excellent for exploring code snippets, regular expressions, finding
bugs in code logic (=debugging)

Execute perl script normally with
perl myScript.pl
or
./myScript.pl
etc
Perl will try to run the script start to end.
Easiest way to run a script in the debugger is with
perl -d myScript.pl
You can add any command line parameters to the script as normal
perl -d myScript.pl infile.txt outfile.txt

1Tuesday, October 15, 13

The perl debugger

> perl -d myScript.pl
Loading DB routines from perl5db.pl version 1.28
Editor support available.
Enter h or `h h' for help, or `man perldebug' for
more help.
main::(myScript.pl:3):! print "hello world\n";
 DB<1>

Debugger prompt: line 1

Start typing here

Here’s the line in your script the
debugger is about to run

The debugger is at line 3 in script myScript.pl

Startup lines, including info on getting help

2Tuesday, October 15, 13

Debugger: controlling program flow

h help
q quit
n or s next line or step through next line. Step will step down
into a subroutine and go through each line in the subroutine; next
goes to the next line.
<return> repeat last n or s
c 45 continue to line 45
b 45 break at line 45
b 45 $a == 0 break at line 45 if $a equals 0
p $a print the value of $a
x $a unpack or extract the data structure in $a
R restart - useful if you think you have edited the script
| (pipe) print output one page at a time with more/less
|x @bigarray output big array in ‘more/less’ pager

3Tuesday, October 15, 13

x or unpack

• x expr evaluates expr in list context, returns formatted result.

• List context means elements are listed starting at index 0

• numbers are as is; strings are quoted and include new lines, tab
characters etc.

 DB<5> $a = 4
 DB<6> x $a
0 4

 DB<10> @a = (5,10,15)
 DB<11> x @a
0 5
1 10
2 15

 DB<16> $a = "foo\nboo"
 DB<17> x $a
0 'foo
boo' note string goes across new line

4Tuesday, October 15, 13

Executing perl inside a script

Manipulating variables
$p = 45 set value of $p
@a = (1,2,3,4,5) set values in @a
$a[1]++ increment value in index one in array @a
$hash{foo} = baz make hash %hash and initialize key value pair foo=>baz

if (length $sequence > 45) {print “long sequence”} else {print “short sequence”}

• You can type any perl line into the debugger

•

5Tuesday, October 15, 13

Script myScriptErrors.pl with logic errors and mistakes.

#!/usr/bin/perl
use warnings;
use strict;

my $data_line = 'ABC1\thuman\tMGTYIPLWQST\n';
my $sequence_index = 1;
my @fields = split /\t/, $data_line;
my $sequence = $fields[$sequence_index];
print "Protein sequence is: $sequence\n";

[Epinephrine:~] simonp% perl myScriptErrors.pl
Use of uninitialized value $sequence in concatenation
(.) or string at myScriptErrors.pl line 9.
Protein sequence is:

6Tuesday, October 15, 13

Debugger session to investigate run-time errors (1 of 2)

[Epinephrine:~] simonp% perl -d myScriptErrors.pl

Loading DB routines from perl5db.pl version 1.33
Editor support available.

Enter h or `h h' for help, or `man perldebug' for more help.

main::(myScriptErrors.pl:5):! my $data_line = 'ABC1\thuman
\tMGTYIPLWQST\n';
 DB<1> n
main::(myScriptErrors.pl:6):! my $sequence_index = 1;
 DB<1> p $data_line
ABC1\thuman\tMGTYIPLWQST\n
 DB<2>
main::(myScriptErrors.pl:7):! my @fields = split /\t/, $data_line;
 DB<2>
main::(myScriptErrors.pl:8):! my $sequence = $fields[$sequence_index];
 DB<2> x @fields
0 'ABC1\\thuman\\tMGTYIPLWQST\\n'
 DB<3> n
main::(myScriptErrors.pl:9):! print "Protein sequence is: $sequence
\n";

Problem!! We see \t not <tab> character

Problem!! Only one array element

7Tuesday, October 15, 13

Debugger session (2 of 2)

 DB<3> p $fields[$sequence_index]

 DB<4> p $sequence

 DB<5> n
Use of uninitialized value $sequence in concatenation (.) or string at
myScriptErrors.pl line 9.
 at myScriptErrors.pl line 9
Protein sequence is:
Debugged program terminated. Use q to quit or R to restart,
 use o inhibit_exit to avoid stopping after program termination,
 h q, h R or h o to get additional info.
 DB<5>

This variable is empty

So is this one

Perl prints this warning

There are three problems with this script: i) double quotes needed in line 5; ii)
sequence_index should be 2 not 1; chomp needed after line 5

8Tuesday, October 15, 13

The interactive perl debugger

> perl -de 4
Loading DB routines from perl5db.pl version 1.28
Editor support available.

Enter h or `h h' for help, or `man perldebug' for more help.

main::(-e:1):! 4
 DB<1> $a = {foo => [1,2] , boo => [2,3] , moo => [6,7]}
 DB<2> x $a
0 HASH(0x8cd314)
 'boo' => ARRAY(0x8c3298)
 0 2
 1 3
 'foo' => ARRAY(0x8d10d4)
 0 1
 1 2
 'moo' => ARRAY(0x815a88)
 0 6
 1 7

9Tuesday, October 15, 13

Last words on the debugger

Inside the debugger,
use strict;
use warnings;
Behave a little differently from the way you are used to.

-- if you print an undefined variable with ‘p’ or ‘x’ it will just be blank,
you won’t get a warning that you tried to print an uninitialized
variable.
-- if the script you are running in the debugger prints an uninitialized
variable, you will get a warning.

Here’s an example
 DB<1> p $a

 DB<2>

But you get a warning if the line you run comes from the script instead of
something you typed into the debugger
main::(myScriptErrors.pl:12):!my $a;
 DB<1>
main::(myScriptErrors.pl:13):!print $a;
 DB<1>
Use of uninitialized value $a in print at
myScriptErrors.pl line 13.
 at myScriptErrors.pl line 13

No warning

10Tuesday, October 15, 13

