
Regular Expressions
Sofia Robb

What is a regular expression?

A regular expression is a string template against which
you can match a piece of text.

They are something like shell wildcard expressions, but
much more powerful.

 my $sites = 0;
 while (my $line = <>) {
 chomp $line;
 if ($line =~ /GAATTC/){
 print "Found an EcoRI site!\n";
 $sites++;
 }
 }
 print "$sites EcoRI sites total.\n"

Examples of Regular Expressions

This bit of code loops through @ARGV files or STDIN. Finds all lines containing an EcoRI
site, and bumps up a counter:

my $sites = 0;
 while (my $line = <>) {
 chomp $line;
 if ($line =~ /[GA]C.?G/) {
 print "Found a methylation site!\n";
 $sites++;
 }
 }
 print "$sites methylation sites total.\n"

Examples of Regular Expressions

This does the same thing, but counts one type of methylation site (Pu-C-X-G) instead:

my $h = "Who's afraid of Virginia Woolf?";
print "I'm afraid!\n" if $h =~ /Woo?lf/;

Specifying the String to Search

To specify which string variable to search, use the =~ operator:

1.Ordinary characters:
 a-z, A-Z, 0-9 and some punctuation.
 These match themselves.

2.The "." character:
 matches everything except the newline.
3.A bracket list of characters
 [AaGgCcTtNn], [A-F0-9], or [^A-Z]
 (the last means anything BUT A-Z).
4.Predefined character sets:
\d The digits [0-9]
\w A word character [A-Za-z_0-9]
\s White space [\t\n\r]
\D A non-digit
\W A non-word
\S Non-whitespace

5.Anchors:
^ Matches the beginning of the string
$ Matches the end of the string
\b Matches a word boundary (between a \w and a \W)

Regular Expression Atoms
A regular expression is normally delimited by two slashes ("/"). Everything between
the slashes is a pattern to match. A pattern is composed of one or more atoms:

• /g..t/ matches "gaat", "goat", and "gotta get a goat" (twice)

• /g[gatc][gatc]t/ matches "gaat", "gttt", "gatt", and "gotta get
an agatt" (once)

• /\d\d\d-\d\d\d\d/ matches 376-8380, and 5128-8181, but not
055-98-2818.

• /^\d\d\d-\d\d\d\d/ matches 376-8380 and 376-83801, but not
5128-8181.

• /^\d\d\d-\d\d\d\d$/ only matches telephone numbers.

• /\bcat/ matches "cat", "catsup" and "more catsup please" but
not "scat".

• /\bcat\b/ only text containing the word "cat".

Regular Expression Atoms

Examples

? atom matches zero or exactly once
* atom matches zero or more times
+ atom matches one or more times
{3} atom matches exactly three times
{2,4} atom matches between two and four times, inclusive
{4,} atom matches at least four times

Quantifiers
By default, an atom matches once. This can be modified by following the atom with a quantifier:

Examples:

• /goa?t/ matches "goat" and "got". Also any text that contains
these words.

• /g.+t/ matches "goat", "goot", and "grant", among others.
• /g.*t/ matches "gt", "goat", "goot", and "grant", among
others.

• /^\d{3}-\d{4}$/ matches US telephone numbers (no extra text
allowed.

/wolf|sheep/;
matches "wolf" or "sheep"

/big bad (wolf|sheep)/;
matches "big bad wolf"
or "big bad sheep"

Alternatives and Grouping
A set of alternative patterns can be specified with the | symbol:

Parenthesis and Quantifies

/Who's afraid of the big (bad)?wolf\?/;

matches "Who's afraid of the big bad wolf?"
and "Who's afraid of the big wolf?"

You can combine parenthesis and quantifiers to quantify entire
subpatterns:

This also shows how to literally match the special characters -- put a backslash (\) in front of them.

What about finding strings that don’t
contain the pattern?

$h = "Who's afraid of Virginia Woolf?";
print "I'm not afraid!\n" if $h !~ /Woo?lf/;

use !~ instead of =~

This is equivalent to "not match" operator !~, which reverses the sense of the match:

$pattern = '/usr/local';
if ($file =~ /^$pattern/){
 print "matches" ;
}

Matching with a Variable Pattern

You can use a scalar variable for all or part of a regular
expression.

See the o flag for important information about using variables inside patterns.

/Who's afraid of the big bad w(.+)f/

Subpatterns

You can extract and manipulate subpatterns in regular expressions.

To designate a subpattern, surround its part of the pattern with parenthesis (same as with
the grouping operator). This example has just one subpattern, (.+) :

Once a subpattern matches, you can refer to it later within the
same regular expression.

The first subpattern becomes \1, the second \2, the third \3, and
so on.

Using Subpatterns inside the Match

Using Subpatterns Inside the Match

 while (my $line = <>) {
 chomp $line;
 if ($line =~ /Who's afraid of the big bad w(.)\1f/){
 print "I'm scared!\n"
 }
 }

This loop will print "I'm scared!" for the following matching lines:

• Who's afraid of the big bad woof
• Who's afraid of the big bad weef
• Who's afraid of the big bad waaf

but not
• Who's afraid of the big bad wolf
• Who's afraid of the big bad wife

Using Subpatterns Inside the Match

/\b(\w+)s love \1 food\b/

will match "dogs love dog food", but not "dogs love monkey food".

Using Subpatterns Outside the Match

Outside the regular expression match statement, the matched subpatterns (if any) can be
found the variables $1, $2, $3, and so forth.

Example. Extract 50 base pairs upstream and 25 base pairs downstream of the TATTAT
consensus transcription start site:

 while (my $line = <>) {
 chomp $line;
 next unless $line =~ /(.{50})TATTAT(.{25})/;
 my $upstream = $1;
 my $downstream = $2;
 }

Extracting and Saving Subpatterns Using Arrays
If you assign a regular expression match to an array, it will return a list of all the subpatterns that
matched. Alternative implementation of previous example:

while (my $line = <>) {
 chomp $line;
 my ($upstream,$downstream) = $line =~ /(.{50})TATTAT(.{25})/;
 }

If the regular expression doesn't match at all, then it returns an empty list. Since an
empty list is FALSE, you can use it in a logical test:

 while (my $line = <>) {
 chomp $line;
 next unless my ($upstream,$downstream) = $line =~ /(.{50})TATTAT(.{25})/;
 print "upstream = $upstream\n";
 print "downstream = $downstream\n";
 }

Grouping without Making Subpatterns

Because parentheses are used both for grouping (a|ab|c) and for matching subpatterns, you may
match subpatterns that don't want to. To avoid this, group with (?:pattern):

/big bad (?:wolf|sheep)/;

matches "big bad wolf" or "big bad sheep",
but doesn't extract a subpattern.

Subpatterns and Greediness

Because of the greediness of the match, $subpattern will contain "fox ate my box"
rather than just "fox".

By default, regular expressions are "greedy". They try to match as much as they can. For example:

$h = 'The fox ate my box of doughnuts';
$h =~ /(f.+x)/;
$subpattern = $1;

$h = 'The fox ate my box of doughnuts';
$h =~ /(f.+?x)/;
$subpattern = $1;

Now $subpattern will contain "fox". This is called lazy matching.
Lazy matching works with any quantifier, such as +?, *?, ?? and {2,50}?.

To match the minimum number of times, put a ? after the qualifier, like this:

$h = "Who's afraid of the big bad wolf?";
$i = "He had a wife.";

$h =~ s/w.+f/goat/;
yields "Who's afraid of the big bad goat?"

$i =~ s/w.+f/goat/;
yields "He had a goate."

String Substitution

String substitution allows you to replace a pattern or character range with another one using the
s/// and tr/// functions.

The s/// Function

s/// has two parts: the regular expression and the string to replace it with: s/expression/replacement/.

Extract pattern matches and use them in
the replacement part of the substitution:

$h = "Who's afraid of the big bad wolf?";

$h =~ s/(\w+) (\w+) wolf/$2 $1 wolf/;
yields "Who's afraid of the bad big wolf?"

$h = "Who's afraid of the big bad wolf?";

$animal = 'hyena';
$h =~ s/(\w+) (\w+) wolf/$2 $1 $animal/;
yields "Who's afraid of the bad big hyena?"

Using a Variable in the Substitution Part

Translating Character Ranges

The tr/// function allows you to translate one set of characters into another. Specify the source
set in the first part of the function, and the destination set in the second part:

$h = "Who's afraid of the big bad wolf?";

$h =~ tr/ao/AO/;
yields "WhO's AfrAid Of the big bAd wOlf?";

The tr/// Function

Output:

(~) 50% count_Ns.pl
sequence_list.txt
Sequence 1 contains 0 Ns
Sequence 2 contains 3 Ns
Sequence 3 contains 1 Ns
Sequence 4 contains 0 Ns
...

This example counts N's in a series of DNA
sequences:

while (my $line = <>) {
 chomp $line; # assume one sequence per line
 my $count = $line =~ tr/Nn/Nn/;
 print "Sequence $line contains $count Ns\n";
 }

Code:

Input:

AGCTGGGAAAGT
AGCNGNNAAAGT
TAGCNGTTAAAT
GAATCAGCTGGG
...

tr/// returns the number of characters transformed, which is sometimes handy for
counting the number of a particular character without actually changing the string.

i
Case insensitive match.

g
Global match.

Common Regular Expression Modifiers

Regular expression matches and substitutions have a whole set of options which you can use
by appending one or more modifiers to the end of the operation.

my $string = 'Big Bad WOLF!';
if ($string =~ /wolf/i){
 print "There's a wolf in the closet!";
}

Case insensitive Matches

Output:

GTT
GCC
TGA
AAT
GGC
GGA
ACC
TTG

Global Matches
Adding the g modifier to the pattern causes the match to be global. Called in a scalar
context (such as an if or while statement), it will match as many times as it can.

This will match all codons in a DNA sequence, printing them out on separate lines:

The pos() function retrieves the position where the next
attempt begins

$position_of_next_attempt = pos($sequence)

Code:

 my $sequence = 'GTTGCCTGAAATGGCGGAACCTTGAA';
 while ($sequence =~ /(.{3})/g) {
 print $1,"\n";
 }

@frame1 = $sequence =~ /(.{3})/g;
@frame2 = substr($sequence,1) =~ /(.{3})/g;
@frame3 = substr($sequence,2) =~ /(.{3})/g;

If you perform a global match in a list context (e.g. assign its
result to an array), then you get a list of all the subpatterns that

matched from left to right.

This code fragment gets arrays of codons in three reading frames:

o
Only compile variable patterns once.

m
Treat string as multiple lines. ^ and $ will match at start and end of
internal lines, as well as at beginning and end of whole string. Use \A
and \Z to match beginning and end of whole string when this is
turned on.

s
Treat string as a single line. "." will match any character at all, including
newline.

x
Allow extra whitespace and comments in pattern.

Additional regular expression modifiers

