Subroutines

v5 2014 Dave Messina

#!/usr/bin/perl

use strict;
use warnings;

my Sseqgl "ac ggTtAa";
my S$Sseg?2 = "tTcC aaA tgg";

clean up S$seql

1) make it all lower case
S$seqgl = lc $seql;

2) remove white space
$seql =~ s/\s//g;

clean up $seg2

1) make it all lower case
$seq2 = lc S$Sseqg2;

2) remove white space
$seq2 =~ s/\s//g;

print cleaned up sequences
print "seqgl: S$seqgl\n";
print "seqg2: S$seg2\n";

Problems With This Code

® The same cleanup statements are run for $seql and
Sseq?.

® Duplication of code (BAD!).

® Subroutines to the rescue.

Subroutines

® Blocks of code that you can call in different places.
® Code resides in one place.

® Only need to write the code once.

® Easier to maintain.
® Take arguments and return results.

® Make code easier to read.

® Like a mini—-program within your program.

Creating a Subroutine

|. Turn the code of interest into a block.

clean up $seq

1) make it all lower case
$Sseqg = lc $seq;

2) remove white space
S$Sseq =~ s/\s//qg;

Creating a subroutine

2. Label the blOCk With: sub subroutine name

sub cleanup sequence {
clean up $seq
1) make it all lower case
$seq = lc $seq;

2) remove white space
$seq =~ s/\s//g;

Creating a Subroutine

3. Add statements to read the subroutine argument(s)
and return the subroutine result(s).

sub cleanup sequence {

get the sequence argument to the

subroutine - note that just like shift gets
an argument for your program, shift gets an
argument to your subroutine

my $seq = shift;

H= H H= H

clean up $seq

1) make it all lower case
$seq = lc $seq;

2) remove white space
$seq =~ s/\s//g;

return cleaned up sequence
return $seq;

Passing Arguments to a
Subroutine

Arguments are passed in @ a special array created
by Perl.

® Analogous to @ARGV for program arguments.

Can use shift to take one argument at a time.

take the first argument
my S$argl = shift;
take the second argument
my Sarg2 = shift;

Passing Arguments to a
Subroutine

Can copy the contents of @ into a list of named
variables.

my (Sargl, $arg2) = @ ;

Returning Subroutine Results

Use return operator to return results.

Usually return at the end of the subroutine but can
use it to exit the subroutine earlier.

Return a single value.
return $single value; #scalar

Return a list.
return ($variable, “string”, 3); #list
return @array of values; #array

Returning Subroutine Results

Return an empty list or undef depending on
context.

return; #empty list or undef

Calling a Subroutine

Calling our subroutine is just like calling an existing
built-in Perl function.

my Sresult = my sub(Sargl, $arg2, Sarg3, ...);

Location of Subroutines

Usually at the bottom of the script.

Allows you to visually separate main program from the
subroutines.

#!/usr/bin/perl
use strict;
use warnings;

my S$Ssegl = "ac ggTtAa";
my Sseg2 = "tTcC aaA tgg";

call cleanup sequence for each sequence
$seqgl = cleanup sequence ($seql);

$seg2 = cleanup_ sequence ($seg2);

print cleaned up sequences

print "segl: S$seqgl\n";

print "seg2: $seg2\n";

sub cleanup sequence {
get the sequence argument
my S$seq = shift;
cleanup $seq
1) make it all lower case
$Sseq = lc $seq;
2) remove white space
$seq =~ s/\s//g;
return cleaned up sequence
return $seq;

Scope

#!/usr/bin/perl

use strict;
use warnings;

100;
20;

my $x =
my $y

if ($x > Sy) |
my $z = 10;
Sx = 30;
print "x
print "y
print "z

(inside
(inside
(inside

}

(outside if
(outside if
(outside 1if

print "x
print "y
print "z

Global symbol "$z" requires explicit
package name at ./scope.pl line 9.

Execution of ./scope.pl aborted due
to compilation errors.

if block):
if block):
if block) :

Sx\n";
Sy\n";
$z\n";

block) :
block) :
block) :

Sx\n";
Sy\n";
$z\n";

Blocks

That’s because $z was declared inside the if block,
so it’s only accessible inside that block.

Any time we see { }, we're creating a block.

Blocks are like boxes that have one way mirrors —
you can see outside the box from inside, but not
inside the box from the outside.

To fix that error, we need to declare Sz outside the

if block.

Blocks

Variables declared inside of a block only exist inside
the block — once the block is finished, they will be

destroyed.

#!/usr/bin/perl

use strict;
use warnings;

100;
20;
5;

my S$x =
my Sy =
my Sz =
if (Sx > Sy) A
my $z = 10;
$x = 30;
print "x
print "y
print "z

(inside
(inside
(inside

}

(outside if
(outside if
(outside 1f

print "x
print "y
print "z

Output:

$x (inside of block):30
$y (inside of block): 20
$z (inside of block):10
$x (outside if block): 30
$y (outside if block): 20
$z (outside if block): 5

$x\n";
Sy\n";
Sz\n";

if block):
if block):
if block):

Sx\n";
Sy\n";
$z\n";

block) :
block) :
block) :

20

Scope

Does the program give the expected behavior?

By declaring“my $z =10;" inside the if block,
we'’re creating a new variable called $z only
accessible within the block.

This new variable will not modify the outside
variable!

Note that we can create a new $z variable inside
the block with no problems — if we do it outside,
we’ll get a warning.

21

Scope

* If we remove “my” from that line, the modification
to $z will show outside the block.

22

#!/usr/bin/perl

use strict;
use warnings;

my $Sx = 100;

my Sy = 20;

my Sz = 5;

if ($x > Sy) |
Sz = 10;
Sx = 30;
print "x (inside
print "y (inside
print "z (inside

}

(outside if
(outside 1if
(outside if

print "x
print "y
print "z

Output:

if block):
if block):
if block):

block) :
block) :
block) :

23

$x (inside if block): 30
$y (inside if block): 20
$z (inside if block): 10
$x (outside if block): 30
$y (outside if block): 20
$z (outside if block): 10

$x\n";
Sy\n";
$z\n";

Sx\n";
Sy\n";
Sz\n";

