
Using Modules

v5 2014

Dave Messina

1

Why use modules?

Sometimes you may want to use the same
subroutines over and over again in different
programs!

Bad way: Copy and paste a subroutine!

Good way: Make a module!

There are also many many modules that other
people have written that you can use!!

To use modules they must be properly installed and
called with the use command

2

File::Basename

Subroutine: basename !
!
Input: a UNIX path, like /home/dave/dna.fa!
Output: just the file name (the last part of the path), like dna.fa

Subroutine: dirname !
!
Input: a UNIX path, like /home/dave/dna.fa!
Output: just the directory (everything before the basename), like /home/dave/

Using modules somebody else wrote

3

!
 #!/usr/bin/perl!
 # file: basename.pl!
 !
 use strict;!
 use File::Basename;!
!
 my $path = '/home/dave/dna.fa';!
 my $base = basename($path);!
 my $dir = dirname($path);!
!
 print "The base is $base and the directory is $dir.\n";!

Undefined subroutine &main::basename called at basename.pl
line 8.!

The base is dna.fa and the directory is /home/dave.Output:

Common!
error:

Using modules somebody else wrote

4

#!/usr/bin/perl!
file env.pl!
!
use strict;!
use Env;!
!
print "My home is $HOME\n";!
print "My path is $PATH\n";!
print "My username is $USER\n";!

My home is /home/pfbhome/dave!
My path is /usr/local/bin:/bin:/usr/bin:/usr/local/sbin: ...!
My username is dave

Output:

Another module somebody else wrote
This module comes with Perl. It imports a set of scalar variables that describe your
environment, such as $HOME, $PATH, and $USER.!
!
By adding use Env;, we can bring those variables into our script and access them
just as if we had declared them in the script.

$HOME, $PATH, and $USER !
are not declared in this script!

5

Which modules are installed?

$ perldoc perlmodlib!
Which modules are installed with basic perl installation?!

http://perldoc.perl.org/perlmodlib.html!

!

$ perldoc perllocal!
Which modules are installed on your machine?

6

Setting up your Perl environment

$ cd ~!
$ wget http://bit.ly/sample_bashrc_pfb2014!
$ cat sample_bashrc >> .bashrc!
$ source .bashrc!

Download this .bashrc file

Perl setup !
export PERL_LOCAL_LIB_ROOT="$HOME/perl5";!
export PERL_MB_OPT="--install_base $HOME/perl5";!
export PERL_MM_OPT="INSTALL_BASE=$HOME/perl5";!
export PERL5LIB="$HOME/perl5/lib/perl5/x86_64-linux-gnu-thread-multi:$HOME/perl5/
lib/perl5:$PERL5LIB";

This should now be in your ~/.bashrc

7

Installing modules manually
$ wget http://search.cpan.org/CPAN/authors/id/G/GL/GLASSCOCK/FASTAid-v0.0.4.tar.gz!
$ tar zxvf FASTAid-v0.0.4.tar.gz!

x FASTAid-v0.0.4/!
x FASTAid-v0.0.4/Changes!
...!
!
$ cd FASTAid-v0.0.4!
$ perl Makefile.PL!
Checking if your kit is complete...!
Looks good!
Writing Makefile for FASTAid!
!
$ make!
cp lib/FASTAid.pm blib/lib/FASTAid.pm!
Manifying blib/man3/FASTAid.3pm!
!
$ make test!
ERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e" "test_harness(0,
'blib/lib', 'blib/arch')" t/*.t!
t/FASTAid.t .. ok !
All tests successful.!
Files=1, Tests=11, 0 wallclock secs (0.02 usr 0.01 sys + 0.03 cusr 0.01 csys
= 0.07 CPU)!
Result: PASS!
!
$ make install!
cp lib/FASTAid.pm blib/lib/FASTAid.pm!
Manifying blib/man3/FASTAid.3pm!
Installing /home/pfbhome/dave/perl5/lib/perl5/FASTAid.pm!
Installing /home/pfbhome/dave/perl5/man/man3/FASTAid.3pm!

8

Installing Modules Using the CPAN Shell
% cpan!
!
cpan shell -- CPAN exploration and modules installation (v1.59_54)!
ReadLine support enabled!
!
cpan>!
!
From this shell, there are commands for searching for modules, downloading them, and installing them.!

The first time you run the CPAN shell, you need to set one thing.!

cpan> o conf prefs_dir /home/your_username/!
cpan> o conf commit!
!
cpan will also ask you a lot of configuration questions. Generally, you can just hit return to accept the defaults. !

!
To search for a module:!
cpan> i /Wrap/!
Going to read '/Users/dave/.cpan/Metadata'!
 Database was generated on Thu, 18 Oct 2012 12:07:03 GMT!
...!
!
Module < Text::Wrap (MUIR/modules/Text-Tabs+Wrap-2013.0523.tar.gz)!
...!
41 items found!
!
cpan> install Text::Wrap!
Running install for module Text::Wrap!
...

9

Where are modules installed?

Module files end with the extension .pm. If the module name is a simple one, like Env, then Perl will look for a file named Env.pm. If the
module name is separated by :: sections, Perl will treat the :: characters like directories. So it will look for the module File::Basename in
the file File/Basename.pm!

Perl searches for module files in a set of directories specified by the Perl library path. This is set when Perl is first installed. You can find
out what directories Perl will search for modules in by issuing perl -V from the command line:!

 % perl -V!
 Summary of my perl5 (revision 5.0 version 6 subversion 1) configuration:!
 Platform:!
 osname=linux, osvers=2.4.2-2smp, archname=i686-linux!
 ...!
 Compiled at Oct 11 2001 11:08:37!
 @INC:!
 /usr/lib/perl5/5.6.1/i686-linux!
 /usr/lib/perl5/5.6.1!
 ...!
You can modify this path to search in other locations by placing the use lib command somewhere at the top of your script:!

 #!/usr/bin/perl !

 use lib '/home/lstein/lib';!
 use MyModule;!
 ...!
This tells Perl to look in /home/lstein/lib for the module MyModule before it looks in the usual places. Now you can install module files in
this directory and Perl will find them. !

Sometimes you really need to know where on your system a module is installed. Perldoc to the rescue again -- use the -l command-line
option:!

% perldoc -l File::Basename!
/System/Library/Perl/5.8.8/File/Basename.pm!
!

10

Making modules
Dave Messina

v4 2013

11

What is a module?

A module is an container which holds a
collection of related code.!
!
It allows you to use the code over and
over again without copying and pasting.!

12

package MySequence; !

file: MySequence.pm!

use strict;  
use warnings;!

!
sub reverseq {!

 my $sequence = shift @_;  
 $sequence = reverse $sequence;!

 $sequence =~tr/gatcGATC/ctagCTAG/;!

 return $sequence;!

}!

sub seqlen {!

 my $sequence = shift @_;  
 $sequence =~ s/[^gatcnGATCN]//g; !

 return length $sequence;!

} !

1;!

Module

A Perl module must end with a true value.

13

#!/usr/bin/perl !

use strict;!
use warnings;  
use MySequence;!
!
my $sequence ='gattccggatttccaaagggttcccaatttggg'; !
my $complement = MySequence::reverseq($sequence);!
!
print "original = $sequence\n"; !
print "complement = $complement\n";!
!

By default, to use subroutines from MySequence, you must explicitly qualify each
MySequence function by using the notation MySequence::function_name

Script

This one line lets you use all the code in MySequence.

14

package MySequence; !
file: MySequence.pm!
!
use strict;!
use base 'Exporter';!
!
our @EXPORT = qw(reverseq); !
our @EXPORT_OK = qw(seqlen);!
!
sub reverseq {!
 my $sequence = shift @_;!
 $sequence = reverse $sequence; !
 $sequence =~ tr/gatcGATC/ctagCTAG/; !
 return $sequence;!
}!
!
sub seqlen {!
 my $sequence = shift @_;!
 $sequence =~ s/[^gatcnGATCN]//g; !
 return length $sequence;!
} !
!
1; *

Module using Exporter

15

#!/usr/bin/perl !

file: sequence.pl!

use strict;!

use warnings;  
use MySequence;!

!
my $sequence ='gattccggatttccaaagggttcccaatttggg'; !

my $complement = reverseq($sequence);!

!
print "original = $sequence\n"; !

print "complement = $complement\n";!

!

Script when MySequence exports reverseq

Now that MySequence exports reverseq automatically, you can use the
reverseq subroutine without the MySequence:: prefix. !
!
reverseq is now is the same namespace as the main script, just as if it were
defined in the same file.

16

use base 'Exporter' tells Perl that this module is a type of "Exporter"
module (more about this in a future lecture).!
!
our @EXPORT = qw(reverseq) tells Perl to export the subroutine
reverseq automatically.!
!
our @EXPORT_OK = qw(seqlen) tells Perl that it is OK for the user to
import the seqlen subroutine, but not to export it automatically.!
!
Also, you can export variables along with subroutines:!
our @EXPORT = qw(reverseq seqlen $scalar @array %hash);!

Exporter — implements default
import method for modules

use base 'Exporter';!
!
our @EXPORT = qw(reverseq); !
our @EXPORT_OK = qw(seqlen);!

17

!
$ printenv PERL5LIB

If I make a module, where should I put it?

Once you've made your own module, you will want
to put it somewhere Perl knows to look.

18

Command line operated programs traditionally take their arguments from the command line,
for example filenames. !
!
These programs often take named command line arguments, so that the order in which you
write arguments doesn't matter and so that it's clear which argument does what.

Getopt::Long - Extended processing of command line options

$ grep -i ‘AGCG’ > capture.txt!
!
$ make_fake_fasta.pl --length 100

By convention, single-letter arguments are prefixed with one dash -, and full-word arguments
are prefixed with two dashes (--).

19

*

Script using Getopt::long
#!/usr/bin/env perl !
!
use strict;!
use warnings;!
!
use Getopt::Long;!
my $length = 30;!
my $number = 10;!
my $help;!
GetOptions('l|length:i' => \$length,!
! ! 'n|number:i' => \$number,!
! ! 'h|help' => \$help);!
!
my $usage = "make_fake_fasta.pl - generate random DNA seqs!
!
Options:!
-n <number> the number of sequences to make (default: 10)!
-l <length> the length of each sequence (default: 30)!
";!
die $usage if $help;!
!
my @nucs = qw(A C T G);!
!
!
for (my $i = 1; $i <= $number; $i++) {!
! my $seq;!
!
! for (my $j = 1; $j <= $length; $j++) {!
 !my $index = int(rand (4));!
 !my $nuc = $nucs[$index];!
 !$seq .= $nuc;!
! }!
! print ">fake$i\n";!
! print $seq, "\n";!
}!
!

20

