
References
&

Multi-Dimensional Data Structures
Sofia Robb

1Friday, October 18, 13

What good are references?

Sometimes you need a more complex data structure
than just an array or just a hash.

What if you want to keep together several related
pieces of information?

Gene Sequence Organism

HOXB2 ATCAGCAATATACAATTATAAAGGCCTAAATTTAAAA mouse
HDAC1 GAGCGGAGCCGCGGGCGGGAGGGCGGACGGAC human

2Friday, October 18, 13

References?!?!?
Multi-dimensional data

structures?!?!?

References are only addresses.

Multi-dimensional data structures are just
hashes and arrays inside of hashes and
arrays.

3Friday, October 18, 13

References
•References are pointers, or the address of the data

•All data has an address in memory
•Humans have no need to know the address

•References are useful because they are a scalar variable.
•Arrays and hashes are not scalar variables.
•The only kind of data that you can store in an array or hash
is scalar.

We can now store hashes and arrays in hashes and arrays by
storing the address!!!!

4Friday, October 18, 13

What is a reference, what do you mean
by an address?

$x=1;
really means 0x84048ec

1SCALAR x:

A variable is a label for the location in
memory of some data. This location has an

address.

Scalar

Well first, what is a variable?

address

5Friday, October 18, 13

Array
@y = (1, ‘a’, 23);

really means

1 ‘a’ 23

0x82056b4

ARRAY y:

6Friday, October 18, 13

A variable is a labeled memory address.

When we read the contents of the variable, we
are reading the contents of the memory address.

0x82056b4

ARRAY y: 1 ‘a’ 23

How do I find you, what’s your address?

7Friday, October 18, 13

So, what is a reference?

A reference is a variable that contains the memory
address of some data.

!!!! It does not contain the data itself.

!!!! It contains the memory address where data is
stored.

8Friday, October 18, 13

Creating a Reference

• Every time a variable is created it gets an address

• To retrieve the address or in other words, create a
reference, use ‘\’

9Friday, October 18, 13

Creating a Reference to an Array

$address is now a
reference to the

array.

codons for my favorite gene: HDAC
my @codons = ('ATG' , 'GCG' , 'CAG');

my $address = \@codons;
print "$address\n";

%% ./references.pl
ARRAY(0x100812e30)

Output:

10Friday, October 18, 13

Creating a Reference to a Hash

my %HDAC;

$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQG...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol} = "HDAC";

my $address = \%HDAC;
print "$address\n";

%% ./references.pl
HASH(0x10081e538)

Output:

$address is now a
reference to the

hash.

11Friday, October 18, 13

• Arrays are a list of scalars

• Hashes are key/value pairs of scalars

• References are scalars

Storing References

Now that we have a way to retrieve the address we can
use that address to store an array or a hash in an array
or hash.

12Friday, October 18, 13

Storing an array reference in an array

my @y = (1, 'a' , 23); ##regular array
my $y_array_address = \@y; ##create a reference
print 'address of @y : ' ,"$y_array_address\n";

my @codons = ('ATG' , 'GCG' , 'CAG'); #regular array
my $codons_array_address = \@codons; #create a reference
print 'address of @codons : ', "$codons_array_address\n";

##store ref in regular array
push (@y , $codons_array_address);

yeilds same as above
push (@y, \@codons);
$y[3] = \@codons;

print 'contents of @y : ' , "@y\n";
print 'address of @y : ' , \@y , "\n";

address of @y : ARRAY(0x7fb78402c348)
address of @codons : ARRAY(0x7fb78402c3c0)
contents of @y : 1 a 23 ARRAY(0x7fb78402c3c0)
address of @y : ARRAY(0x7fb78402c348)

13Friday, October 18, 13

0x7fb78402c3c01 ‘a‘ARRAY y: 23

0x7fb78402c348
1 ‘a‘ARRAY y: 23

add the address of @codons (0x7fb78402c3c0) to the end of @y

0x7fb78402c3c0

'ATG' 'GCG' 'CAG'ARRAY codons:

push (@y, \@codons)

0x7fb78402c348
1 ‘a‘ARRAY y: 23 0x7fb78402c3c0PUSH

0x7fb78402c348

14Friday, October 18, 13

Storing a Reference as a Hash Value

use Data::Dumper;

my @codons = ('ATG' , 'GCG' , 'CAG');

my $codons_address = \@codons;

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol} = "HDAC";
$HDAC{codons} = $codons_address;

using Data::Dumper to print our data structure
print Dumper \%HDAC;

Notice the hash reference.

15Friday, October 18, 13

$VAR1 = {
 'symbol' => 'HDAC',
 'function' => 'Histone Deacetylase',
 'seq' => 'MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...',
 'codons' => [
 'ATG',
 'GCG',
 'CAG',
]
 };

output:
Data::Dumper is a nice way to view the contents of

your data structures without complicated print
statements.

Or you could use the debugger.

16Friday, October 18, 13

Altering the data

• References are NOT copies of the data. They are
addresses or pointers to the data

• Since a reference is like a short cut (windows) or
alias (mac), when the original data changes, the
change can be seen when using the reference to
access the data.

• So, if @codons is changed, the hash also changes,
because the hash contains only the address of the
array, not a copy of the array.

Addresses/References are like Short Cuts/Aliases

17Friday, October 18, 13

my @codons = ('ATG','GCG','CAG');

my $codons_address = \@codons;

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol} = "HDAC";
$HDAC{codons} = $codons_address;

#Replacing the contents of @codons with only 2 codons
@codons = ('ATG' , 'GCG');

#Printing the unaltered %HDAC
print Dumper \%HDAC;

Altering the Original Array affects the reference

$VAR1 = {
 'symbol' => 'HDAC',
 'function' => 'Histone Deacetylase',
 'seq' => 'MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...',
 'codons' => [
 'ATG',
 'GCG',
]
 };

!!! Only @codons was altered but the hash also changed

Output:

18Friday, October 18, 13

Anonymous Data structures

■You do not always need to retrieve the address of data to
store/assign in a variable.

■You can create an anonymous array or hash on the fly.
■ It is anonymous because it is unnamed.
■ It only has an address, no name, no label.

■We use the [] in the anonymous array assignment

■We use the {} in the anonymous hash assignment.

19Friday, October 18, 13

Now:
my $address = ['ATG' , 'GCG'] ;

Creating an Anonymous Array

Notice the []
instead of ().

!!! the array is never given a name.
!!! it only has an address.

Before:
my @codons = ('ATG' , 'GCG');
my $address = \@codons;

'Before' and 'Now' look
different but are functionally

the same.

print ['ATG','GCG'] , "\n";

Output:
ARRAY(0x7f9cf302bb08)

evaluates to an address

Check it out:

20Friday, October 18, 13

#my @codons =('ATG' , 'GCG');
#my $address = \@codons;

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol} = "HDAC";
$HDAC{codons} = ['ATG' , 'GCG'] ;

print Dumper \%HDAC;

$VAR1 = {
 'symbol' => 'HDAC',
 'function' => 'Histone Deacetylase',
 'seq' => 'MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...',
 'codons' => [
 'ATG',
 'GCG'
]
 };

Output:

the array is never given a name.

Storing an Anonymous (unnamed) Array as a Hash Value

21Friday, October 18, 13

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGN...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol} = "HDAC";
$HDAC{codons} = ['ATG' , 'GCG'] ;
$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

print Dumper \%HDAC;

Storing an Anonymous (unnamed) Hash as a Hash Value

$VAR1 = {
 'symbol' => 'HDAC',
 'function' => 'Histone Deacetylase',
 'expression' => {
 'heart' => '1.3',
 'liver' => '2.1'
 },
 'seq' => 'MAQTQGTRRKVCYYYDGDVGN...',
 'codons' => [
 'ATG',
 'GCG'
]
 };

Notice the {}
instead of ().

Output:

Set all at once:
%hash = (
 'key1' => 'value1',
 'key2' => 'value2',
);

Regular hash

22Friday, October 18, 13

$HDAC{expression} = {
"liver" => 2.1 ,
"heart" => 1.3
} ;

Storing an Anonymous (unnamed) Hash as a Hash Value

One at a time:
$HDAC{expression}{"liver"} = 2.1 ;
$HDAC{expression}{"heart"} = 1.3 ;

Regular hash

All at once:
%hash = (
 'key1' => 'value1',
 'key2' => 'value2',
);
One at a time:
$hash{'key1'}="value1";
$hash{'key2'}="value2";

All at once:

Notice the {}
instead of ().

23Friday, October 18, 13

Now, all the data is in the data
structure, how to you get it out?

Whole chunks of data or pieces of data can be
retrieved from the multidimensional structures by
using the address.

 A.K.A. Dereferencing

24Friday, October 18, 13

3 Easy Steps to Dereference

1. Get the address, or reference: $ADDRESS

2. Wrap the address, or reference in {}: {$ADDRESS}

3. Put the symbol of the data type out front @: @{$ADDRESS}

Dereference === retrieve data from address

25Friday, October 18, 13

Dereference a reference to an array

my @codons =('ATG' , 'GCG' , 'CAG');

my $codons_address = \@codons;

print "address of the array:\n$codons_address\n\n";
print "array from a dereferenced reference:\n @{$codons_address}\n";

Output:
address of the array:
ARRAY(0x7fd89c016b90)

array from a dereferenced reference:
ATG GCG CAG

26Friday, October 18, 13

Dereference an anonymous array that is a hash value

$hash{key} = "value";
my $value = $hash{key};

Regular hash

address of the array: ARRAY(0x7f97db822958)
address of the array: ARRAY(0x7f97db822958)

array from a dereferenced reference:
ATG GCG

Output:

$HDAC{codons} = ["ATG" , "GCG"] ; #anony array is a hash value
 #anony array is an address
my $codons_address = $HDAC{codons};

print "address of the array: " , $HDAC{codons} , “\n”;
print "address of the array: $codons_address\n\n";

print "array from a dereferenced reference:\n @{$codons_address}\n";

Key Value

Did you notice that dereferencing an array and an anonymous array
are the same? Check out the dereferencing in the last slide and

compare to this one.

This evaluates to an address

27Friday, October 18, 13

Dereference an anonymous hash that is a hash value

$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

my $hash_address = $HDAC{expression};

print "address of the hash:\n$hash_address\n\n";

my @keys = keys %{$hash_address};

print "keys from a dereferenced reference:\n@keys\n";

address of the hash:
HASH(0x7f94e38226d0)

keys from dereferenced reference:
heart liver

Output:

Regular hash

my @keys = keys %hash;

This evaluates to an address

print {"liver"=>2.1, "heart"=>1.3},"\n";

Output:
HASH(0x7fadf082bbb0)

Check it out:

28Friday, October 18, 13

It is not always needed to explicitly retrieve the address

$HDAC{expression} = { "liver" => 2.1,"heart" => 1.3 } ;

#my $hash_address = $HDAC{expression};
#my @keys = keys %{$hash_address};

my @keys = keys %{ $HDAC{expression} };

print "keys from a dereferenced reference:\n@keys\n";

This evaluates to an address

keys from a dereferenced reference:
heart liver

Output:

Regular hash
my @keys = keys %hash;

This evaluates to an address

29Friday, October 18, 13

Dereferencing to access every element of the anonymous
array that is a hash value

$HDAC{codons} = ["ATG" , "GCG"] ;

#my @codons = @{ $HDAC{codons} };

foreach my $codon (@ { $HDAC{codons} }){

print "codon: $codon\n";
}

codon: ATG
codon: GCG

Output:

evaluates to an address

foreach my $codon (@codons)
{
 print "codon: $codon\n";
}

Regular array:

30Friday, October 18, 13

Dereferencing to access a piece of the
anonymous array that is a hash value.

$HDAC{codons} = ["ATG" , "GCG"] ;
#my @codons = @{ $HDAC{codons} };

my $zeroth_element = ${ $HDAC{codons} }[0];

print "the 0th element = $zeroth_element\n";

the 0th element = ATG

Output:

evaluates to an address

$array[1] = "value";
my $value = $array[1]

Regular array

31Friday, October 18, 13

Dereferencing to access a piece of the
anonymous array that is a hash value.

$HDAC{codons} = ["ATG" , "GCG"] ;

my $zeroth_element = ${ $HDAC{codons} }[0];

print "the 0th element = $zeroth_element\n";

$last_element = pop @ { $HDAC{codons} };
print "the last element = $last_element\n";

pop actually changes the array

the 0th element = ATG
the last element = GCG

Output:

evaluates to an address

$array[1] = "value";
my $value = $array[1];
my $last = pop @array;

Regular array

32Friday, October 18, 13

Dereferencing to access a single key/value pair
from the anonymous hash in a hash

$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

my $level = ${ $HDAC{expression} }{ "heart" };
print "heart: $level\n";

my $tissue = "liver";
$level = ${ $HDAC{expression} }{ $tissue };
print "liver: $level\n";

heart: 1.3
liver: 2.1

Output:

foreach my $key (keys %hash){
 my $value = $hash{$key};
}

Regular Hash

33Friday, October 18, 13

Dereferencing to access every key/value pair from
the anonymous hash in a hash

$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

foreach my $tissue (keys % { $HDAC{expression} }){
 my $level = ${ $HDAC{expression} }{$tissue};
 print "$tissue: $level\n";
}

heart: 1.3
liver: 2.1

Output:

foreach my $key (keys %hash){
 my $value = $hash{$key};
}

Regular Hash

34Friday, October 18, 13

Lets draw out what a hash of hashes would look like?

35Friday, October 18, 13

key value
gene1 ATG
gene2 CTT
gene3 ATT

regular %genes hash

key value
gene1 0x543
gene2 0x234
gene3 0x152

multidimensional
%genes hash

key value
seq TATGCC
desc something
len 6

0x543

0x234
key value
seq CAAATG
desc something
len 6

key value
seq TATACG
desc something
len 6

0x152

$VAR1 = {

 'gene1' => {

 'seq' => "TATGCC",

 'desc' => 'something',

 'len' => 6,

 },

 'gene2' => {

 'seq' => "CAAATG",

 'desc' => 'something',

 'len' => 6,

 },

 };

{anonymous hash}

{anonymous hash}

{anonymous hash}

Each key has a value
that is an address to
an anonymous hash

Each key has a string as a value.

Each key has a string as a value.

Each key has a string as a value.
36Friday, October 18, 13

What about a hash of hashes of hashes?

37Friday, October 18, 13

key value
gene1 0x543
gene2 0x234
gene3 0x152

multidimensional
%genes hash

key value

seq TATGCC

desc something

len 6

nt_comp 0x759

0x543

key value

A 1

T 2

G 1

C 2

0x759

$VAR1 = {

 'gene1' => {

 'seq' => "TATGCC",

 'desc' => 'something',

 'len' => 6,

 'nt_comp' => {

 'A' => 1,

 'T' => 2,

 'G' => 1,

 'C' => 2,

 }

 },

 'gene2' => {

 'seq' => "CAAATG",

 'desc' => 'something',

 'len' => 6,

 'nt_comp' => {

 'A' => 3,

 'T' => 1,

 'G' => 1,

 'C' => 1,

 }

 },

 };

key value

seq CAAATG

desc something

len 6

nt_comp 0x191

0x234

key value

A 3

T 1

G 1

C 1

0x191

Each key has a value
that is an address to an
anonymous hash

{anonymous hash}

{anonymous hash}

{anonymous hash}

{anonymous hash}

Each key has a string as a value.

Each key has a string as a value.

38Friday, October 18, 13

The ref() function

my %hash;

$hash{codons}= ['ATG' , 'TTT'];
my $address = $hash{codons};

ref ($address); ## returns ARRAY
ref ($hash{codons}); ## returns ARRAY

ref(REF)
returns the data type in which the reference points

both $address and $hash{codons} evaluate to the address of the array

39Friday, October 18, 13

Extra fun stuff to look
over later.

• Array of arrays

• Another Scripting Example:

• Creating a Hash of Hashes

40Friday, October 18, 13

Multidimensional Data: Making an Array of Arrays

my @spotarray = (
 [0.124, 43.2, 0.102, 80.4],
 [0.113, 60.7, 0.091, 22.6],
 [0.084, 112.2, 0.144, 35.3]
);

two ways to get the value of the inner index
my $cell_1_0 = ${$spotarray[1]}[0];
my $cell_1_0 = $spotarray[1][0];

print $cell_1_0;

0.113
Output:

41Friday, October 18, 13

Scripting Example: Creating a Hash of Hashes

We are presented with a table of sequences in the following format:
the ID of the sequence, followed by a tab, followed by the sequence
itself.

2L52.1 atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattggaagtaag...
4R79.2 tcaaatacagcaccagctcctttttttatagttcgaattaatgtccaact...
AC3.1 atggctcaaactttactatcacgtcatttccgtggtgtcaactgttattt...
...

For each sequence calculate the length of the sequence and the count
for each nucleotide. Store the results into hash of hashes in which the
outer hash's key is the ID of the sequence, and the inner hashes' keys
are the names and counts of each nucleotide.

42Friday, October 18, 13

#!/usr/bin/perl -w
use strict;

tabulate nucleotide counts, store into %sequences
my $infile = shift @ARGV;
open IN , '<' , $infile or die "Can't open $infile $!\n";

my %seqs;
while (my $line = <IN>) {
 chomp $line;
 my ($id,$sequence) = split "\t",$line;
 my @nucleotides = split '', $sequence; # array of nts
 foreach my $n (@nucleotides) {
 $seqs{$id}{$n}++; # count nts and keep tally
 }
}

print table of results
print join("\t",'id','a','c','g','t'),"\n";

foreach my $id (sort keys %seqs) {
 print join("\t",$id,
 $seqs{$id}{a},
 $seqs{$id}{c},
 $seqs{$id}{g},
 $seqs{$id}{t},
),"\n";
}

43Friday, October 18, 13

The output will look something like this:

$VAR1 = {
 '2L52.1' => {
 'c' => 4,
 'a' => 23,
 'g' => 12,
 't' => 11
 },
 '4R79.2' => {
 'c' => 12,
 'a' => 15,
 'g' => 5,
 't' => 18
 }
 };

id a" c" g" t
2L52.1" 23" 4" 12 11
4R79.2" 15" 12 " 5" 18
...

Data::Dumper Output:

44Friday, October 18, 13

