
Arrays and Loops
Sofia Robb

1

An array is a Named Ordered List.

• What is a list?!

• (‘cat’, ‘dog’, ‘narwhal’)!

• Why is it named?!

• @animals = (‘cat’, ‘dog’, ‘narwhal’);!

• Why is is ordered?!

• each element has an ordered numerical index or
position

Arrays are
denoted with

‘@’ symbol

0 1 2

cat dog narwhal

2

Arrays

• Each element of an array has to be a scalar
variable!

• These are all scalar variables!

• number!

• letter!

• word!

• sentence!

• $scalar_variable

3

Example array

my @colors = ('red', $favorite_color,
'cornflower blue', 5);

4

The elements of the array are stored in a specific order.

my @colors = ('red', $favorite_color,
'cornflower blue', 5);

0 1 2 3

'red' $favorite_color 'cornflower blue' 5

$colors[0] $colors[1] $colors[2] $colors[3]

5

my @colors = ('red', $favorite_color,
'cornflower blue', 5);
!

GET
!
my $first = $colors[0];
my $second = $colors[1];
my $third = $colors[2];
my $last = $colors[-1];
!

negative numbers can be used to access from the end

Each element of an array can be accessed by its
position, or index, in the array.

6

$colors[0] = 'green';
$colors[2] = 'gray';

The value of each element can be reassigned with use
of its index.

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower
blue 5

$colors[0] $colors[1] $colors[2] $colors[3]

green $favorite_!
color gray 5

7

Assign values to indices that are far away

$colors[0] = 'green';
$colors[2] = 'gray';
$colors[8] = 'black';

$colors[0] $colors[1] $colors[2] $colors[3] $colors[4] $colors[5] $colors[6] $colors[7] $colors[8]

green $favorite_!
color gray 5 undefined undefined undefined undefined black!

@colors now contains 9
elements. !

4 of the elements are
undefined.

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower
blue 5

8

GET/SET: Mirror Images

#GET:
$first = $colors[0];
$second = $colors[1];
!
#SET:
$colors[0] = 'green';
$colors[2] = 'gray';

9

A common MISTAKE is to try to access an element in array context
(meaning using the ‘@’).

my @colors = ('red', $favorite_color, 'cornflower blue', 5);

This is correct:
my $first = $colors[0];

This is wrong:
my $first = @colors[0];

10

Length of an array

my $length = scalar @colors;
print "len of array: $length\n";

len of array: 4
Output:

The scalar() function can be used to return the scalar attribute of an array. It scalar attribute is the
length, or in other words, the number of elements in the array.

 scalar(@array)

my @colors = ('red', $favorite_color, 'cornflower blue', 5);

11

my @colors = ('red', $favorite_color, 'cornflower blue', 5);

A common MISTAKE is to use the length() function to get the
number of elements in an array

len of array: 4

len of array: 1

my $length = scalar @colors;
print "len of array: $length\n";

Output:

Output:

my $length = length @colors;
print "len of array: $length\n";

WRONG:

CORRECT:

12

Quick print of an array

my @colors = ('red', $favorite_color, 'cornflower blue', 5);
!
print "@colors";

When an array is printed with use of double quotes ("@array"), a single white space is
automatically inserted between each element. This allows for a quick way to visualize the

contents of your array.

Notice that the print out of the array looks like it has 5
elements while our array actually has 4 elements.

Printing within quotes may not always be helpful in
cases when a white space is included within a single

element, such as 'cornflower blue'.

red purple cornflower blue 5

Output

13

 Array to a String

!
my @colors = ('red', $favorite_color, 'cornflower blue', 5);
!
my $new_string = join ('--' , @colors);
print "$new_string\n";

my $new_string = join(string , @array);

red--purple--cornflower blue--5
Output

join() can be used to combine all the individual elements of list or array into a string on a set of
characters. A string is returned.

'--' is used here to clearly differentiate the elements of
@colors. A tab ("\t") is a common character to use with

the join() fuction.

14

Arrays are Dynamic

my @colors = ('red', $favorite_color, 'cornflower blue', 5);

push

popshift

unshift

Not only can values be reassigned but!
Arrays can grow and shrink.

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower
blue 5

shift() has been used in
previous lectures to get user

command line arguments

15

push

#add one element to the end
push (@colors, 'black');
print join ('--', @colors) , "\n";

Add elements to the end with push();

push (@array, list of values);

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower
blue 5

red--purple--cornflower blue--5--black

Output

push() is changing the
actual array

16

push

Add elements to the end with push();

push (@array, list of values);

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower
blue 5

#add one element to the end
push (@colors, 'black','blue');
print join ('--', @colors) , "\n";

red--purple--cornflower blue--5--black--blue

Output

push() is changing the
actual array

17

push

Add elements to the end with push();

push (@array, list of values);

#add an array of elements
my @more_colors = ('yellow','pink','white','orange');
push (@colors, @more_colors);
print join ('--', @colors) , "\n";

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower
blue 5

red--purple--cornflower blue--5--black--yellow--pink--white--orange

Output

push() is changing the
actual array

18

pop
my $last_element = pop @colors;
!
print "last: $last_element\n";
print join ('--', @colors) , "\n";

Remove an element from the end with pop();

my $last = pop(@array);

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower
blue 5

last: 5
red--purple--cornflower blue

Output

pop() is changing the
actual array

19

shift

Remove an element from the beginning with shift();

my $first_element = shift(@colors);
!
print "first: $first_element\n";
print join ('--', @colors) , "\n";

$first = shift(@array);

shift() is changing the
actual array

first: red
purple--cornflower blue--5

Output

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower
blue 5

20

unshift

Add elements to the beginning with unshift();

#add one element to the beginning
unshift (@colors, 'black');
print join ('--', @colors) , "\n";

unshift (@array, list of values);

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower
blue 5

black--red--purple--cornflower blue--5
Output

21

unshift

Add elements to the beginning with unshift();

#add two elements to the beginning
unshift (@colors, 'black' , 'blue');
print join('--',@colors), "\n";

unshift (@array, list of values);

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower
blue 5

black--blue--red--purple--cornflower blue--5
Output

22

unshift

Add elements to the beginning with unshift();

#add an array of elements to the beginning
my @more_colors = ('yellow','pink','white','orange');
!
unshift (@colors, @more_colors);
print join('--',@colors) , "\n";

unshift (@array, list of values);

yellow--pink--white--orange--red--purple--cornflower blue--5
Output

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower
blue 5

23

Dynamic Arrays

Function Meaning
push(@array, a list of values) add value(s) to the end of the list

$popped_value = pop(@array) remove a value from the end of the list

$shifted_value = shift(@array) remove a value from the front of the list

unshift(@array, a list of values) add value(s) to the front of the list

splice(...) everything above and more!

24

String to an Array

!
!
my $string = "I do not like green eggs and ham";
!
#'/ /' sets the delimiter to a single white space
my @words = split(/ /,$string);
!
print join('--',@words),"\n";
I--do--not--like--green--eggs--and--ham

my @array = split(/pattern/ , string);

The split() function can be used to create an array from a string by providing a delimiter of any
set of characters or any pattern. split() is similar to Excel's "Text to columns" feature that allows
you to indicate which characters separate each field, such as tabs (\t) and commas (,). Just like
in Excel, the split() function will remove the delimiter and it will not be present in the returned

data.

Notice that there are no
white spaces in the printed

array. The delimiter was
removed.

25

Using qw() to create a list of words

!
my @array = ('one', 'two', 'three', 'four');

It is a lot of work to type all the quotes and commas.!
Use qw() instead:

!
my @array = qw(one two three four);

qw() will produce a list of quoted words:!
('one' , 'two' , 'three' , 'four') !

that can now be saved as an array
26

Sorting

I--and--do--eggs--green--ham--like--not

my @sorted_array = sort (@array)
The sort() function is used to sort a list. The default behavior is to sort in ascii order. A sorted

list is returned.

my @words = qw(I do not like green eggs and ham);
!
my @sorted_words = sort @words;
print join('--' , @sorted_words),"\n";

ascii sort order:!
0-9!
A-Z!
a-z

Output

27

Default Sort: sort {$a cmp $b}

##sort {$a cmp $b} is default sort() behavior
my @sorted_words = sort {$a cmp $b} @words;
print join('--' , @sorted_words),"\n";

my @sorted_array = sort {$a cmp $b}(@array)

my @words = qw(I do not like green eggs and ham);

I--and--do--eggs--green--ham--like--not

Output

The sort() function performs a series of pairwise comparisons of all the elements in the list. For
example it compares the first ($a) and second ($b) elements, tests if $a is less than $b, then it

makes another pairwise comparison and and so on until the list is sorted.

$a and $b are special Perl
variables and do no need to be

declared. If you use these
elsewhere in the same scope,
the sort function won't work.
This is another reason not to

use uninformative variable
names (like a and b) when
you're writing your scripts!

sort @array!
is equivalent to!

sort {$a cmp $b}

28

Quick Review:
The comparison operator and strings

$result is:!
 -1 if the left side is less than the right side!
 0 if the left side equals the right side!
+1 if the left side is greater than the right side

my $x = 'sid';
my $y = 'nancy';
my $result = $x cmp $y;

29

my $x = 2;
my $y = 3.14;
my $result = $x <=> $y;

$result is:!
 -1 if the left side is less than the right side!
 0 if the left side equals the right side!
+1 if the left side is greater than the right side

Quick Review:
The comparison operator and numbers

30

The comparison operator

use cmp to compare two strings!
my $x = 'sid';
my $y = 'nancy';
my $result = $x cmp $y;

use <=> to compare two numbers!
my $x = 2;
my $y = 3.14;
my $result = $x <=> $y;

31

Modify sort behavior for
Numeric Sorting

default sorting is ascii
my @sorted_numbers = sort @numbers;
print "@sorted_numbers\n";

modify to sort numerically
@sorted_numbers = sort {$a <=> $b}@numbers;
print "@sorted_numbers\n";

1 10 11 15 2 20

my @numbers = (15,2,10,20,11,1);

1 2 10 11 15 20

Output

Output

The default sort can be modified by specifying the sort behavior in {} using Perl reserved
variables $a and $b.

32

Sorting and map{}

my @words = qw(I do not like green eggs and ham);
!
my @ABC_words = map { uc }@words;
print join('--',@ABC_words),"\n";
I--DO--NOT--LIKE--GREEN--EGGS--AND--HAM
!
my @sorted_words = sort (@ABC_words);
print join('--',@sorted_words),"\n";
AND--DO--EGGS--GREEN--HAM--I--LIKE--NOT

33

More sort() customization with uc()

my @words = qw(I do not like green eggs and ham);
my @sorted_words = sort {uc($a) cmp uc($b)}(@words);
print join('--',@sorted_words),"\n";

and--do--eggs--green--ham--I--like--not

my @sorted = sort { uc($a) cmp uc($b) } @array;

Output

Before $a and $b are compared they are uppercased. This only changes the temporary copy of
the array elements stored in $a and $b during the sort. The actual array elements are not being

changed. It is a sorted list of the original list that is being returned

The returned list is in the same
format as the original list. The

uc() used on $a and $b did not
change the @array

34

Sort based on the length of each element

my @words = qw(I do not like green eggs and ham);
my @sorted_words = sort {length($a) <=> length($b)}(@words);
print join('--',@sorted_words),"\n";

I--do--not--and--ham--like--eggs--green

my @sorted = sort { length($a) <=> length($b) } @array;

Output

The returned list is in the same
format as the original list. The

length() used on $a and $b did
not change the @array

Noticed that the <=> is used.
The lengths of the words are

being compared.Warning Advanced!! Sort on length then on alphabet.!
my @sorted_words = sort {length($a) <=> length($b) || uc($a) cmp uc($b) }(@words);

35

Reverse Sorting

my @words = qw(I do not like green eggs and ham);
my @sorted_words = sort {$b cmp $a} @words;
print join('--',@sorted_words),"\n";

Reverse the order of $a and $b to reverse the results of sort.

not--like--ham--green--eggs--do--and--I
Output

36

Swapping the values of 2 elements

my @words = qw(I do not like green eggs and ham);
print "Before Swap : w5=$words[5] w7=$words[7]\n";
!
my $val_1 = $words[5];
my $val_2 = $words[7];
$words[5] = $val_2;
$words[7] = $val_1;
!
print "After Swap : w5=$words[5] w7=$words[7]\n";
print join('--',@words),"\n";
!

$words[5] = $words[7];
$words[7] = $words[5];
print join('--',@words),"\n";

What is wrong with this?

Before Swap : w5=eggs w7=ham
After Swap : w5=ham w7=eggs
I--do--not--like--green--ham--and--eggs

I--do--not--like--green--ham--and--ham

Output

37

Swapping values

my @words = qw(I do not like green eggs and ham);
print "Before Swap : w5=$words[5] w7=$words[7]\n";";
!
($words[5],$words[7]) = ($words[7],$words[5]);
!
print "After Swap : w5=$words[5] w7=$words[7]\n";
print join('--',@words),"\n";

Before Swap:
w5:eggs w7:ham
after swap:
w5:ham w7:eggs
I--do--not--like--green--ham--and--eggs

Output

38

• Loops!

• foreach() : perfect for arrays!

• for() : good for arrays and much more!

• while() : perfect for many things other than
arrays as well as lines of files

39

foreach loop

my @array = (15,2,10,20,11,1);
!
foreach my $one_element(@array){
##do something to each $one_element
!
!

}

The foreach loop is especially equipped to iterate through each element of a list. It retrieves the value
of each element of the list, one at at time, in the order of indices, and stores it in a variable for use

within the foreach code block.

$array[0] $array[1] $array[2] $array[3] $array[4] $array[5]

15 2 10 20 11 1

40

foreach loop

my @array = (15,2,10,20,11,1);
!
foreach my $one_element(@array){
##do something to each $one_element
print "Number: $one_element\n";

}

The foreach loop is especially equipped to iterate through each element of a list. It retrieves the value of
each element of the list, one at at time, in the order of indices, and stores it in a variable for use within

the foreach code block.

$array[0] $array[1] $array[2] $array[3] $array[4] $array[5]

15 2 10 20 11 1

Number: 15
Number: 2
Number: 10
Number: 20
Number: 11
Number: 1

Output
A foreach loops know
everything about your

array.

41

foreach() code block

my @words = qw(I do not like green eggs and ham);
!
foreach my $word (@words){
 my $uc_word = uc($word);
 my $len = length($word);
 print "word: $uc_word($len)\n";
}

Output

All the lines within the foreach code block will be executed on each array element, one at at time.

start at $index=0;
1.The value of the index $index is retrieved
from @words and a copy is stored in $word. !
2. $word is uppercased and the result is
stored in $uc_word.!
3.The length of $word is calculated and
stored in $len.!
4. $uc_word and $length are printed.!
5. Increment to the next index ($index++). !
6.Go to Step 1, repeat until the foreach code
block is executed on all elements

word: I(1)
word: DO(2)
word: NOT(3)
word: LIKE(4)
word: GREEN(5)
word: EGGS(4)
word: AND(3)
word: HAM(3)

42

for loop

for (my $i=0; $i<5 ; $i++){
print "\$i is: $i\n";

}

for(initialization; test; increment){
 statements;
}

The for loop is especially equipped to keep count and for repeating a block of code until a numerical
condition is met.

Output
$i is: 0
$i is: 1
$i is: 2
$i is: 3
$i is: 4

A for loop does not
know anything about

your array.

43

for loop

my @array = (15,2,10,20,11,1);
for (my $i=0; $i<scalar @array ; $i++){
 my $value = $array[$i]
 print "value of $i is $value\n";
}

The for loop can also be used with @arrays. The $i can be used to retrieve each the value of each index.

Output
value of 0 is 15
value of 1 is 2
value of 2 is 10
value of 3 is 20
value of 4 is 11
value of 5 is 1

start at $i=0;
1. if $i is less than the length of the @array
(scalar @array) then the code in the for block
will be executed. !
2. $value is set to contain the contents of
$array[$i].!
3. $value is printed!
4. $i is auto incremented. ($i=$i+1);!
5. Go to Step 1, repeat as long as the test
($i<scalar @array) remains true.

$array[0] $array[1] $array[2] $array[3] $array[4] $array[5]

15 2 10 20 11 1

Loops are similar to the steps in a
thermocycler program

44

Thermocycler Program and loops

my ($temp, $time);
my $cycles = 30;
!
($temp,$time) = (94,"3min");
doDenature($temp,$time);
!
for (my $i=0 ; $i<$cycles ; $i++){
!
 ($temp,$time) = (94, "30sec");
 doDenature($temp,$time);
 ($temp,$time) = (57, "30sec");
 doAnnealing($temp,$time);
 ($temp,$time) = (72, "1min");
 doExtension($temp,$time);
}
($temp,$time) = (72, "5min");
doAnnealing($temp,$time);
!
while (1){
 ($temp,$time) = (4, "forever");
 doChilling($temp,$time);
}

Standard PCR program !
!
1. 94 °C 3 min : Initial Denature!
2. 94 °C 30 sec : Denature!
3. 57 °C 30 sec : Annealing!
4. 72 °C 1 min :Extension !
5. Go to step 2, for additional 29 times!
6. 72 °C 5 min !
7. 4 °C for ever

45

while loop

while (condition){
code;

}

while loops continue to execute the while code block until the while conditional statement is true.

A while loop does
not know anything
about your array.

46

while loops and <FILEHANDLES>

open (IN, ">", "file.txt") or die "Can't open file.txt $!";
!
while (my $line = <IN>){

chomp $line;
print "$line\n";

}

Output
file line 1
file line 2
file line 3

while loops are great for getting lines from a file one by one and executing code on each line. It will
continue until the condition is false.

start at line 1;
1. <> is an operator that returns the contents
of one line from a file. If the end of the file is
reached, nothing is returned, and nothing is
false.!
2. if the contents of $line is true the code
block is executed.!
3. $line is chomped, then printed.!
4. Go to Step 1.

Loops are similar to the steps in a
thermocycler program

47

while loop
while loops can also be used for counting.

my $i = 0;
while ($i<5){

print "\$i is $i\n";
 $i++;

}

Output

This instance of the while loop
functions like a for loop. !
!
1. A counter is initialized!
2. there is a test that
incorporates the counter!
3. the counter is changed in each
iteration of the loop.

$i is: 0
$i is: 1
$i is: 2
$i is: 3
$i is: 4

48

for and while loop can do the same thing

for (my $i=0; $i<5 ; $i++){
print "$i\n";

}

$i $i<5 print “$i\n”; $i++

0 yes 0 1

1 yes 1 2

2 yes 2 3

3 yes 3 4

4 yes 4 5

5 no
my $i = 0;
while ($i<5){

print "$i\n";
 $i++;

}

for(;;){}

while(){}

for and while loops can be used to do the same things, the format is just different. Neither way is better,
just different

49

Different loops can do the same things

foreach and for loops with arrays!
!

my @array = (15,2,10,20,11,1);
for and while loops with counters

!
 foreach my $ele(@array){

 print "$ele\n";
 }

 for (my $i=0; $i<5 ; $i++){
 print "$i\n";
 }

 for (my $i=0; $i<scalar @array ; $i++){
 my $ele = $array[$i]
 print "$ele\n";
 }

 my $i = 0;
 while ($i<5){
 print "$i\n";
$i++;
 }

50

Loop Control: next()

my @words = qw(I do not like green eggs and ham);
!
foreach my $word (sort {uc($a) cmp uc($b)}@words){

if ($word eq 'and'){
 next;
}
print "$word\n";

}

execution of next() will cause the loop to jump to the next iteration. Any code, in
the loop block, that falls after the next will be skipped. The next iteration of the loop

will commence. All code after the loop block will also be executed.

do
eggs
green
ham
I
like
not

Output

Every element but
'and' is printed.

51

my @words = qw(I do not like green eggs and ham);
!
foreach my $word (@words){

if ($word eq 'and'){
 last;
}
print "$word\n";

}

Loop Control: last!

execution of last() will cause the loop to exit the loop. Any code, in the loop block,
that falls after the last will be skipped. No further iterations will be attempted. All

code that falls after the loop block will also be executed.

Every word before 'and' in
@words is printed. When
the element is equal to

'and' the current iteration
ends, the loop block is

exited and no other words
are printed

I
do
not
like
green
eggs

52

Sorting, Arrays and Loops

my @words = qw(I do not like green eggs and ham);
#my @sorted = sort {uc($a)cmp uc($b)}@words;
!
foreach my $word (sort {uc($a)cmp uc($b)}@words){

print "$word\n";
}

and
do
eggs
green
ham
I
like
not

Output

Previously, the array was
sorted and the sorted
results were stored in a

new array

Here, !
1. the array is sorted !
2. the final sorted results are returned to the
foreach loop. !
3. Then one element at a time, in the sorted
list will be stored in $word!
4. Each element stored in $word will be
processed in the loop code block

53

my @seqs = qw(TTT CGG ATG TAA CCC ACC TGA);
!
my $count = 0;
foreach my $seq (@seqs){
if ($seq eq 'TAA' or $seq eq 'TGA' or $seq eq 'TAG'){
print "*\n";

}else {
$count++;

}
}
print "$count non-stop codons\n";

Example usage of a foreach loop

*
*
5 non-stop codons

Output

54

print "\@ARGV: @ARGV\n";
!
print "\$ARGV[0]: $ARGV[0]\n";
print "\$ARGV[1]: $ARGV[1]\n";
!
my $arg1 = shift @ARGV;
my $arg2 = shift @ARGV;
!
!
print "arg1: $arg1\n";
print "arg2: $arg2\n";

@ARGV

./sample_usr_input.pl 5 five

@ARGV: 5 five
!
$ARGV[0]: 5
$ARGV[1]: five
!
arg1: 5
arg2: five

Output

@ARGV is a special Perl array that automatically contains the list of arguments that follow the script
name on the command line.

$ARGV[0] $ARGV[1]

5 five

55

