Perl Il

Logic and control structures

Sofia Robb

v5 2013 - notes originallly by Dave Messina

What is truth?

0 the number O is false
"O" the string 0 is false
""and '' an empty string is false
my $x; an undefined variable is false

everything else is true

my
$xX
$xX
S$X

$x =
$x =

P
Sx
Sx
Sx

Examples of truth

Sa; # FALSE (not yet defined)

= 1; # TRUE

= 0; # FALSE

= "\n"; # TRUE

= 'true'; # TRUE

= 'false'; # TRUE (watch out! "false" is a nonempty string)

="' "'; # TRUE (a single space is non-empty)

= "\n\n”; # TRUE (a single newline is non-empty)

= 0.0; # FALSE (converts to string "0")

= '0.0'; # TRUE (watch out! The string "0.0" is not the
same as "0")

defined

defined lets you test whether a variable is defined.

if (defined $x) {
print "$x is defined\n”;

Control structures

Control structures allow you to control if
and how a line of code is executed.

You can create alternative branches in which
different sets of statements are executed
depending on the circumstances.

You can create various types of repetitive
loops.

Control structures

So far you’ve seen a basic program,
where every line is executed, in
order, and only once.

my $x = 1;

my $y = 2;

my $z = $x + $y;

print "$x + $y = $z\n”;

Control structures

Here, the print statement is only
executed some of the time.

my $x = 1;
my $y = 2;
if ($x == 3%y) {
print "$x and %y are equal\n”;

Components of a control structure

|.a keyword

\ 2.a statement in parentheses

3. squiggly brackets
/ / quiggly
if ($x == 3%y) {

print "$x and $y are equal\n”;

The part enclosed by the squiggly brackets is called a block.

8

Components of a control structure

When you program, build the structure first and then fill in.

|.a keyword

\ 2.a statement in parentheses
/ - 3. squiggly brackets

if ($x == %y) {
print "$x and $y are equal\n”;

}

4. now add the print statement

if ($x == $y) {
print "$x and $y are equal\n”;

If $X is the same as $y, then the print
statement will be executed.

or said another way:

If ($x == $y) is true, then the print
statement will be executed.

10

if — a common mistake

if ($x = %y) {
print "$x and $y are equal\n”;

What happens if we write it this way?

11

if — a common mistake

| equals sign to make the left side equal the right side.
2 equals signs to test if the left side is equal to the right.

my $x; # x 1is undefined

my $x = 1; # x is now defined
if ($x == 1) # is $x equal to 1?
if ($x = 1) # (wrong)

use warnings will catch this error.

12

else

If the 1T statement is false, then the first
print statement will be skipped and only the
second print statement will be executed.

if ($x == 3%y) |

print "$x and %y are equal\n”;

Y
else {

print "$x and %y aren't equal\n”;
ki

13

elsif

Sometimes you want to test a series of
conditions.

if ($x == $y) {
print "$x and $y are equal\n”;
}
elsif ($x > $y) {
print "$x is bigger than $y\n”;
}
elsif ($x < $y) {
print "$x is smaller than $y\n”;

14

elsif

What if more than one condition is true?

if (1 == 1) {
print "$x and $y are equal\n”;
}
elsif (2 > 0) {
print "2 is positive\n”;
}
elsif (2 < 10) {
print "2 is smaller than 10\n”;

15

while

As longas ($x == $y) is true, the
print statement will be executed over
and over again.

while ($x == %y) {
print "$x and $y are equal\n”;

Why might you want to execute a block repeatedly?

16

