
Perl II
Logic and control structures

Sofia Robb

v5 2013 - notes originallly by Dave Messina

1

What is truth?

0 the number 0 is false

"0" the string 0 is false

"" and '' an empty string is false

my $x; an undefined variable is false

everything else is true

2

Examples of truth

my $a; # FALSE (not yet defined)
$x = 1; # TRUE
$x = 0; # FALSE
$x = "\n”; # TRUE
$x = 'true'; # TRUE
$x = 'false'; # TRUE (watch out! "false" is a nonempty string)
$x = ' '; # TRUE (a single space is non-empty)
$x = "\n\n”; # TRUE (a single newline is non-empty)
$x = 0.0; # FALSE (converts to string "0")
$x = '0.0'; # TRUE (watch out! The string "0.0" is not the
 # same as "0")

3

defined

defined lets you test whether a variable is defined.

if (defined $x) {
 print "$x is defined\n”;
}

4

Control structures

Control structures allow you to control if
and how a line of code is executed.

You can create alternative branches in which
different sets of statements are executed
depending on the circumstances.

You can create various types of repetitive
loops.

5

Control structures

my $x = 1;
my $y = 2;
my $z = $x + $y;
print "$x + $y = $z\n”;

So far you’ve seen a basic program,
where every line is executed, in
order, and only once.

6

Control structures

my $x = 1;
my $y = 2;
if ($x == $y) {
 print "$x and $y are equal\n”;
}

Here, the print statement is only
executed some of the time.

7

Components of a control structure

if ($x == $y) {
 print "$x and $y are equal\n”;
}

3. squiggly brackets

2. a statement in parentheses

1. a keyword

The part enclosed by the squiggly brackets is called a block.

8

Components of a control structure

if ($x == $y) {
 print "$x and $y are equal\n”;
}

3. squiggly brackets

2. a statement in parentheses

1. a keyword

When you program, build the structure first and then fill in.

4. now add the print statement
9

if
if ($x == $y) {
 print "$x and $y are equal\n”;
}

If $x is the same as $y, then the print
statement will be executed.

If ($x == $y) is true, then the print
statement will be executed.

or said another way:

10

if — a common mistake

if ($x = $y) {
 print "$x and $y are equal\n”;
}

What happens if we write it this way?

11

my $x; # x is undefined
my $x = 1; # x is now defined
if ($x == 1) # is $x equal to 1?
if ($x = 1) # (wrong)

1 equals sign to make the left side equal the right side.
2 equals signs to test if the left side is equal to the right.

use warnings will catch this error.

if — a common mistake

12

else

if ($x == $y) {
 print "$x and $y are equal\n”;
}
else {
 print "$x and $y aren't equal\n”;
}

If the if statement is false, then the first
print statement will be skipped and only the
second print statement will be executed.

13

elsif

if ($x == $y) {
 print "$x and $y are equal\n”;
}
elsif ($x > $y) {
 print "$x is bigger than $y\n”;
}
elsif ($x < $y) {
 print "$x is smaller than $y\n”;
}

Sometimes you want to test a series of
conditions.

14

elsif

if (1 == 1) {
 print "$x and $y are equal\n”;
}
elsif (2 > 0) {
 print "2 is positive\n”;
}
elsif (2 < 10) {
 print "2 is smaller than 10\n”;
}

What if more than one condition is true?

15

while

while ($x == $y) {
 print "$x and $y are equal\n”;
}

As long as ($x == $y) is true, the
print statement will be executed over
and over again.

Why might you want to execute a block repeatedly?

16

