
NGS Sequence data
Jason Stajich

UC Riverside

jason.stajich[at]ucr.edu

twitter:hyphaltip stajichlab

Lecture available at http://github.com/hyphaltip/CSHL_NGS

NGS sequence data
• Quality control

• Alignment

• Variant calling

◦ SNPs

◦ Indels

Sequence data sources
• Sanger

◦ Long reads, high quality, expensive

• Illumina

◦ Short reads 50-150bp (HiSeq) and up to 250bp (MiSeq)

◦ Cheap and Dense read total (HiSeq 200-300M paired-reads for ~$2k)

• 454

◦ Longish reads 300-500 bp, some homopolymer seq problems,

◦ Expensive ($10k for 1M reads), recent chemistry problems

◦ Going away in 3 years

• PacBio

◦ Long reads, but small amount (10k)

◦ Low seq quality and not cheap

◦ Can help improve assemblies, probably not sufficient for an assembly alone (too expensive to
get deep enough coverage)

Sequence data source (cont)
• SOLiD

◦ Short reads, 30-50bp. Reasonably price-point for the density

◦ 1/5 as many reads as Illumina HiSeq

• Ion Torrent

◦ Cheaper machine, fast, 100bp reads and reported 100M

◦ Quality okay for some applications

Sequencer comparisons
Glenn TC, "Field guide to next-generation DNA sequencers" DOI:10.1111/j.1755-0998.2011.03024.x

File formats
FASTQ

@SRR527545.1 1 length=76
GTCGATGATGCCTGCTAAACTGCAGCTTGACGTACTGCGGACCCTGCAGTCCAGCGCTCGTCATGGAACGCAAACG
+
HHHHHHHHHHHHFGHHHHHHFHHGHHHGHGHEEHHHHHEFFHHHFHHHHBHHHEHFHAH?CEDCBFEFFFFAFDF9

FASTA format

>SRR527545.1 1 length=76
GTCGATGATGCCTGCTAAACTGCAGCTTGACGTACTGCGGACCCTGCAGTCCAGCGCTCGTCATGGAACGCAAACG

SFF - Standard Flowgram Format - binary format for 454 reads

Colorspace (SOLiD) - CSFASTQ

@0711.1 2_34_121_F3
T11332321002210131011131332200002000120000200001000
+
64;;9:;>+0*&:*.*1-.5:$2$3&$570*$575&$9966$5835'665

Quality Scores in FASTQ files
SSS...
..........................XX......................
...............................III......................
.................................JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ......................
LL..
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
| | | | | |

33 59 64 73 104 126

S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)

with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
(Note: See discussion above).

Read naming
ID is usually the machine ID followed by flowcell number column, row, cell of the read.

Paired-End naming can exist because data are in two file, first read in file 1 is paired with first read in
file 2, etc. This is how data come from the sequence base calling pipeline. The trailing /1 and /2
indicate they are the read-pair 1 or 2.

In this case #CTTGTA indicates the barcode sequence since this was part of a multiplexed run.

File: Project1_lane6_1_sequence.txt

@HWI-ST397_0000:2:1:2248:2126#CTTGTA/1
TTGGATCTGAAAGATGAATGTGAGAGACACAATCCAAGTCATCTCTCATG
+HWI-ST397_0000:2:1:2248:2126#CTTGTA/1
eeee\dZddaddddddeeeeeeedaed_ec_ab_\NSRNRcdddc[_c^d

File: Project1_lane6_2_sequence.txt

@HWI-ST397_0000:2:1:2248:2126#CTTGTA/2
CTGGCATTTTCACCCAAATTGCTTTTAACCCTTGGGATCGTGATTCACAA
+HWI-ST397_0000:2:1:2248:2126#CTTGTA/2
]YYY_\[[][da_da_aa_a_a_b_Y]Z]ZS[]L[\ddccbdYc\ecacX

Paired-end reads
These files can be interleaved, several simple tools exist, see velvet package for shuffleSequences
scripts which can interleave them for you.

Interleaved was requried for some assemblers, but now many support keeping them separate.
However the order of the reads must be the same for the pairing to work since many tools ignore the
IDs (since this requires additional memory to track these) and instead assume in same order in both
files.

Orientation of the reads depends on the library type. Whether they are

----> <---- Paired End (Forward Reverse)
<---- ----> Mate Pair (Reverse Forward)

Data QC
• Trimming

◦ Adaptive or a hard cutoff

◦ sickle, FASTX_toolkit, SeqPrep

• Additional considerations for Paired-end data

• Evaluating quality info with reports

FASTX toolkit
• Useful for trimming, converting and filtering FASTQ and FASTA data

• One gotcha - Illumina quality score changes from 64 to 33 offset

• Default offset is 64, so to read with offset 33 data you need to use -Q 33 option

• fastx_quality_trimmer

• fastx_splitter - to split out barcodes

• fastq_quality_formatter - reformat quality scores (from 33 to 64 or)

• fastq_to_fasta - to strip off quality and return a fasta file

• fastx_collapser - to collapse identical reads. Header includes count of number in the bin

FASTX - fastx_quality_trimmer
• Filter so that X% of the reads have quality of at least quality of N

• Trim reads by quality from the end so that low quality bases are removed (since that is where
errors tend to be)

• Typically we use Phred of 20 as a cutoff and 70% of the read, but you may want other settings

• This is adaptive trimming as it starts from end and removes bases

• Can also require a minimum length read after the trimming is complete

FASTX toolkit - fastx_trimmer
• Hard cutoff in length is sometimes better

• Sometimes genome assembly behaves better if last 10-15% of reads are trimmed off

• Adaptive quality trimming doesn't always pick up the low quality bases

• With MiSeq 250 bp reads, but last 25-30 often low quality and HiSeq with 150 bp often last 20-30
not good quality

• Removing this potential noise can help the assembler perform better

Trimming paired data
• When trimming and filtering data that is paired, we want the data to remain paired.

• This means when removing one sequence from a paired-file, store the other in a separate file

• When finished will have new File_1 and File_2 (filtered & trimmed) and a separate file
File_unpaired.

• Usually so much data, not a bad thing to have agressive filtering

Trimming adaptors
• A little more tricky, for smallRNA data will have an adaptor on 3' end (usually)

• To trim needs to be a matched against the adaptor library - some nuances to make this work for
all cases.

◦ What if adaptor has low quality base? Indel? Must be able to tolerate mismatch

• Important to get right as the length of the smallRNAs will be calculated from these data

• Similar approach to matching for vector sequence so a library of adaptors and vector could be
used to match against

• Sometimes will have adaptors in genomic NGS sequence if the library prep did not have a tight
size distribution.

Trimming adaptors - tools
• cutadapt - Too to matching with alignment. Can search with multiple adaptors but is pipelining

each one so will take 5X as long if you match for 5 adaptors.

• SeqPrep - Preserves paired-end data and also quality filtering along with adaptor matching

FASTQC for quality control
• Looking at distribution of quality scores across all sequences helpful to judge quality of run

• Overrepresented Kmers also helpful to examine for bias in sequence

• Overrepresented sequences can often identify untrimmed primers/adaptors

FASTQC - per base quality

FASTQC - per seq quality

FASTQC - per seq GC content

FASTQC - Sequence Length

FASTQC - kmer distribution

FASTQC - kmer table

Getting ready to align sequence

Sequence aligners

Short read aligners
Strategy requires faster searching than BLAST or FASTA approach. Some approaches have been
developed to make this fast enough for Millions of sequences. maq - one of the first aligners
Burrows-Wheeler Transform is a speed up that is accomplished through a transformation of the data.
Require indexing of the search database (typically the genome). BWA, Bowtie ? LASTZ ? BFAST

Workflow for variant detection
• Trim

• Check quality

• Re-trim if needed

• Align

• Possible realign around variants

• Call variants - SNPs or Indels

• Possibly calibrate or optimize with gold standard (possible in some species like Human)

NGS Alignment for DNA
• Short reads (30-200bp)

◦ Bowtie and BWA - implemented with the BWT algorithm, very easy to setup and run

◦ SSAHA also useful, uses fair amount of memory

◦ BFAST - also good for DNA, supports Bisulfide seq,color-space but more complicated to run

• Longer reads (e.g. PacBio, 454, Sanger reads)

◦ BWA has A mode using does a Smith-Waterman to place reads. Can tolerate large indels much
better than standard BWA algorithm but slower. BWA-MEM is the currently reccomended mode
- BWA-SW was the earlier implementation and may be more tested, BWA-MEM is the
successor.

◦ LAST for long reads

BWA alignment choices
From BWA manual

On 350-1000bp reads, BWA-SW is several to tens of times faster than the existing programs. Its
accuracy is comparable to SSAHA2, more accurate than BLAT. Like BLAT, BWA-SW also finds chimera
which may pose a challenge to SSAHA2. On 10-100kbp queries where chimera detection is important,
BWA-SW is over 10X faster than BLAT while being more sensitive.

BWA-SW can also be used to align ~100bp reads, but it is slower than the short-read algorithm. Its
sensitivity and accuracy is lower than SSAHA2 especially when the sequencing error rate is above 2%.
This is the trade-off of the 30X speed up in comparison to SSAHA2’s -454 mode.

When running BWA you will also need to choose an appropriate indexing method - read the manual.
This applies when your genome is very large with long chromosomes.

Colorspace alignment
• For SOLiD data, need to either convert sequences into FASTQ or run with colorspace aware aligner

◦ BWA, SHRiMP, BFAST can do color-space alignment

Realignment for variant identification
• Typical aligners are optimized for speed, find best place for the read.

• For calling SNP and Indel positions, important to have optimal alignment

• Realignment around variable positions to insure best placement of read alignment

◦ Stampy applies this with fast BWA alignment followed by full Smith-Waterman alignment
around the variable position

◦ Picard + GATK employs a realignment approach which is only run for reads which span a
variable position. Increases accuracy reducing False positive SNPs.

Alignment data format
• SAM format and its Binary Brother, BAM

• Good to keep it sorted by chromosome position or by read name

• BAM format can be indexed allowing for fast random access

◦ e.g. give me the number of reads that overlap bases 3311 to 8006 on chr2

What are we trying to achieve?

Manipulating SAM/BAM
• SAMtools

◦ One of the first tools written. C code with Perl bindings Bio::DB::Sam (Lincoln Stein FTW!) with
simple Perl and OO-BioPerl interface

◦ Convert SAM <-> BAM

◦ Generate Variant information, statistics about number of reads mapping

◦ Index BAM files and retrieve alignment slices of chromosome regions

• Picard - java library for manipulation of SAM/BAM files

• BEDTools - C tools for interval query in BED,GFF and many other format fiels

◦ Can generate per-base or per-window coverage from BAM files with GenomeGraph

• BAMTools C++ tools for BAM manipulation and statistics

Using BWA,SAMtools
index genome before we can align (only need to do this once)
$ bwa index genome/Saccharomyces.fa
-t # of threads
-q quality trimming
-f output file
for each set of FASTQ files you want to process these are steps
$ bwa aln -q 20 -t 16 -f W303_1.sai Saccharomyces W303_1.fastq
$ bwa aln -q 20 -t 16 -f W303_2.sai Saccharomyces W303_2.fastq
do Paired-End alignment and create SAM file
$ bwa sampe -f W303.sam genome/Saccharomyces.fa W303_1.sai W303_2.sai \

W303_1.fastq W303_2.fastq

generate BAM file with samtools
$ samtools view -b -S W303.sam > W303.unsrt.bam
will create W303.bam which is sorted (by chrom position)
$ samtools sort W303.unsrt.bam W303.sorted
build index
$ samtools index W303.sorted.bam

New BWA options
Some recent improvements to bwa for 70-100bp reads is the bwa mem alignment algorithm. All in one
step now to create the sam file.

$ bwa mem -t 32 -M genome/Saccharomyces.fa W303_1.fastq W303_2.fastq > W303.sam

can even use samtools an pipe it to bam
on the fly
$ bwa mem -t 32 -M genome/Saccharomyces.fa W303_1.fastq \
W303_2.fastq | samtools view -bS > W303.unsrt.bam

BAM using Picard tools
Can also convert and sort all in one go with Picard

$ java -Xmx2g -jar SortSam.jar IN=W303.sam OUT=W303.sorted.bam \
SORT_ORDER=coordinate VALIDATION_STRINGENCY=SILENT CREATE_INDEX=true

Or if you already created a bam file, but need to sort it, the input can also be a nam file

$ java -Xmx2g -jar SortSam.jar IN=W303.unsrt.bam OUT=W303.sorted.bam \
SORT_ORDER=coordinate VALIDATION_STRINGENCY=SILENT CREATE_INDEX=true

Lots of other resources for SAM/BAM manipulation in Picard documentation on the web
http://picard.sourceforge.net/command-line-overview.shtml.

View header from BAM file
$ samtools view -h W303.sorted.bam
samtools view -h W303.sorted.bam | more
@HD VN:1.0 GO:none SO:coordinate
@SQ SN:chrI LN:230218 UR:file:genome/Saccharomyces.fa M5:6681ac2f62509cfc220d78751b8dc524
@SQ SN:chrII LN:813184 UR:file:genome/Saccharomyces.fa M5:97a317c689cbdd7e92a5c159acd290d2

$ samtools view -bS W303.sam > W303.unsrt.bam
$ samtools sort W303.unsrt.bam W303.sorted
this will produce W303.sorted.bam
$ samtools index W303.sorted.bam
$ samtools view -h @SQ SN:chrV LN:576874
@SQ SN:chrVI LN:270161
@SQ SN:chrVII LN:1090940
@SQ SN:chrVIII LN:562643
@SQ SN:chrIX LN:439888
@SQ SN:chrX LN:745751
@SQ SN:chrXI LN:666816
@SQ SN:chrXII LN:1078177
@SQ SN:chrXIII LN:924431
@SQ SN:chrXIV LN:784333
@SQ SN:chrXV LN:1091291
@SQ SN:chrXVI LN:948066
@SQ SN:chrMito LN:85779
@PG ID:bwa PN:bwa VN:0.6.2-r131
SRR527547.1387762 163 chrI 1 17 3S25M1D11M1S = 213 260

CACCCACACCACACCCACACACCCACACCCACACCACACC IIIIIIIIIIIHIIIIHIIIGIIIHDDG8E?@:??DDDA@
XT:A:M NM:i:1 SM:i:17 AM:i:17 XM:i:0 XO:i:1

SAM format

Read Groups
One component of SAM files is the idea of processing multiple files, but that these track back to
specific samples or replicates.

This can be coded in the header of the SAM file

@RG ID:Strain124 PL:Illumina PU:Genomic LB:Strain124 CN:Broad

It can also be encoded on a per-read basis so that multiple SAM files can be combined together into a
single SAM file and that the origin of the reads can still be preserved. This is really useful when you
want to call SNPs across multiple samples.

The AddOrReplaceReadGroups.jar command set in Picard is really useful for manipulating these.

samtools flagstat
4505078 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 duplicates
4103621 + 0 mapped (91.09%:-nan%)
4505078 + 0 paired in sequencing
2252539 + 0 read1
2252539 + 0 read2
3774290 + 0 properly paired (83.78%:-nan%)
4055725 + 0 with itself and mate mapped
47896 + 0 singletons (1.06%:-nan%)
17769 + 0 with mate mapped to a different chr
6069 + 0 with mate mapped to a different chr (mapQ>=5)

Realigning around Indels and SNPs
To insure high quality Indelcalls, the reads need to realigned after placed by BWA or other aligner.
This can be done with PicardTools and GATK. Note that -jar GATK and picard-tools folders need to
refer to the whole path where they are located (unless are in your current directory)

Need to Deduplicate reads

$ java -Xmx3g -jar picard-tools/MarkDuplicates.jar INPUT=W303.sorted.bam \
OUTPUT=W303.dedup.bam METRICS_FILE=W303.dedup.metrics \
CREATE_INDEX=true VALIDATION_STRINGENCY=SILENT

Fixing Read-Groups

I am using W303 since it is the strain name for this sequencing record. We'd do this for each file RGLB
would be processed as a bam file then later combine them. For now we will just treat it all like one
sample

$ java -Xmx3g -jar $PICARD/AddOrReplaceReadGroups.jar INPUT=W303.dedup.bam \
OUTPUT=W303.readgroup.bam SORT_ORDER=coordinate CREATE_INDEX=True \
RGID=W303 RGLB=SRR527545 RGPL=Illumina RGPU=Genomic RGSM=W303 \
VALIDATION_STRINGENCY=SILENT

Then identify Intervals around variants
$ java -Xmx3g -jar GATK/GenomeAnalysisTK.jar -T RealignerTargetCreator \
-R genome/Saccharomyces.fa \
-o W303.intervals -I W303.readgroup.bam

Then realign based on these intervals

$ java -Xmx3g -jar GATK/GenomeAnalysisTK.jar -T IndelRealigner \
-R genome/Saccharomyces.fa \
-targetIntervals W303.intervals -I W303.readgroup.bam -o W303.realign.bam

SAMtools and VCFtools to call SNPs
$ samtools mpileup -D -S -gu -f genome/Saccharomyces.fa ABC.bam | \
bcftools view -bvcg - > ABC.raw.bcf

$ bcftools view ABC.raw.bcf | vcfutils.pl varFilter -D100 > ABC.filter.vcf

GATK to call SNPs
run GATK with 4 threads (-nt)
call SNPs only (-glm, would specific INDEL for Indels or can ask for BOTH)
$ java -Xmx3g -jar GenomeAnalysisTK.jar -T UnifiedGenotyper \

-glm SNP -I W303.realign.bam -R genome/Saccharomyces.fa \
-o W303.GATK.vcf -nt 4

GATK to call INDELs
run GATK with 4 threads (-nt)
call SNPs only (-glm, would specific INDEL for Indels or can ask for BOTH)
$ java -jar GenomeAnalysisTK.jar -T UnifiedGenotyper\

-glm INDEL -I W303.realign.bam \
-R genome/Saccharomyces.fa -o W303.GATK_INDEL.vcf -nt 4

VCF Files
Variant Call Format - A standardized format for representing variations. Tab delimited but with
specific ways to encode more information in each column.

##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are filtered)">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=PL,Number=G,Type=Integer,Description="Normalized, Phred-scaled likelihoods for genotypes as defined in the VCF specification">
##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as listed">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT W303
chrI 141 . C T 47.01 . AC=1;AF=0.500;AN=2;BaseQRankSum=-0.203;DP=23;Dels=0.00;
FS=5.679;HaplotypeScore=3.4127;MLEAC=1;MLEAF=0.500;MQ=53.10;MQ0=0;MQRankSum=-2.474;QD=2.04;ReadPosRankSum=-0.771;
SB=-2.201e+01 GT:AD:DP:GQ:PL 0/1:19,4:23:77:77,0,565

chrI 286 . A T 47.01 . AC=1;AF=0.500;AN=2;BaseQRankSum=-0.883;DP=35;Dels=0.00;
FS=5.750;HaplotypeScore=0.0000;MLEAC=1;MLEAF=0.500;MQ=46.14;MQ0=0;MQRankSum=-5.017;QD=1.34;ReadPosRankSum=-0.950;
SB=-6.519e-03 GT:AD:DP:GQ:PL 0/1:20,15:35:77:77,0,713

Filtering Variants
GATK best Practices http://www.broadinstitute.org/gatk/guide/topic?name=best-practices
emphasizes need to filter variants after they have been called to removed biased regions.

These refer to many combinations of information. Mapping quality (MQ), Homopolymer run length
(HRun), Quality Score of variant, strand bias (too many reads from only one strand), etc.

-T VariantFiltration -o STRAINS.filtered.vcf
--variant W303.raw.vcf \
--clusterWindowSize 10 -filter "QD<8.0" -filterName QualByDepth \
-filter "MQ>=30.0" -filterName MapQual \
-filter "HRun>=4" -filterName HomopolymerRun \
-filter "QUAL<100" -filterName QScore \
-filter "MQ0>=10 && ((MQ0 / (1.0 * DP)) > 0.1)" -filterName MapQualRatio \
-filter "FS>60.0" -filterName FisherStrandBias \
-filter "HaplotypeScore > 13.0" -filterName HaplotypeScore \
-filter "MQRankSum < -12.5" -filterName MQRankSum \
-filter "ReadPosRankSum < -8.0" -filterName ReadPosRankSum >& output.filter.log

VCFtools
A useful tool to JUST get SNPs back out from a VCF file is vcf-to-tab (part of vcftools).

$ vcf-to-tab < INPUT.vcf > OUTPUT.tab

#CHROM POS REF W303
chrI 141 C C/T
chrI 286 A A/T
chrI 305 C C/G
chrI 384 C C/T
chrI 396 C C/G
chrI 476 G G/T
chrI 485 T T/C
chrI 509 G G/A
chrI 537 T T/C
chrI 610 G G/A
chrI 627 C C/T

VCFtools to evaluate and manipulate
$ vcftools --vcf W303.GATK.vcf --diff W303.filter.vcf
N_combined_individuals: 1
N_individuals_common_to_both_files: 1
N_individuals_unique_to_file1: 0
N_individuals_unique_to_file2: 0
Comparing sites in VCF files...
Non-matching REF at chrI:126880 C/CTTTTTTTTTTTTTTT. Diff results may be unreliable.
Non-matching REF at chrI:206129 A/AAC. Diff results may be unreliable.
Non-matching REF at chrIV:164943 C/CTTTTTTTTTTTT. Diff results may be unreliable.
Non-matching REF at chrIV:390546 A/ATTGTTGTTGTTGT. Diff results may be unreliable.
Non-matching REF at chrXII:196750 A/ATTTTTTTTTTTTTTT. Diff results may be unreliable.
Found 8604 SNPs common to both files.
Found 1281 SNPs only in main file.
Found 968 SNPs only in second file.

calculate Tajima's D in binsizes of 1000 bp [if you have multiple individuals]
$ vcftools --vcf Sacch_strains.vcf --TajimaD 1000

Summary
• Reads should be trimmed, quality controlled before use. Preserving Paired-End info is important

• Alignment of reads with several tools possible, BWA outlined here

• SAMTools and Picard to manipulate SAM/BAM files

• Genotyping with SAMtools and GATK

• Summarizing and manipulating VCF files with VCFtools

