
UNIX - Command-Line Survival Guide
Files, directories, commands, text editors

Simon Prochnik & Lincoln Stein

Book Chapters
Learning Perl (6th ed.): Chap. 1
Unix & Perl to the Rescue (1st ed.): Chaps. 3 & 5

Lecture Notes
What is the Command Line?
Logging In
Amazon Web Services
The Desktop
The Shell
Home Sweet Home
Getting Around
Running Commands
Command Redirection
Pipes

What is the Command Line?
Underlying the pretty Mac OSX GUI is a powerful command-line operating system. The command line
gives you access to the internals of the OS, and is also a convenient way to write custom software
and scripts.

Many bioinformatics tools are written to run on the command line and have no graphical interface. In
many cases, a command line tool is more versatile than a graphical tool, because you can easily
combine command line tools into automated scripts that accomplish tasks without human intervention.

In this course, we will be writing Perl scripts that are completely command-line based.

Logging into Your Workstation
Your workstation is an iMac. To log into it, provide the following information:

Your username: the initial of your first name, followed by your full last name. For example,
if your username is srobb for sofia robb
Your password: pfb@forever

file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#why_unix
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#logging_in
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#aws
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#shell
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#using_shell
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#home
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#getting_around
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#commands
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#redirection
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#pipes


Bringing up the Command Line
To bring up the command line, use the Finder to navigate to Applications->Utilities and double-click on
the Terminal application. This will bring up a window like the following: 

OSX Terminal

You can open several Terminal windows at once. This is often helpful.

You will be using this application a lot, so I suggest that you drag the Terminal icon into the shortcuts
bar at the bottom of your screen.

 

Amazon Web Services cloud computing
 

The computers we will be using on the course are part of Amazon's cloud computing. Their system is
called Amazon Web Services (AWS).

Everyone will have access to their own computer. Amazon refers to them as instances.



Different computers or instance types have different amounts of memory and CPUs. Here are the two
types of instance we will be working on.

AWS instance type CPUs (cores) and Memory

Small 1 CPU 1.7Gb RAM

Extra large 4 CPUs 15Gb
Later in the course when we try to assemble genomes for example, we will require computers with
more memory and more cores

You need to log into an instance by using the ssh command in the Terminal window. 'ssh' stands for
secure shell. This is an encrypted connection to another computer. You'll learn more about the 'shell'
part in the next section.

Here's how you log in to an instance.

ssh srobb@ec2-107-22-31-168.compute1.amazonaws.com

This is confusing, so we made you an easier way to log in. There is a webpage with everyone's user
name and a link. The webpage is here. 
http://ec2-54-205-98-165.compute-1.amazonaws.com/files/awslogins.html 
The links act as an ssh command, so if you click on the link, you will get logged in to your instance.

This might take a little getting used to, because you are really just using the iMac as a Terminal
(hence the name of the Application) into a server somewhere else. In our case, this is an AWS virtual
computer in the cloud. This is a very common way to work with UNIX. In a day or so, you will be used
to it.

OK. I've Logged in. What Now?
The terminal window is running a shell called "bash." The shell is a loop that:

1. Prints a prompt
2. Reads a line of input from the keyboard
3. Parses the line into one or more commands
4. Executes the commands (which usually print some output to the terminal)
5. Go back 1.

There are many different shells with bizarre names like bash, sh, csh, tcsh, ksh, and zsh. The "sh"
part means shell. Each shell was designed for the purpose of confusing you and tripping you up. We
have set up your accounts to use bash. Stay with bash and you'll get used to it, eventually.

Command-Line Prompt
Most of bioinformatics is done with command-line software, so you should take some time to learn to
use the shell effectively.

This is a command line prompt:

http://ec2-54-205-98-165.compute-1.amazonaws.com/files/awslogins.html


bush202>

This is another:

(~) 51%

This is another:

srobb@bush202 1:12PM>

What you get depends on how the system administrator has customized your login. You can
customize yourself when you know how.

The prompt tells you the shell is ready to accept a command. When a long-running command is going,
the prompt will not reappear until the system is ready to deal with your next request.

Issuing Commands
Type in a command and press the <Enter> key. If the command has output, it will appear on the
screen. Example:

(~) 53% ls -F
GNUstep/                 cool_elegans.movies.txt  man/
INBOX                    docs/                    mtv/
INBOX~                   etc/                     nsmail/
Mail@                    games/                   pcod/
News/                    get_this_book.txt        projects/
axhome/                  jcod/                    public_html/
bin/                     lib/                     src/
build/                   linux/                   tmp/
ccod/
(~) 54%

The command here is ls -F, which produces a listing of files and directories in the current directory
(more on which later). After its output, the command prompt appears agin.

Some programs will take a long time to run. After you issue their command name, you won't recover
the shell prompt until they're done. You can either launch a new shell (from Terminal's File menu), or
run the command in the background using the ampersand:

(~) 54% long_running_application&
(~) 55% 

The command will now run in the background until it is finished. If it has any output, the output will be
printed to the terminal window. You may wish to redirect the output as described later.

Command Line Editing
 

Most shells offer command line entering. Up until the comment you press <Enter>, you can go back
over the command line and edit it using the keyboard. Here are the most useful keystrokes:



Backspace
Delete the previous character and back up one.

Left arrow, right arrow
Move the text insertion point (cursor) one character to the left or right.

control-a (^a)
Move the cursor to the beginning of the line. Mnemonic: A is first letter of alphabet

control-e (^e)
Move the cursor to the end of the line. Mnemonic: <E> for the End (^Z was already taken for
something else).

control-d (^d)
Delete the character currently under the cursor. D=Delete.

control-k (^k)
Delete the entire line from the cursor to the end. k=kill. The line isn't actually deleted, but put into
a temporary holding place called the "kill buffer".

control-y (^y)
Paste the contents of the kill buffer onto the command line starting at the cursor. y=yank.

Up arrow, down arrow
Move up and down in the command history. This lets you reissue previous commands, possibly
after modifying them.

There are also some useful shell commands you can issue:

history
Show all the commands that you have issued recently, nicely numbered.

!<number>
Reissue an old command, based on its number (which you can get from history)

!!
Reissue the immediate previous command.

!<partial command string>
Reissue the previous command that began with the indicated letters. For example !l would
reissue the ls -F command from the earlier example.

bash offers automatic command completion and spelling correction. If you type part of a command
and then the tab key, it will prompt you with all the possible completions of the command. For
example:

(~) 51% fd<tab> 
(~) 51% fd
fd2ps    fdesign  fdformat fdlist   fdmount  fdmountd fdrawcmd fdumount
(~) 51% 

If you hit tab after typing a command, but before pressing <Enter>, bash will prompt you with a list of
file names. This is because many commands operate on files.

Wildcards
You can use wildcards when referring to files. "*" refers to zero or more characters. "?" refers to any
single character. For example, to list all files with the extension ".txt", run ls with the pattern "*.txt":

(~) 56% ls -F *.txt
final_exam_questions.txt  genomics_problem.txt
genebridge.txt    mapping_run.txt



There are several more advanced types of wildcard patterns which you can read about in the tcsh
manual page. For example, you can refer to files beginning with the characters "f" or "g" and ending
with ".txt" this way:

(~) 57% ls -F [f-g]*.txt
final_exam_questions.txt  genebridge.txt     genomics_problem.txt

Home Sweet Home
When you first log in, you'll be placed in a part of the system that is your personal domain, called the
home directory. You are free to do with this area what you will: in particular you can create and delete
files and other directories. In general, you cannot create files elsewhere in the system.

Your home directory lives somewhere way down deep in the bowels of the system. On our iMacs, it is
a directory with the same name as your login name, located in /Users. The full directory path is
therefore /Users/username. Since this is a pain to write, the shell allows you to abbreviate it as
~username (where "username" is your user name), or simply as ~. The weird character (technically
called the "tilde" or "twiddle") is usually hidden at the upper left corner of your keyboard.

To see what is in your home directory, issue the command ls -F:

(~) % ls -F
INBOX         Mail/         News/         nsmail/       public_html/

This shows one file "INBOX" and four directories ("Mail", "News") and so on. (The "-F" in the
command turns on fancy mode, which appends special characters to directory listings to tell you more
about what you're seeing. "/" means directory.)

In addition to the files and directories shown with ls -F, there may be one or more hidden files. These
are files and directories whose names start with a "." (technically called the "dot" character). To see
these hidden files, add an "a" to the options sent to the ls command:

(~) % ls -aF
./                .cshrc            .login            Mail/
../               .fetchhost        .netscape/        News/
.Xauthority       .fvwmrc           .xinitrc*         nsmail/
.Xdefaults        .history          .xsession@        public_html/
.bash_profile     .less             .xsession-errors
.bashrc           .lessrc           INBOX

Whoa! There's a lot of hidden stuff there. But don't go deleting dot files willy-nilly. Many of them are
esential configuration files for commands and other programs. For example, the .profile file contains
configuration information for the bash shell. You can peek into it and see all of bash's many options.
You can edit it (when you know what you're doing) in order to change things like the command prompt
and command search path.

 



Getting Around
You can move around from directory to directory using the cd command. Give the name of the
directory you want to move to, or give no name to move back to your home directory. Use the pwd
command to see where you are (or rely on the prompt, if configured):

(~/docs/grad_course/i) 56% cd
(~) 57% cd /
(/) 58% ls -F
bin/      dosc/   gmon.out     mnt/     sbin/
boot/      etc/   home@        net/     tmp/
cdrom/      fastboot   lib/        proc/     usr/
dev/      floppy/   lost+found/  root/     var/
(/) 59% cd ~/docs/
(~/docs) 60% pwd
/usr/home/lstein/docs
(~/docs) 62% cd ../projects/
(~/projects) 63% ls
Ace-browser/     bass.patch
Ace-perl/     cgi/
Foo/      cgi3/
Interface/     computertalk/
Net-Interface-0.02/    crypt-cbc.patch
Net-Interface-0.02.tar.gz  fixer/
Pts/      fixer.tcsh
Pts.bak/     introspect.pl*
PubMed/      introspection.pm
SNPdb/      rhmap/
Tie-DBI/     sbox/
ace/      sbox-1.00/
atir/      sbox-1.00.tgz
bass-1.30a/     zhmapper.tar.gz
bass-1.30a.tar.gz
(~/projects) 64% 

Each directory contains two special hidden directories named "." and "..". "." refers always to the
directory in which it is located. ".." refers always to the parent of the directory. This lets you move
upward in the directory hierarchy like this:

(~/docs) 64% cd ..

and to do arbitrarily weird things like this:

(~/docs) 65% cd ../../docs

The latter command moves upward to levels, and then into a directory named "docs".

If you get lost, the pwd command prints out the full path to the current directory:

(~) 56% pwd
/Users/lstein



Essential Unix Commands
With the exception of a few commands that are built directly into the shell, all Unix commands are
standalone executable programs. When you type the name of a command, the shell will search
through all the directories listed in the PATH environment variable for an executable of the same
name. If found, the shell will execute the command. Otherwise, it will give a "command not found"
error.

Most commands live in /bin, /usr/bin, or /usr/local/bin.

Getting Information About Commands
The man command will give a brief synopsis of the command:

(~) 76% man wc
Formatting page, please wait...
WC(1)                                                       WC(1)

NAME
       wc - print the number of bytes, words, and lines in files

SYNOPSIS
       wc [-clw] [--bytes] [--chars] [--lines] [--words] [--help]
       [--version] [file...]

DESCRIPTION
       This manual page documents the  GNU  version  of  wc.   wc
       counts  the  number  of bytes, whitespace-separated words,
...

Finding Out What Commands are on Your Computer
The apropos command will search for commands matching a keyword or phrase:

(~) 100% apropos column
showtable (1)        - Show data in nicely formatted columns
colrm (1)            - remove columns from a file
column (1)           - columnate lists
fix132x43 (1)        - fix problems with certain (132 column) graphics
modes

Arguments and Command Switches
Many commands take arguments. Arguments are often (but not inevitably) the names of one or more
files to operate on. Most commands also take command-line "switches" or "options" which fine-tune
what the command does. Some commands recognize "short switches" that consist of a single
character, while others recognize "long switches" consisting of whole words.



The wc (word count) program is an example of a command that recognizes both long and short
options. You can pass it the -c, -w and/or -l options to count the characters, words and lines in a text
file, respectively. Or you can use the longer but more readable, --chars, --words or --lines options.
Both these examples count the number of characters and lines in the text file /var/log/messages:

(~) 102% wc -c -l /var/log/messages
     23     941 /var/log/messages
(~) 103% wc --chars --lines /var/log/messages
     23     941 /var/log/messages

You can cluster short switches by concatenating them together, as shown in this example:

(~) 104% wc -cl /var/log/messages
     23     941 /var/log/messages

Many commands will give a brief usage summary when you call them with the -h or --help switch.

Spaces and Funny Characters

The shell uses whitespace (spaces, tabs and other nonprinting characters) to separate arguments. If
you want to embed whitespace in an argument, put single quotes around it. For example:

mail -s 'An important message' 'Bob Ghost <bob@ghost.org>'

This will send an e-mail to the fictitious person Bob Ghost. The -s switch takes an argument, which is
the subject line for the e-mail. Because the desired subject contains spaces, it has to have quotes
around it. Likewise, my e-mail address, which contains embedded spaces, must also be quoted in this
way.

Certain special non-printing characters have escape codes associated with them:

Escape Code Description
\n new line character

\t tab character

\r carriage return character

\a bell character (ding! ding!)

\nnn the character whose ASCII code in octal is nnn

Useful Commands
Here are some commands that are used extremely frequently. Use man to learn more about them.
Some of these commands may be useful for solving the problem set ;-)

Manipulating Directories

ls
Directory listing. Most frequently used as ls -F (decorated listing) and ls -l (long listing).

mv



Rename or move a file or directory.
cp

Copy a file.
rm

Remove (delete) a file.
mkdir

Make a directory
rmdir

Remove a directory
ln

Create a symbolic or hard link.
chmod

Change the permissions of a file or directory.

Manipulating Files

cat
Concatenate program. Can be used to concatenate multiple files together into a single file, or,
much more frequently, to send the contents of a file to the terminal for viewing.

more
Scroll through a file page by page. Very useful when viewing large files. Works even with files
that are too big to be opened by a text editor.

less
A version of more with more features.

head
View the head (top) of a file. You can control how many lines to view.

tail
View the tail (bottom) of a file. You can control how many lines to view. You can also use tail to
view a growing file.

wc
Count words, lines and/or characters in one or more files.

tr
Substitute one character for another. Also useful for deleting characters.

sort
Sort the lines in a file alphabetically or numerically.

uniq
Remove duplicated lines in a file.

cut
Remove sections from each line of a file or files.

fold
Wrap each input line to fit in a specified width.

grep
Filter a file for lines matching a specified pattern. Can also be reversed to print out lines that
don't match the specified pattern.

gzip (gunzip)
Compress (uncompress) a file.

tar
Archive or unarchive an entire directory into a single file.

emacs
Run the Emacs text editor (good for experts).



Networking

ssh
A secure (encrypted) way to log into machines.

ping
See if a remote host is up.

ftp and the secure version sftp
Transfer files using the File Transfer Protocol.

who
See who else is logged in.

lp
Send a file or set of files to a printer.

Standard I/O and Command Redirection
Unix commands communicate via the command line interface. They can print information out to the
terminal for you to see, and accept input from the keyboard (that is, from you!)

Every Unix program starts out with three connections to the outside world. These connections are
called "streams" because they act like a stream of information (metaphorically speaking):

standard input
This is a communications stream initially attached to the keyboard. When the program reads
from standard input, it reads whatever text you type in.

standard output
This stream is initially attached to the command window. Anything the program prints to this
channel appears in your terminal window.

standard error
This stream is also initially attached to the command window. It is a separate channel intended
for printing error messages.

The word "initially" might lead you to think that standard input, output and error can somehow be
detached from their starting places and reattached somewhere else. And you'd be right. You can
attach one or more of these three streams to a file, a device, or even to another program. This sounds
esoteric, but it is actually very useful.

A Simple Example
The wc program counts lines, characters and words in data sent to its standard input. You can use it
interactively like this:

(~) 62% wc
Mary had a little lamb,
little lamb,
little lamb.

Mary had a little lamb,
whose fleece was white as snow.
^D



      6      20     107

In this example, I ran the wc program. It waited for me to type in a little poem. When I was done, I
typed the END-OF-FILE character, control-D (^D for short). wc then printed out three numbers
indicating the number of lines, words and characters in the input.

More often, you'll want to count the number of lines in a big file; say a file filled with DNA sequences.
You can do this by redirecting wc's standard input from a file. This uses the < metacharacter:

(~) 63% wc <big_file.fasta
      2943    2998     419272

If you wanted to record these counts for posterity, you could redirect standard output as well using the
> metacharacter:

(~) 64% wc <big_file.fasta >count.txt

Now if you cat the file count.txt, you'll see that the data has been recorded. cat works by taking its
standard input and copying it to standard output. We redirect standard input from the count.txt file, and
leave standard output at its default, attached to the terminal:

(~) 65% cat <count.txt
      2943    2998     419272

Redirection Meta-Characters
Here's the complete list of redirection commands for bash:
<filename Redirect standard input to file

>filename Redirect standard output to file

1>filename Redirect just standard output to file (same as above)

2>filename Redirect just standard error to file

>filename 2>&1 Redirect both stdout and stderr to file

These can be combined. For example, this command redirects standard input from the file named
/etc/passwd, writes its results into the file search.out, and writes its error messages (if any) into a file
named search.err. What does it do? It searches the password file for a user named "root" and returns
all lines that refer to that user.

(~) 66% grep root </etc/passwd >search.out 2>search.err

Filters, Filenames and Standard Input
Many Unix commands act as filters, taking data from a file or standard input, transforming the data,
and writing the results to standard output. Most filters are designed so that if they are called with one
or more filenames on the command line, they will use those files as input. Otherwise they will act on
standard input. For example, these two commands are equivalent:



(~) 66% grep 'gatttgc' <big_file.fasta
(~) 67% grep 'gatttgc' big_file.fasta

Both commands use the grep command to search for the string "gatttgc" in the file big_file.fasta. The
first one searches standard input, which happens to be redirected from the file. The second command
is explicitly given the name of the file on the command line.

Sometimes you want a filter to act on a series of files, one of which happens to be standard input.
Many filters let you use "-" on the command line as an alias for standard input. Example:

(~) 68% grep 'gatttgc' big_file.fasta bigger_file.fasta -

This example searches for "gatttgc" in three places. First it looks in big_file.fasta, then in
bigger_file.fasta, and lastly in standard input (which, since it isn't redirected, will come from the
keyboard).

Standard I/O and Pipes
The coolest thing about the Unix shell is its ability to chain commands together into pipelines. Here's
an example:

(~) 65% grep gatttgc big_file.fasta | wc -l
22

There are two commands here. grep searches a file or standard input for lines containing a particular
string. Lines which contain the string are printed to standard output. wc -l is the familiar word count
program, which counts words, lines and characters in a file or standard input. The -l command-line
option instructs wc to print out just the line count. The | character, which is known as the "pipe"
character, connects the two commands together so that the standard output of grep becomes the
standard input of wc.

What does this pipe do? It prints out the number of lines in which the string "gatttgc" appears in the file
big_file.fasta.

More Pipe Idioms
Pipes are very powerful. Here are some common command-line idioms.

Count the Number of Times a Pattern does NOT Appear in a File

The example at the top of this section showed you how to count the number of lines in which a
particular string pattern appears in a file. What if you want to count the number of lines in which a
pattern does not appear?

Simple. Reverse the test with the grep -v switch:

(~) 65% grep -v gatttgc big_file.fasta | wc -l
2921



Uniquify Lines in a File

If you have a long list of names in a text file, and you are concerned that there might be some
duplicates, this will weed out the duplicates:

(~) 66% sort long_file.txt | uniq > unique.out

This works by sorting all the lines alphabetically and piping the result to the uniq program, which
removes duplicate lines that occur together. The output is placed in a file named unique.out.

Concatenate Several Lists and Remove Duplicates

If you have several lists that might contain repeated entries among them, you can combine them into a
single unique list by cating them together, then uniquifying them as before:

(~) 67% cat file1 file2 file3 file4 | sort | uniq

Count Unique Lines in a File

If you just want to know how many unique lines there are in the file, add a wc to the end of the pipe:

(~) 68% sort long_file.txt | uniq | wc -l

Page Through a Really Long Directory Listing

Pipe the output of ls to the more program, which shows a page at a time. If you have it, the less
program is even better:

(~) 69% ls -l | more

Monitor a Rapidly Growing File for a Pattern

Pipe the output of tail -f (which monitors a growing file and prints out the new lines) to grep. For
example, this will monitor the /var/log/syslog file for the appearance of e-mails addressed to mzhang:

(~) 70% tail -f /var/log/syslog | grep mzhang



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 1/18

Beginning Perl Scripting

Simple scripts, Expressions, Operators, Statements, Variables

Simon Prochnik & Lincoln Stein

Suggested Reading

Learning Perl (6th ed.): Chap. 2, 3, 12, 

Unix & Perl to the Rescue (1st ed.): Chap. 4 Chapters 1, 2 & 5 of Learning Perl.

Lecture Notes

1. What is Perl?

2. Some simple Perl scripts

3. Mechanics of creating a Perl script

4. Statements

5. Literals

6. Operators

7. Functions

8. Variables

9. Processing the Command Line

Problems

What is Perl?

Perl is a Programming Language

Written by Larry Wall in late 80's to process mail on Unix systems and since extended by a huge cast of

characters. The name is said to stand for:

1. Pathologically Eclectic Rubbish Lister

2. Practical Extraction and Report Language

Perl Properties

1. Interpreted Language

2. "Object-Oriented"

3. Cross-platform

4. Forgiving

5. Great for text

6. Extensible, rich set of libraries

7. Popular for web pages

8. Extremely popular for bioinformatics

Other Languages Used in Bioinformatics

C, C++

Compiled languages, hence very fast.

Used for computation (BLAST, FASTA, Phred, Phrap, ClustalW)

Not very forgiving.

Java

Interpreted, fully object-oriented language.



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 2/18

Built into web browsers.
Supposed to be cross-platform, getting better.

Python , Ruby
Interpreted, fully object-oriented language.
Rich set of libraries.
Elegant syntax.
Smaller user community than Java or Perl.

Some Simple Scripts
Here are some simple scripts to illustrate the "look" of a Perl program.

Print a Message to the Terminal
Code:

  #!/usr/bin/perl 

  # file: message.pl

  use strict;

  use warnings;

  print "When that Aprill with his shoures soote\n";

  print "The droghte of March ath perced to the roote,\n";

  print "And bathed every veyne in swich licour\n";

  print "Of which vertu engendered is the flour...\n";

Output:

(~) 50% perl message.pl
When that Aprill with his shoures soote

The droghte of March ath perced to the roote,

And bathed every veyne in swich licour

Of which vertu engendered is the flour...

Do Some Math
Code:

  #!/usr/bin/perl 

  # file: math.pl

  use strict;

  use warnings;

  print "2 + 2 =", 2+2, "\n";

  print "log(1e23)= ", log(1e23), "\n";

  print "2 * sin(3.1414)= ", 2 * sin(3.1414), "\n";

Output:

(~) 51% perl math.pl
2 + 2 =4

log(1e23)= 52.9594571388631

2 * sin(3.1414)= 0.000385307177203065

Run a System Command
Code:

  #!/usr/bin/perl 



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 3/18

  # file: system.pl
  use strict;
  use warnings;
  system "ls";

Output:

(~/docs/grad_course/perl) 52% perl system.pl
index.html     math.pl~  problem_set.html~   what_is_perl.html
index.html~     message.pl  simple.html     what_is_perl.html~
math.pl      problem_set.html simple.html~

Return the Time of Day
Code:

  #!/usr/bin/perl 
  # file: time.pl
  use strict;
  use warnings;
  my $time = localtime;
  print "The time is now $time\n";

Output:

(~) 53% perl time.pl
The time is now Thu Sep 16 17:30:02 1999

Mechanics of Writing Perl Scripts
Some hints to help you get going.

Creating the Script
A Perl script is just a text file. Use any text (programmer's) editor. Don't use word processors like Word.

By convention, Perl script files end with the extension .pl.

I suggest Emacs, because it is already installed on almost all Unix machines, but there are many good

options: vi, vim, Textwrangler, eclipse

The Emacs text editor has a Perl mode that will auto-format your Perl scripts and highlight keywords. Perl

mode will be activated automatically if you end the script name with .pl.

GUI-based script writing tools (Aquamacs, xemacs, Textwrangler, Eclipse) are easier to use, but you may

have to install them yourself.

Let's write a simple perl script. It'll be a simple text file called time.pl and will contain the lines above.

Let's try doing this in emacs

Emacs Essentials
A GUI version is simpler to use e.g. Aquamacs, run it by adding the icon for the application to your Dock then

clicking on the icon. You can also run emacs in a Terminal window. Emacs will be installed on almost every

Unix system you encounter.

      (~) 50% emacs
      



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 4/18

The same shortcuts you can use on the command line work in Emacs
e.g.

control-a (^a)
move cursor to beginning of line

etc

The most important Emacs-specific commands

control-x control-f (^x ^f)
open a file

control-x control-w (^x ^w)
save as...

control-x control-c (^x ^c)
quit

control-g (^g)
cancel command

shift-control-_ (^_)
Undo typing

control-h ?(^h ?)
Help!!

option-; (M;)
Add comment

option-/ (M/)
Variable/subroutine name auto-completion (cycles through options)

Running the Script
Don't forget to save any changes in your script before running it. The filled red circle at the top left of the
emacs GUI window has a dot in it if there are unsaved changes.

Option 1 (quick, not used much)
Run the perl program from the command line, giving it the name of the script file to run.

      (~) 50% perl time.pl
      The time is now Thu Sep 16 18:09:28 1999
      

Option 2 (as shown in examples above)
Put the magic comment

#!/usr/bin/perl
      

at the top of your script.

It's really easy to make a mistake with this complicated line and this causes confusing errors (see
below). Double check, or copy from a friend who has it working.

And always add 

use strict;
use warnings;
      

to the top of your script like in the example below

#!/usr/bin/perl
# file: time.pl
use strict;
use warnings;
my $time = localtime;
print "The time is now $time\n";



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 5/18

Now make the script executable with chmod +x time.pl:

      (~) 51% chmod +x time.pl      
      

Run the script as if it were a command:

      (~) 52% ./time.pl
      The time is now Thu Sep 16 18:12:13 1999

      

Note that you have to type "./time.pl" rather than "time.pl" because, by default, bash does not
search the current directory for commands to execute. To avoid this, you can add the current
directory (".") to your search PATH environment variable. To do this, create a file in your home
directory named .bashrc and enter the following line in it:

export PATH=$PATH:.

The next time you log in, your path will contain the current directory and you can type "time.pl"
directly.

Common Errors
Plan out your script before you start coding. Write the code, then run it to see if it works. Every script goes
through a few iterations before you get it right. Here are some common errors:

Syntax Errors

Code:

  

  #!/usr/bin/perl

  # file: time.pl

  use strict;

  use warnings;

  time = localtime;

  print "The time is now $time\n";

Output:

(~) 53% time.pl
Can't modify time in scalar assignment at time.pl line 3, near "localtime;"

Execution of time.pl aborted due to compilation errors.

Runtime Errors

Code:

  

  #!/usr/bin/perl

  # file: math.pl

  use strict;

  use warnings;

  $six_of_one = 6;

  $half_dozen = 12/2;

  $result = $six_of_one/($half_dozen - $six_of_one);

  print "The result is $result\n";

Output:

(~) 54% math.pl



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 6/18

Illegal division by zero at math.pl line 6.

Forgetting to Make the Script Executable

(~) 55% test.pl
test.pl: Permission denied.

Getting the Path to Perl Wrong on the #! line

Code:

  
  #!/usr/local/bin/pearl
  # file: time.pl
  use strict;
  use warnings;
  my $time = localtime;
  print "The time is now $time\n";

(~) 55% time.pl
time.pl: Command not found.

This gives a very confusing error message because the command that wasn't found is 'pearl' not time.pl

Useful Perl Command-Line Options

You can call Perl with a few command-line options to help catch errors:

-c

Perform a syntax check, but don't run.

-w

Turn on verbose warnings. Same as

use warnings;

-d

Turn on the Perl debugger.

Usually you will invoke these from the command-line, as in perl -cw time.pl (syntax check time.pl with verbose
warnings). You can also put them in the top line: #!/usr/bin/perl -w.

Perl Statements

A Perl script consists of a series of statements and comments. Each statement is a command that is
recognized by the Perl interpreter and executed. Statements are terminated by the semicolon character (;).
They are also usually separated by a newline character to enhance readability.

A comment begins with the # sign and can appear anywhere. Everything from the # to the end of the line is
ignored by the Perl interpreter. Commonly used for human-readable notes. Use comments plentifully,
especially at the beginning of a script to describe what it does, at the beginning of each section of your code
and for any complex code.

Some Statements

$sum = 2 + 2; # this is a statement

$f = <STDIN>; $g = $f++;  # these are two statements

$g = $f



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 7/18

  /
  $sum;        # this is one statement, spread across 3 lines

The Perl interpreter will start at the top of the script and execute all the statements, in order from top to

bottom, until it reaches the end of the script. This execution order can be modified by loops and control

structures.

Blocks
It is common to group statements into blocks using curly braces. You can execute the entire block

conditionally, or turn it into a subroutine that can be called from many different places.

Example blocks:

{  # block starts
  my $EcoRI = 'GAATTC';
  my $sequence = <STDIN>;
  print "Sequence contains an EcoRI site" if $sequence=~/$EcoRI/;
}  # block ends

my $sequence2 = <STDIN>;
if (length($sequence) < 100) {  # another block starts
  print "Sequence is too small. Throw it back\n";
  exit 0;
} # and ends

foreach $sequence (@sequences) {  # another block
  print "sequence length = ",length($sequence),"\n";
}

Literals
A literal is a constant value that you embed directly in the program code. You can think of the value as being

literally in the code. Perl supports both string literals and numeric literals. A string literal or a numeric literal is a

scalar i.e. a single value.

Literals cannot be changed. If you want to change the value of some data, it needs to be a variable. Much,

much more on this coming up, until you're really sick of the whole thing.

String Literals
String literals are enclosed by single quotes (') or double quotes ("):

'The quality of mercy is not strained.';  # a single-quoted string
"The quality of mercy is not strained.";  # a double-quoted string

The difference between single and double-quoted strings is that variables and certain special escape codes

are interpolated into double quoted strings, but not in single-quoted ones. Here are some escape codes:

\n New line

\t Tab

\r Carriage return

\f Form feed

\a Ring bell



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 8/18

\040 Octal character (octal 040 is the space character)

\0x2a Hexadecimal character (hex 2A is the "*" character)

\cA Control character (This is the ^A character)

\u Uppercase next character

\l Lowercase next character

\U Uppercase everything until \E

\L Lowercase everything until \E

\Q Quote non-word characters until \E

\E End \U, \L or \Q operation

"Here goes\n\tnothing!";
  # evaluates to:
  # Here goes
  # nothing!

'Here goes\n\tnothing!';
  # evaluates to:
  # Here goes\n\tnothing!

"Here goes \unothing!";
  # evaluates to:
  # Here goes Nothing!

"Here \Ugoes nothing\E";
  # evaluates to:
  # Here GOES NOTHING!

"Alert! \a\a\a";
  # evaluates to:
  # Alert! (ding! ding! ding!)

Putting backslashes in strings is a problem because they get interpreted as escape sequences. To inclue a
literal backslash in a string, double it:

"My file is in C:\\Program  Files\\Accessories\\wordpad.exe";

  # evaluates to: C:\Program Files\Accessories\wordpad.exe

Put a backslash in front of a quote character in order to make the quote character part of the string:

"She cried \"Oh dear! The parakeet has flown the coop!\"";

  # evaluates to: She cried "Oh dear! The parakeet has flown the coop!"

Numeric Literals
You can refer to numeric values using integers, floating point numbers, scientific notation, hexadecimal
notation, and octal. With some help from the Math::Complex module, you can refer to complex numbers as
well:

123;       # an integer



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 9/18

1.23;      # a floating point number
  
-1.23;     # a negative floating point number
  
1_000_000; # you can use _ to improve readability
  
1.23E45;   # scientific notation
  
0x7b;      # hexadecimal notation  (decimal 123)
  
0173;      # octal notation (decimal 123)

use Math::Complex;  # bring in the Math::Complex module
  
12+3*i;    # complex number 12 + 3i

Backtick Strings

You can also enclose a string in backtics (`). This has the helpful property of executing whatever is inside the
string as a Unix system command, and returning its output:

`ls -l`;
# evaluates to a string containing the output of running the
# ls -l command

Lists

The last type of literal that Perl recognizes is the list, which is multiple values strung together using the comma
operator (,) and enclosed by parentheses. Lists are closely related to arrays, which we talk about later. Lists
(and arrays) are composed from zero, one or more scalars, making an empty list, a list containing a single
item or a more typical list containing many items, respectively.

('one', 'two', 'three', 1, 2, 3, 4.2);
  # this is 7-member list contains a mixure of strings, integers
  # and floats

Operators

Perl has numerous operators (over 50 of them!) that perform operations on string and numberic values. Some
operators will be familiar from algebra (like "+", to add two numbers together), while others are more esoteric
(like the "." string concatenation operator).

Numeric & String Operators

The "." operator acts on strings. The "!" operator acts on strings and numbers. The rest act on numbers.
Operator Description Example Result

. String concatenate 'Teddy' . 'Bear' TeddyBear

= Assignment $a = 'Teddy' $a variable contains 'Teddy'

+ Addition 3+2 5

- Subtraction 3-2 1

- Negation -2 -2



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 10/18

! Not !1 0

* Multiplication 3*2 6

/ Division 3/2 1.5

% Modulus 3%2 1

** Exponentiation 3**2 9

<FILEHANDLE> File input <STDIN> Read a line of input from standard input

>> Right bit shift 3>>2 0 (binary 11>>2=00)

<< Left bit shift 3<<2 12 (binary 11<<2=1100)

| Bitwise OR 3|2 3 (binary 11|10=11

& Bitwise AND 3&2 2 (binary 11&10=10

^ Bitwise XOR 3^2 1 (binary 11^10=01

Operator Precedence

When you have an expression that contains several operators, they are evaluated in an order determined by

their precedence. The precedence of the mathematical operators follows the rules of arithmetic. Others follow

a precedence that usually does what you think they should do. If uncertain, use parentheses to force

precedence:

2+3*4;    # evaluates to 14, multiplication has precedence over addition
(2+3)*4;  # evaluates to 20, parentheses force the precedence

Logical Operators
These operators compare strings or numbers, returning TRUE or FALSE:

Numeric Comparison String Comparison
3 == 2 equal to 'Teddy' eq 'Bear' equal to

3 != 2 not equal to 'Teddy' ne 'Bear' not equal to

3 < 2 less than 'Teddy' lt 'Bear' less than

3 > 2 greater than 'Teddy' gt 'Bear' greater than

3 <= 2 less or equal 'Teddy' le 'Bear' less than or equal

3 >= 2 greater than or equal 'Teddy' ge 'Bear' greater than or equal

3 <=> 2 compare 'Teddy' cmp 'Bear' compare

  'Teddy' =~ /Bear/ pattern match

The <=> and cmp operators return:

-1 if the left side is less than the right side

0 if the left side equals the right side

+1 if the left side is greater than the right side

File Operators
Perl has special file operators that can be used to query the file system. These operators generally return

TRUE or FALSE.



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 11/18

Example:

print "Is a directory!\n" if -d '/usr/home';
print "File exists!\n" if -e '/usr/home/lstein/test.txt';
print "File is plain text!\n" if -T '/usr/home/lstein/test.txt';

There are many of these operators. Here are some of the most useful ones:

-e filename file exists

-r filename file is readable

-w filename file is writable

-x filename file is executable

-z filename file has zero size

-s filename file has nonzero size (returns size)

-d filename file is a directory

-T filename file is a text file

-B filename file is a binary file

-M filename age of file in days since script launched

-A filename same for access time

Functions
In addition to its operators, Perl has many functions. Functions have a human-readable name, such as print
and take one or more arguments passed as a list. A function may return no value, a single value (AKA

"scalar"), or a list (AKA "array"). You can enclose the argument list in parentheses, or leave the parentheses

off.

A few examples:

  # The function is print.  Its argument is a string.
  # The effect is to print the string to the terminal.
print "The rain in Spain falls mainly on the plain.\n";

  # Same thing, with parentheses.
print("The rain in Spain falls mainly on the plain.\n");

  # You can pass a list to print.  It will print each argument.
  # This prints out "The rain in Spain falls 6 times in the plain."
print "The rain in Spain falls ",2*4-2," times in the plain.\n";
  
  # Same thing, but with parentheses.
print ("The rain in Spain falls ",2*4-2," times in the plain.\n");

  # The length function calculates the length of a string,
  # yielding 45.
length "The rain in Spain falls mainly on the plain.\n";

  # The split function splits a string based on a delimiter pattern
  # yielding the list ('The','rain in Spain','falls mainly','on the plain.')
split '/','The/rain in Spain/falls mainly/on the plain.';



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 12/18

Creating Your Own Functions

You can define your own functions or redefine the built-in ones using the sub function. This is described in
more detail in the lesson on creating subroutines, which you'll be seeing soon..

Often Used Functions (alphabetic listing)

For specific information on a function, use perldoc -f function_name to get a concise summary.

abs absolute value

chdir change current directory

chmod change permissions of file/directory

chomp remove terminal newline from string variable

chop remove last character from string variable

chown change ownership of file/directory

close close a file handle

closedir close a directory handle

cos cosine

defined test whether variable is defined

delete delete a key from a hash

die exit with an error message

each iterate through keys & values of a hash

eof test a filehandle for end of file

eval evaluate a string as a perl expression

exec quit Perl and execute a system command

exists test that a hash key exists

exit exit from the Perl script

glob expand a directory listing using shell wildcards

gmtime current time in GMT

grep filter an array for entries that meet a criterion

index find location of a substring inside a larger string

int throw away the fractional part of a floating point number

join join an array together into a string

keys return the keys of a hash

kill send a signal to one or more processes

last exit enclosing loop

lc convert string to lowercase

lcfirst lowercase first character of string

length find length of string



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 13/18

local temporarily replace the value of a global variable

localtime return time in local timezone

log natural logarithm

m// pattern match operation

map perform on operation on each member of array or list

mkdir make a new directory

my create a local variable

next jump to the top of enclosing loop

open open a file for reading or writing

opendir open a directory for listing

pack pack a list into a compact binary representation

package create a new namespace for a module

pop pop the last item off the end of an array

print print to terminal or a file

printf formatted print to a terminal or file

push push a value onto the end of an array

q/STRING/ generalized single-quote operation

qq/STRING/ generalized double-quote operation

qx/STRING/ generalized backtick operation

qw/STRING/ turn a space-delimited string of words into a list

rand random number generator

read read binary data from a file

readdir read the contents of a directory

readline read a line from a text file

readlink determine the target of a symbolic link

redo restart a loop from the top

ref return the type of a variable reference

rename rename or move a file

require load functions defined in a library file

return return a value from a user-defined subroutine

reverse reverse a string or list

rewinddir rewind a directory handle to the beginning

rindex find a substring in a larger string, from right to left

rmdir remove a directory

s/// pattern substitution operation

scalar force an expression to be treated as a scalar



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 14/18

seek reposition a filehandle to an arbitrary point in a file

select make a filehandle the default for output

shift shift a value off the beginning of an array

sin sine

sleep put the script to sleep for a while

sort sort an array or list by user-specified criteria

splice insert/delete array items

split split a string into pieces according to a pattern

sprintf formatted string creation

sqrt square root

stat get information about a file

sub define a subroutine

substr extract a substring from a string

symlink create a symbolic link

system execute an operating system command, then return to Perl

tell return the position of a filehandle within a file

tie associate a variable with a database

time return number of seconds since January 1, 1970

tr/// replace characters in a string

truncate truncate a file (make it smaller)

uc uppercase a string

ucfirst uppercase first character of a string

umask change file creation mask

undef undefine (remove) a variable

unlink delete a file

unpack the reverse of pack

untie the reverse of tie

unshift move a value onto the beginning of an array

use import variables and functions from a library module

values return the values of a hash variable

wantarray return true in an array context

warn print a warning to standard error

write formatted report generation

Ok, now you know all the perl functions, so we're done. Thanks for coming.

Variables



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 15/18

A variable is a symbolic placeholder for a value, a lot like the variables in algebra. These values can be
changed. Compare literals whose values cannot be changed. Perl has several built-in variable types:

Scalars: $variable_name

A single-valued variable, always preceded by a $ sign.

Arrays: @array_name

A multi-valued variable indexed by integer, preceded by an @ sign.

Hashes: %hash_name

A multi-valued variable indexed by string, preceded by a % sign.

Filehandle: FILEHANDLE_NAME

A file to read and/or write from. Filehandles have no special prefix, but are usually written in all
uppercase.

We discuss arrays, hashes and filehandles later.

Scalar Variables

Scalar variables have names beginning with $. The name must begin with a letter or underscore, and can
contain as many letters, numbers or underscores as you like. These are all valid scalars:

$foo
$The_Big_Bad_Wolf
$R2D2
$_____A23
$Once_Upon_a_Midnight_Dreary_While_I_Pondered_Weak_and_Weary

You assign values to a scalar variable using the = operator (not to be confused with ==, which is numeric
comparison). You read from scalar variables by using them wherever a value would go.

A scalar variable can contain strings, floating point numbers, integers, and more esoteric things. You don't
have to predeclare scalars. A scalar that once held a string can be reused to hold a number, and vice-versa:

Code:

  
  $p = 'Potato';  # $p now holds the string "potato"
  $bushels = 3;   # $bushels holds the value 3
  $potatoes_per_bushel = 80;  # $potatoes_per_bushel contains 80;

  $total_potatoes = $bushels * $potatoes_per_bushel;  # 240

  print "I have $total_potatoes $p\n";

Output:

I have 240 Potato

Scalar Variable String Interpolation

The example above shows one of the interesting features of double-quoted strings. If you place a scalar
variable inside a double quoted string, it will be interpolated into the string. With a single-quoted string, no
interpolation occurs.

To prevent interpolation, place a backslash in front of the variable:

  
  print "I have \$total_potatoes \$p\n";

  # prints: I have $total_potatoes $p



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 16/18

Operations on Scalar Variables
You can use a scalar in any string or numeric expression like $hypotenuse = sqrt($x**2 + $y**2) or $name =
$first_name . ' ' . $last_name. There are also numerous shortcuts that combine an operation with an

assignment:

$a++
Increment $a by one

$a--
Decrement $a by one

$a += $b
Modify $a by adding $b to it.

$a -= $b
Modify $a by subtracting $b from it.

$a *= $b
Modify $a by multiplying $b to it.

$a /= $b
Modify $a by dividing it by $b.

$a .= $b
Modify the string in $a by appending $b to it.

Example Code:

  $potatoes_per_bushel = 80;  # $potatoes_per_bushel contains 80;
  
  $p = 'one';
  $p .= ' ';      # append a space
  $p .= 'potato'; # append "potato"

  $bushels = 3;
  $bushels *= $potatoes_per_bushel; # multiply

  print "From $p come $bushels.\n";

Output:

From one potato come 240.

String Functions that Come in Handy for Dealing with Sequences
Reverse the Contents of a String

  $name          = 'My name is Lincoln';
  $reversed_name = reverse $name;
  print $reversed_name,"\n";
  # prints "nlocniL si eman yM"

Translating one set of letters into another set

  $name = 'My name is Lincoln';
  # swap a->g and c->t
  $name =~ tr/ac/gt/;
  print $name,"\n";



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 17/18

  # prints "My ngme is Lintoln"

Can you see how a combination of these two operators might be useful for computing the reverse
complement?

Processing Command Line Arguments

When a Perl script is run, its command-line arguments (if any) are stored in an automatic array called

@ARGV. You'll learn how to manipulate this array later. For now, just know that you can call the shift function

repeatedly from the main part of the script to retrieve the command line arguments one by one.

Printing the Command Line Argument

Code:

  

  #!/usr/bin/perl

  # file: echo.pl

  use strict;

  use warnings;

  $argument = shift;

  print "The first argument was $argument.\n";

Output:

(~) 50% chmod +x echo.pl
(~) 51% echo.pl tuna
The first argument was tuna.

(~) 52% echo.pl tuna fish
The first argument was tuna.

(~) 53% echo.pl 'tuna fish'
The first argument was tuna fish.

(~) 53% echo.pl
The first argument was.

Computing the Hypotenuse of a Right Triangle

Code:

  

  #!/usr/bin/perl

  # file: hypotense.pl

  use strict;

  use warnings;

  $x = shift;

  $y = shift;

  $x>0 and $y>0 or die "Must provide two positive numbers";

  

  print "Hypotenuse=",sqrt($x**2+$y**2),"\n";

Output:

(~) 82% hypotenuse.pl

Must provide two positive numbers at hypotenuse.pl line 6.

(~) 83% hypotenuse.pl 1

Must provide two positive numbers at hypotenuse.pl line 6.

(~) 84% hypotenuse.pl 3 4

Hypotenuse=5

(~) 85% hypotenuse.pl 20 18



10/13/2014 Beginning Perl Scripting

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html 18/18

Hypotenuse=26.9072480941474

(~) 86% hypotenuse.pl -20 18

Must provide two positive numbers at hypotenuse.pl line 6.



Perl II
Logic and control structures

Sofia Robb

v5 2013 - notes originallly by Dave Messina

1

What is truth?

0 the number 0 is false

"0" the string 0 is false

"" and '' an empty string is false

my $x; an undefined variable is false

everything else is true

2



Examples of truth

my $a;        # FALSE (not yet defined)
$x = 1;       # TRUE
$x = 0;       # FALSE
$x = "\n”;    # TRUE
$x = 'true';  # TRUE
$x = 'false'; # TRUE (watch out! "false" is a nonempty string)
$x = ' ';     # TRUE (a single space is non-empty)
$x = "\n\n”;  # TRUE (a single newline is non-empty)
$x = 0.0;     # FALSE (converts to string "0")
$x = '0.0';   # TRUE (watch out! The string "0.0" is not the
              #      same as "0")

3

defined

defined lets you test whether a variable is defined.

if (defined $x) {
   print "$x is defined\n”;
}

4



Control structures

Control structures allow you to control if 
and how a line of code is executed.

You can create alternative branches in which 
different sets of statements are executed 
depending on the circumstances.

You can create various types of repetitive 
loops.

5

Control structures

my $x = 1;
my $y = 2;
my $z = $x + $y;
print "$x + $y = $z\n”;

So far you’ve seen a basic program, 
where every line is executed, in 
order, and only once.

6



Control structures

my $x = 1;
my $y = 2;
if ($x == $y) {
   print "$x and $y are equal\n”;
}

Here, the print statement is only 
executed some of the time.

7

Components of a control structure

if ($x == $y) {
   print "$x and $y are equal\n”;
}

3. squiggly brackets

2. a statement in parentheses

1. a keyword 

The part enclosed by the squiggly brackets is called a block.

8



Components of a control structure

if ($x == $y) {
   print "$x and $y are equal\n”;
}

3. squiggly brackets

2. a statement in parentheses

1. a keyword 

When you program, build the structure first and then fill in.

4. now add the print statement
9

if
if ($x == $y) {
   print "$x and $y are equal\n”;
}

If $x is the same as $y, then the print 
statement will be executed.

If ($x == $y) is true, then the print 
statement will be executed.

or said another way:

10



if — a common mistake

if ($x = $y) {
   print "$x and $y are equal\n”;
}

What happens if we write it this way?

11

my $x;         # x is undefined
my $x = 1;     # x is now defined
if ($x == 1)   # is $x equal to 1?
if ($x = 1)    # (wrong)

1 equals sign to make the left side equal the right side.
2 equals signs to test if the left side is equal to the right.

use warnings will catch this error.

if — a common mistake

12



else

if ($x == $y) {
   print "$x and $y are equal\n”;
}
else {
   print "$x and $y aren't equal\n”;
}

If the if statement is false, then the first 
print statement will be skipped and only the 
second print statement will be executed.

13

elsif

if ($x == $y) {
   print "$x and $y are equal\n”;
}
elsif ($x > $y) {
   print "$x is bigger than $y\n”;
}
elsif ($x < $y) {
   print "$x is smaller than $y\n”;
}

Sometimes you want to test a series of 
conditions.

14



elsif

if (1 == 1) {
   print "$x and $y are equal\n”;
}
elsif (2 > 0) {
   print "2 is positive\n”;
}
elsif (2 < 10) {
   print "2 is smaller than 10\n”;
}

What if more than one condition is true?

15

while

while ($x == $y) {
   print "$x and $y are equal\n”;
}

As long as ($x == $y) is true, the 
print statement will be executed over 
and over again.

Why might you want to execute a block repeatedly?

16



Perl III
File input and output

Dave Messina

v5 2013

1

Recap of UNIX I/O

STDOUT - Prints to your screen, but can be 
redirected to a file or other program in the shell 
using redirection or pipes.

STDERR Standard error, used for diagnostic 
messages. Also prints to your screen, and also can 
be redirected in the shell.

STDIN - Reads in the text you type or from a file 
using redirection or pipes.

2



If we use output redirection on the UNIX 
command line, the standard output goes to a file 
and we see only the standard error on the 
screen:

$ ls 
kubrick.txt 
!
$ cat kubrick.txt 
Barry Lyndon 
The Shining 
!
$ cat kubrick.txt fincher.txt > films.txt 
ls: fincher.txt: No such file or directory 

Recap of UNIX I/O

The UNIX way of reading from and writing to 
files is redirection.

3

Perl I/O

open(IN, '<', 'myfile.txt') or die "can't open 
myfile.txt: $!\n";

The Perl way of reading from or writing to a file is the 
function open.

4



open's first argument

The first argument is a filehandle. Filehandles are how 
you refer to a file within Perl.!
!
STDOUT and STDERR are filehandles.!
!
When you open a file yourself, you make your own 
filehandle and give it a name (here, I chose IN).

open(IN, '<', 'myfile.txt')

open is a function, which takes 3 arguments:

First argument

5

Filehandles

Reading and writing to the filesystem is very 
complicated, involving bits, buffers, and memory.!
!
Perl provides a 'handle' to the file and takes care of all 
the complicated parts for us so we can interact with a 
file more simply.

the name of  the file 
a way to get access to a file's contents 
the actual data inside the file     

Filename 
Filehandle 
File contents            

Filenames, filehandles, and the data in a file are three 
different things.

6



The second argument is a mode.  The modes are 
borrowed from redirection on the command line.!
!
<     for reading from a file!
>     for writing to a file

open(IN, '<', 'myfile.txt')

open's second argument

Second argument

7

The third argument is the name of a file to open. It can 
either be a literal name:

open(IN, '<', 'myfile.txt')

open(IN, '<', 'myfile.txt')

or a variable containing a filename:

open(IN, '<', $file)

open's third argument

Third argument

8



Catch errors with die

open or die is a Perl idiom.  die is a function that 
exits the program immediately and prints the specified 
string to STDERR.

open(IN, '<', 'myfile.txt') 

    or die "can't open myfile.txt: $!\n";

If you're going to read from a file, that file must exist and 
be readable.

Since it rarely makes sense to continue when it's not 
possible to read the file, we want the program to stop. 
We do this with die.

9

Capturing system errors with $!

$! is a special Perl variable that contains error 
messages from the system.  If there was a problem with 
opening your file, there will be an error message in $!, 
and we can include it in our error string.

 or die "can't open $file: $!\n";

Let's try it.

Perl can also tell us what the filesystem said about why 
the file couldn't be opened.

contains error 
message from 
the filesystem

10



Open also can be used to open files for writing by using '>' 
as the second argument to open.

my $out = 'out.txt'; 

open(OUT, '>', $out) or die "can't open $out: $!\n";

Now specify that filehandle when you print

print OUT "I'm writing to a file!\n";

Open a file for writing

and the output will go into a file instead of the screen:

$ perl myprog.pl 

$ cat out.txt 

I'm writing to a file!

no redirection on the command line

11

Open a file for writing

If you open a file for writing and the file doesn't exist, it 
will be created.

$ ls 

!
$ perl myprog.pl 

$ ls 

out.txt

Be careful! If you open an existing file for writing, you 
will erase everything inside that file!

Let's try it.

look! no file there!

out.txt has been created by myprog.pl

12



Opening multiple files

You can open more than one file in a script — just give 
them different filehandles.

my $in  = 'in.txt'; 

my $out = ‘out.txt’; 

open(IN,  '<', $in ) or die "can't open $in: $!\n"; 

open(OUT, '>', $out) or die "can't open $out: $!\n";

13

Open files from user input

Instead of hardcoding filenames inside your program, 
you can read them in from the command line:

my $in  = shift @ARGV; 

my $out = shift @ARGV; 

open(IN,  '<', $in ) or die "can't open $in: $!\n"; 

open(OUT, '>', $out) or die "can't open $out: $!\n";

$ perl test.pl myinfile.txt myoutfile.txt

On the command line, you'd type this:

14



Open files from user input

my $in  = shift @ARGV; 

my $out = shift @ARGV; 

open(IN,  '<', $in ) or die "can't open $in: $!\n"; 

open(OUT, '>', $out) or die "can't open $out: $!\n";

$ perl test.pl myinfile.txt myoutfile.txt
Command line

Inside our Perl program

myinfile.txt and myoutfile.txt are filenames. 
IN and OUT are filehandles.!
$in and $out are variables containing the filenames.

Which are the filehandles and which are the filenames?

15

<> to get contents out of a file

Perl reads files one line at a time.!
!
To read a line from a file, you put the filehandle inside 
<>, like this:

my $in  = ‘in.txt’; 

open(IN, '<', $in ) or die "can't open $in: $!\n"; 

!
print "This is the first line from the file $in:\n"; 

my $line = <IN>; 

print $line; 

16



This code reads the first two lines from a file:

my $in  = ‘in.txt’; 

open(IN, '<', $in ) or die "can't open $in: $!\n"; 

!
print "This is the first line from the file $in:\n"; 

my $line = <IN>; 

print $line; 

print "This is the 2nd line from the file $in:\n"; 

$line = <IN>; 

print $line;

<> to get contents out of a file

17

To read from a filehandle line by line, put

my $in  = shift @ARGV; 

open(IN, '<', $in) or die "can't open $in: $!\n"; 

!
while (my $line = <IN>) { 

    chomp $line; 

    print "This line is from the file $in:\n"; 

    print $line\n"; 

}

into a while loop, like this:my $line = <IN>

<> to get contents out of a file

Most files have lots of lines, and we often want to read 
all the lines in a file one by one. We can do that using a 
while loop.

18



Removing newlines with chomp

chomp removes the newline from the end of a string!
(if there is a newline).

my $string = "hey there!\n"; 

print "my string is: ", $string, "\n"; 

chomp $string; 

print "after chomp : ", $string, "\n";

When you read a line from a file, the first thing you 
always want to do is chomp.

19

Counting lines in a file

my $line_count; 

while (my $line = <IN>) { 

    chomp $line; 

    $line_count = $line_count + 1; 

} 

print "There are $line_count lines\n";

Let's do something more interesting than printing the 
line back out. Let's count how many lines there are in 
the file.

20



Why we read a file with while

while (my $line = <IN>) {

<IN> returns a line from a file.!
We assign that line to a variable, $line.!
while tests that assignment for truth:!
"Can we assign a value to $line?"!
!
If we've hit the end of the file, there are no more lines 
to read, and so the answer is "no", or FALSE.!
When the expression in parentheses is false, we exit 
the loop.

Let's step back for a moment and think about why this 
works.  What exactly is going on on this line?

What happens if the input file contains a blank line?
21



Arrays and Loops
Sofia Robb

1

An array is a Named Ordered List.

• What is a list?!

• (‘cat’, ‘dog’, ‘narwhal’)!

• Why is it named?!

• @animals = (‘cat’, ‘dog’, ‘narwhal’);!

• Why is is ordered?!

• each element has an ordered numerical index or 
position

Arrays are 
denoted with 

‘@’ symbol

0 1 2

cat dog narwhal

2



Arrays

• Each element of an array has to be a scalar 
variable!

• These are all scalar variables!

• number!

• letter!

• word!

• sentence!

• $scalar_variable

3

Example array

my @colors = ('red', $favorite_color, 
'cornflower blue', 5); 

4



The elements of the array are stored in a specific order.

my @colors = ('red', $favorite_color, 
'cornflower blue', 5); 

0 1 2 3

'red' $favorite_color 'cornflower blue' 5

$colors[0] $colors[1] $colors[2] $colors[3]

5

my @colors = ('red', $favorite_color, 
'cornflower blue', 5); 
!

GET 
!
my $first  = $colors[0]; 
my $second = $colors[1]; 
my $third  = $colors[2]; 
my $last   = $colors[-1]; 
!

negative numbers can be used to access from the end

Each element of an array can be accessed by its 
position, or index, in the array.

6



$colors[0] = 'green'; 
$colors[2] = 'gray';

The value of each element can be reassigned with use 
of its index.

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower 
blue 5

$colors[0] $colors[1] $colors[2] $colors[3]

green $favorite_!
color gray 5

7

Assign values to indices that are far away

$colors[0] = 'green'; 
$colors[2] = 'gray'; 
$colors[8] = 'black';

$colors[0] $colors[1] $colors[2] $colors[3] $colors[4] $colors[5] $colors[6] $colors[7] $colors[8]

green $favorite_!
color gray 5 undefined undefined undefined undefined black!

@colors now contains 9 
elements. !

4 of the elements are 
undefined.

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower 
blue 5

8



GET/SET: Mirror Images

#GET: 
$first  = $colors[0]; 
$second = $colors[1]; 
!
#SET: 
$colors[0] = 'green'; 
$colors[2] = 'gray';

9

A common MISTAKE is to try to access an element in array context 
( meaning using the ‘@’).

my @colors = ('red', $favorite_color, 'cornflower blue', 5);

This is correct: 
my $first  = $colors[0];

This is wrong: 
my $first  = @colors[0];

10



Length of an array

my $length = scalar @colors; 
print "len of array: $length\n";

len of array: 4
Output:

The scalar() function can be used to return the scalar attribute of an array. It scalar attribute is the 
length, or in other words, the number of elements in the array.

 scalar(@array)

my @colors = ('red', $favorite_color, 'cornflower blue', 5);

11

my @colors = ('red', $favorite_color, 'cornflower blue', 5);

A common MISTAKE is to use the length() function to get the 
number of elements in an array

len of array: 4

len of array: 1

my $length = scalar @colors; 
print "len of array: $length\n";

Output:

Output:

my $length = length @colors; 
print "len of array: $length\n";

WRONG:

CORRECT:

12



Quick print of an array

my @colors = ('red', $favorite_color, 'cornflower blue', 5); 
!
print "@colors"; 

When an array is printed with use of double quotes ("@array"), a single white space is 
automatically inserted between each element. This allows for a quick way to visualize the 

contents of your array. 

Notice that the print out of the array looks like it has 5 
elements while our array actually has 4 elements. 

Printing within quotes may not always be helpful in 
cases when a white space is included within a single 

element, such as 'cornflower blue'.

red purple cornflower blue 5

Output

13

 Array to a String

!
my @colors = ('red', $favorite_color, 'cornflower blue', 5); 
!
my $new_string = join ('--' , @colors); 
print "$new_string\n"; 

my $new_string = join(string , @array);

red--purple--cornflower blue--5
Output

join() can be used to combine all the individual elements of list or array into a string on a set of 
characters. A string is returned.

'--' is used here to clearly differentiate the elements of 
@colors.  A tab ("\t") is a  common character to use with 

the join() fuction.

14



Arrays are Dynamic

my @colors = ('red', $favorite_color, 'cornflower blue', 5);

push

popshift

unshift

Not only can values be reassigned but!
Arrays can grow and shrink.

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower 
blue 5

shift() has been used in 
previous lectures to get user 

command line arguments

15

push

#add one element to the end 
push (@colors, 'black'); 
print join ('--', @colors) , "\n";

Add elements to the end with push();

push (@array, list of values);

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower 
blue 5

red--purple--cornflower blue--5--black

Output

push() is changing the 
actual array

16



push

Add elements to the end with push();

push (@array, list of values);

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower 
blue 5

#add one element to the end 
push (@colors, 'black','blue'); 
print join ('--', @colors) , "\n";

red--purple--cornflower blue--5--black--blue

Output

push() is changing the 
actual array

17

push

Add elements to the end with push();

push (@array, list of values);

#add an array of elements 
my @more_colors = ('yellow','pink','white','orange'); 
push (@colors, @more_colors); 
print join ('--', @colors) , "\n";

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower 
blue 5

red--purple--cornflower blue--5--black--yellow--pink--white--orange

Output

push() is changing the 
actual array

18



pop
my $last_element = pop @colors;  
!
print "last: $last_element\n"; 
print join ('--', @colors) , "\n";

Remove an element from the end with pop();

my $last = pop(@array);

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower 
blue 5

last: 5 
red--purple--cornflower blue

Output

pop() is changing the 
actual array

19

shift

Remove an element from the beginning with shift();

my $first_element = shift(@colors); 
!
print "first: $first_element\n"; 
print join ('--', @colors) , "\n";

$first = shift(@array);

shift() is changing the 
actual array

first: red 
purple--cornflower blue--5

Output

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower 
blue 5

20



unshift

Add elements to the beginning with unshift();

#add one element to the beginning 
unshift (@colors, 'black'); 
print join ('--', @colors) , "\n";

unshift (@array, list of values);

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower 
blue 5

black--red--purple--cornflower blue--5
Output

21

unshift

Add elements to the beginning with unshift();

#add two elements to the beginning 
unshift (@colors, 'black' , 'blue'); 
print join('--',@colors), "\n";

unshift (@array, list of values);

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower 
blue 5

black--blue--red--purple--cornflower blue--5
Output

22



unshift

Add elements to the beginning with unshift();

#add an array of elements to the beginning 
my @more_colors = ('yellow','pink','white','orange'); 
!
unshift (@colors, @more_colors); 
print join('--',@colors) , "\n";

unshift (@array, list of values);

yellow--pink--white--orange--red--purple--cornflower blue--5
Output

$colors[0] $colors[1] $colors[2] $colors[3]

red $favorite_!
color

cornflower 
blue 5

23

Dynamic Arrays

Function Meaning
push(@array, a list of values) add value(s) to the end of the list

$popped_value = pop(@array) remove a value from the end of the list

$shifted_value = shift(@array) remove a value from the front of the list

unshift(@array, a list of values) add value(s) to the front of the list

splice(...) everything above and more!

24



String to an Array

!
!
my $string = "I do not like green eggs and ham"; 
!
#'/ /' sets the delimiter to a single white space 
my @words = split(/ /,$string); 
!
print join('--',@words),"\n"; 
I--do--not--like--green--eggs--and--ham 

my @array = split(/pattern/ , string);

The split() function can be used to create an array from a string by providing a delimiter of any 
set of characters or any pattern. split() is similar to Excel's "Text to columns" feature that allows 
you to indicate which characters separate each field, such as tabs (\t) and commas (,). Just like 
in Excel, the split() function will remove the delimiter and it will not be present in the returned 

data.

Notice that there are no 
white spaces in the printed 

array. The delimiter was 
removed.

25

Using qw() to create a list of words

!
my @array = ('one', 'two', 'three', 'four'); 

It is a lot of work to type all the quotes and commas.!
Use qw() instead:

!
my @array = qw( one two three four ); 

qw() will produce a list of quoted words:!
('one' ,  'two' ,  'three' , 'four') !

that can now be saved as an array
26



Sorting

I--and--do--eggs--green--ham--like--not

my @sorted_array = sort (@array)
The sort() function is used to sort a list.  The default behavior is to sort in ascii order. A sorted 

list is returned. 

my @words = qw(I do not like green eggs and ham); 
!
my @sorted_words = sort @words; 
print join('--' , @sorted_words),"\n";

ascii sort order:!
0-9!
A-Z!
a-z

Output

27

Default Sort: sort {$a cmp $b} 

##sort {$a cmp $b} is default sort() behavior 
my @sorted_words = sort {$a cmp $b} @words; 
print join('--' , @sorted_words),"\n";

my @sorted_array = sort {$a cmp $b}(@array)

my @words = qw(I do not like green eggs and ham);

I--and--do--eggs--green--ham--like--not

Output

The sort() function performs a series of pairwise comparisons of all the elements in the list. For 
example it compares the first ($a) and second ($b) elements, tests if $a is less than $b, then it 

makes another pairwise comparison and and so on until the list is sorted.  

$a and $b are special Perl 
variables and do no need to be 

declared. If you use these 
elsewhere in the same scope, 
the sort function won't work. 
This is another reason not to 

use uninformative variable 
names (like a and b) when 
you're writing your scripts!

sort @array!
is equivalent to!

sort {$a cmp $b}

28



Quick Review:  
The comparison operator and strings

$result is:!
 -1   if the left side is less than the right side!
  0   if the left side equals the right side!
+1   if the left side is greater than the right side

my $x = 'sid'; 
my $y = 'nancy'; 
my $result = $x cmp $y;

29

my $x = 2; 
my $y = 3.14; 
my $result = $x <=> $y;

$result is:!
 -1   if the left side is less than the right side!
  0   if the left side equals the right side!
+1   if the left side is greater than the right side

Quick Review:  
The comparison operator and numbers

30



The comparison operator

use cmp to compare two strings!
my $x = 'sid'; 
my $y = 'nancy'; 
my $result = $x cmp $y;

use <=> to compare two numbers!
my $x = 2; 
my $y = 3.14; 
my $result = $x <=> $y;

31

Modify sort behavior for 
Numeric Sorting

## default sorting is ascii 
my @sorted_numbers = sort @numbers; 
print "@sorted_numbers\n";

## modify to sort numerically 
@sorted_numbers = sort {$a <=> $b}@numbers; 
print "@sorted_numbers\n";

1 10 11 15 2 20

my @numbers = (15,2,10,20,11,1);

1 2 10 11 15 20

Output

Output

The default sort can be modified by specifying the sort behavior in {} using Perl reserved 
variables $a and $b.

32



Sorting and map{}

my @words = qw(I do not like green eggs and ham); 
!
my @ABC_words = map { uc }@words; 
print join('--',@ABC_words),"\n"; 
I--DO--NOT--LIKE--GREEN--EGGS--AND--HAM 
!
my @sorted_words = sort (@ABC_words); 
print join('--',@sorted_words),"\n"; 
AND--DO--EGGS--GREEN--HAM--I--LIKE--NOT 

33

More sort() customization with uc() 

my @words = qw(I do not like green eggs and ham); 
my @sorted_words = sort {uc($a) cmp uc($b)}(@words); 
print join('--',@sorted_words),"\n";

and--do--eggs--green--ham--I--like--not

my @sorted = sort { uc($a) cmp uc($b) } @array;

Output

Before $a and $b are compared they are uppercased. This only changes the temporary copy of 
the array elements stored in $a and $b during the sort. The actual array elements are not being 

changed. It is a sorted list of the original list that is being returned

The returned list is in the same 
format as the original list. The 

uc() used on $a and $b did not 
change the @array

34



Sort based on the length of each element

my @words = qw(I do not like green eggs and ham); 
my @sorted_words = sort {length($a) <=> length($b)}(@words); 
print join('--',@sorted_words),"\n";

I--do--not--and--ham--like--eggs--green

my @sorted = sort { length($a) <=> length($b) } @array;

Output

The returned list is in the same 
format as the original list. The 

length() used on $a and $b did 
not change the @array

Noticed that the <=> is used. 
The lengths of the words are 

being compared.Warning Advanced!! Sort on length then on alphabet.!
my @sorted_words = sort {length($a) <=> length($b) || uc($a) cmp uc($b) }(@words);

35

Reverse Sorting

my @words = qw(I do not like green eggs and ham); 
my @sorted_words = sort {$b cmp $a} @words; 
print join('--',@sorted_words),"\n";

Reverse the order of $a and $b to reverse the results of sort.

not--like--ham--green--eggs--do--and--I
Output

36



Swapping the values of 2 elements

my @words = qw(I do not like green eggs and ham); 
print "Before Swap : w5=$words[5] w7=$words[7]\n"; 
!
my $val_1 = $words[5]; 
my $val_2 = $words[7]; 
$words[5] = $val_2; 
$words[7] = $val_1; 
!
print "After Swap  : w5=$words[5]  w7=$words[7]\n"; 
print join('--',@words),"\n"; 
!

$words[5] = $words[7]; 
$words[7] = $words[5]; 
print join('--',@words),"\n";

What is wrong with this?

Before Swap : w5=eggs w7=ham 
After Swap  : w5=ham  w7=eggs 
I--do--not--like--green--ham--and--eggs

I--do--not--like--green--ham--and--ham

Output

37

Swapping values

my @words = qw(I do not like green eggs and ham); 
print "Before Swap : w5=$words[5] w7=$words[7]\n";"; 
!
($words[5],$words[7]) = ($words[7],$words[5]); 
!
print "After Swap  : w5=$words[5]  w7=$words[7]\n"; 
print join('--',@words),"\n";

Before Swap: 
w5:eggs w7:ham 
after swap: 
w5:ham w7:eggs 
I--do--not--like--green--ham--and--eggs

Output

38



• Loops!

• foreach() : perfect for arrays!

• for() : good for arrays and much more!

• while() : perfect for many things other than 
arrays as well as lines of files

39

foreach loop

my @array = (15,2,10,20,11,1); 
!
foreach my $one_element(@array){ 
##do something to each $one_element 
!
!

}

The foreach loop is especially equipped to iterate through each element of a list. It retrieves the value 
of each element of the list, one at at time, in the order of indices, and stores it in a variable for use 

within the foreach code block.

$array[0] $array[1] $array[2] $array[3] $array[4] $array[5]

15 2 10 20 11 1

40



foreach loop

my @array = (15,2,10,20,11,1); 
!
foreach my $one_element(@array){ 
##do something to each $one_element 
print "Number: $one_element\n"; 

}

The foreach loop is especially equipped to iterate through each element of a list. It retrieves the value of 
each element of the list, one at at time, in the order of indices, and stores it in a variable for use within 

the foreach code block.

$array[0] $array[1] $array[2] $array[3] $array[4] $array[5]

15 2 10 20 11 1

Number: 15 
Number: 2 
Number: 10 
Number: 20 
Number: 11 
Number: 1

Output
A foreach loops know 
everything about your 

array.

41

foreach() code block

my @words = qw(I do not like green eggs and ham); 
!
foreach my $word (@words){ 
  my $uc_word = uc($word); 
  my $len = length($word); 
  print "word: $uc_word($len)\n"; 
}

Output

All the lines within the foreach code block will be executed on each array element, one at at time.

start at $index=0; 
1.The value of the index $index is retrieved 
from @words and a copy is stored in $word. !
2. $word is uppercased and the result is 
stored in $uc_word.!
3.The length of $word is calculated and 
stored in $len.!
4. $uc_word and $length are printed.!
5. Increment to the next index ($index++). !
6.Go to Step 1, repeat until the foreach code 
block is executed on all elements

word: I(1) 
word: DO(2) 
word: NOT(3) 
word: LIKE(4) 
word: GREEN(5) 
word: EGGS(4) 
word: AND(3) 
word: HAM(3)

42



for loop

for (my $i=0; $i<5 ; $i++){ 
print "\$i is: $i\n"; 

} 

for(initialization; test; increment){ 
   statements; 
}

The for loop is especially equipped to keep count and for repeating a block of code until a numerical 
condition is met. 

Output
$i is: 0 
$i is: 1 
$i is: 2 
$i is: 3 
$i is: 4

A for loop does not 
know anything about 

your array.

43

for loop

my @array = (15,2,10,20,11,1); 
for (my $i=0; $i<scalar @array ; $i++){ 
  my $value = $array[$i] 
  print "value of $i is $value\n"; 
} 

The for loop can also be used with @arrays. The $i can be used to retrieve each the value of each index.

Output
value of 0 is 15 
value of 1 is 2 
value of 2 is 10 
value of 3 is 20 
value of 4 is 11 
value of 5 is 1

start at $i=0; 
1. if $i is less than the length of the @array 
(scalar @array) then the code in the for block 
will be executed. !
2. $value is set to contain the contents of 
$array[$i].!
3. $value is printed!
4. $i is auto incremented. ($i=$i+1);!
5. Go to Step 1, repeat as long as the test 
($i<scalar @array) remains true. 

$array[0] $array[1] $array[2] $array[3] $array[4] $array[5]

15 2 10 20 11 1

Loops are similar to the steps in a 
thermocycler program

44



Thermocycler Program and loops

my ($temp, $time); 
my $cycles = 30; 
!
($temp,$time) = (94,"3min"); 
doDenature($temp,$time); 
!
for (my $i=0 ; $i<$cycles ; $i++){ 
!
  ($temp,$time) = (94, "30sec"); 
  doDenature($temp,$time); 
  ($temp,$time) = (57, "30sec"); 
  doAnnealing($temp,$time); 
  ($temp,$time) = (72, "1min"); 
  doExtension($temp,$time); 
} 
($temp,$time) = (72, "5min"); 
doAnnealing($temp,$time); 
!
while (1){ 
 ($temp,$time) = (4, "forever"); 
  doChilling($temp,$time);  
} 

Standard PCR program !
!
1. 94 °C 3 min  : Initial Denature!
2. 94 °C 30 sec : Denature!
3. 57 °C 30 sec : Annealing!
4. 72 °C 1 min  :Extension !
5. Go to step 2, for additional 29 times!
6. 72 °C 5 min !
7. 4 °C for ever 

45

while loop

while (condition){ 
code; 

}

while loops continue to execute the while code block until the while conditional statement is true.

A while loop does 
not know anything 
about your array.

46



while loops and <FILEHANDLES>

open (IN, ">", "file.txt") or die "Can't open file.txt $!"; 
!
while (my $line = <IN>){ 

chomp $line; 
print "$line\n"; 

}

Output
file line 1 
file line 2 
file line 3

while loops are great for getting lines from a file one by one and executing code on each line. It will 
continue until the condition is false.

start at line 1; 
1. <> is an operator that returns the contents 
of one line from a file.  If the end of the file is 
reached, nothing is returned, and nothing is 
false.!
2. if the contents of $line is true the code 
block is executed.!
3. $line is chomped, then printed.!
4.  Go to Step 1. 

Loops are similar to the steps in a 
thermocycler program

47

while loop
while loops can also be used for counting.

my $i = 0; 
while ($i<5){ 

print "\$i is $i\n"; 
 $i++; 

}

Output

This instance of the while loop 
functions like a for loop. !
!
1. A counter is initialized!
2. there is a test that 
incorporates the counter!
3. the counter is changed in each 
iteration of the loop.

$i is: 0 
$i is: 1 
$i is: 2 
$i is: 3 
$i is: 4

48



for and while loop can do the same thing

for (my $i=0; $i<5 ; $i++){ 
print "$i\n"; 

}

$i $i<5 print “$i\n”; $i++

0 yes 0 1

1 yes 1 2

2 yes 2 3

3 yes 3 4

4 yes 4 5

5 no
my $i = 0; 
while ($i<5){ 

print "$i\n"; 
 $i++; 

}

for(;;){}

while(){}

for and while loops can be used to do the same things, the format is just different. Neither way is better, 
just different

49

Different loops can do the same things

foreach and for loops with arrays!
!

my @array = (15,2,10,20,11,1);
for and while loops with counters

!
    foreach my $ele(@array){ 

    print "$ele\n"; 
    }

    for (my $i=0; $i<5 ; $i++){ 
      print "$i\n"; 
    }

    for (my $i=0; $i<scalar @array ; $i++){ 
      my $ele = $array[$i] 
      print "$ele\n"; 
    }

    my $i = 0; 
    while ($i<5){ 
      print "$i\n"; 
$i++; 
    }

50



Loop Control: next()

my @words = qw(I do not like green eggs and ham); 
!
foreach my $word (sort {uc($a) cmp uc($b)}@words){ 

if ($word eq 'and'){ 
  next; 
} 
print "$word\n"; 

}

execution of next() will cause the loop to jump to the next iteration. Any code, in 
the loop block, that falls after the next will be skipped. The next iteration of the loop 

will commence. All code after the loop block will also be executed.

do 
eggs 
green 
ham 
I 
like 
not

Output

Every element but 
'and' is printed.

51

my @words = qw(I do not like green eggs and ham); 
!
foreach my $word (@words){ 

if ($word eq 'and'){ 
  last; 
} 
print "$word\n"; 

}

Loop Control: last!

execution of last() will cause the loop to exit the loop. Any code, in the loop block, 
that falls after the last will be skipped. No further iterations will be attempted.  All 

code that falls after the loop block will also be executed.

Every word before 'and' in 
@words is printed. When 
the element is equal to 

'and' the current iteration 
ends, the loop block is 

exited and no other words 
are printed

I 
do 
not 
like 
green 
eggs 

52



Sorting, Arrays and Loops

my @words = qw(I do not like green eggs and ham); 
#my @sorted = sort {uc($a)cmp uc($b)}@words; 
!
foreach my $word (sort {uc($a)cmp uc($b)}@words){ 

print "$word\n"; 
}

and 
do 
eggs 
green 
ham 
I 
like 
not

Output

Previously, the array was 
sorted and the sorted 
results were stored in a 

new array

Here, !
1. the array is sorted !
2. the final sorted results are returned to the 
foreach loop. !
3. Then one element at a time, in the sorted 
list will be stored in $word!
4. Each element stored in $word will be 
processed in the loop code block

53

my @seqs = qw(TTT CGG ATG TAA CCC ACC TGA); 
!
my $count = 0; 
foreach my $seq (@seqs){ 
if ($seq eq 'TAA' or $seq eq 'TGA' or $seq eq 'TAG'){ 
print "*\n"; 

}else { 
$count++; 

} 
} 
print "$count non-stop codons\n"; 

Example usage of a foreach loop

* 
* 
5 non-stop codons

Output

54



print "\@ARGV: @ARGV\n"; 
!
print "\$ARGV[0]: $ARGV[0]\n"; 
print "\$ARGV[1]: $ARGV[1]\n"; 
!
my $arg1 = shift @ARGV; 
my $arg2 = shift @ARGV; 
!
!
print "arg1: $arg1\n"; 
print "arg2: $arg2\n";

@ARGV

./sample_usr_input.pl 5 five

@ARGV: 5 five 
!
$ARGV[0]: 5 
$ARGV[1]: five 
!
arg1: 5 
arg2: five

Output

@ARGV is a special Perl array that automatically contains the list of arguments that follow the script 
name on the command line.

$ARGV[0] $ARGV[1]

5 five

55



Hashes
Sofia Robb

Hashes

• Perl hashes are denoted with a ‘%’ symbol like this 
%data

• Each key and each value contains a scalar value for 
example this could be
• a number
• a letter
• a word
• a sentence
• a scalar variable like $scalar_variable
• a gene ID
• a sequence



What is a hash?

• A hash is an associative array 
made up of key/value pairs.

• Like a dictionary

• And unlike an array a hash is 
unordered.

Met‘ATG’

valuekey
Lys

Pro

‘AAA’

‘CCA’

A key is like a descriptive array index. 

 The array index [0] is similar to the key 
‘ATG’.

The key ‘ATG’ is used to access the value 
‘Met’, just as [0] is used to access ‘red’  

But the key/value pairs are not stored in 
order

‘red’
$favorite_

color
‘cornflower 

blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

An array

Met‘ATG’

Lys

Pro

‘AAA’

‘CCA’

A hash



my %genetic_code = (
 "ATG" => "Met",
 "AAA" => "Lys",
 "CCA" => "Pro",
);

Met‘ATG’

valuekey

The hash %genetic_code is built with key/value pairs

Creating a hash

my %genetic_code = (
 "ATG" => "Met",
 "AAA" => "Lys",
 "CCA" => "Pro",
);

my $aa = $genetic_code{"ATG"};
print "ATG translates to $aa\n";
ATG translates to Met

Each value of the hash is a scalar therefore we use 
the ‘$’ when we refer to an individual value.

Hash keys are surrounded by squiggly brackets {}

Accessing a hash value using a key



keys() returns an unordered list of the keys of a 
hash

@array_of_keys = keys (%hash);

my %genetic_code = (
 "ATG" => "Met",
 "AAA" => "Lys",
 "CCA" => "Pro",
);

my @codons = keys (%genetic_code);
print join("--",@codons), "\n";
CCA--AAA--ATG

Iterating through a hash by looping through an 
list of hash keys.

foreach my $codon (keys %genetic_code){
   my $aa = $genetic_code{$codon};
   print "$codon translates to $aa\n"; 
}
CCA translates to Pro
AAA translates to Lys
ATG translates to Met

my %genetic_code = (
 "ATG" => "Met",
 "AAA" => "Lys",
 "CCA" => "Pro",
);

Remember: the key is used to access 
the value

$value = $hash{$key}



Sorting and iterating through the keys of a hash

foreach my $codon (sort keys %genetic_code){
   my $aa = $genetic_code{$codon};
   print "$codon translates to $aa\n"; 
}
AAA translates to Lys
ATG translates to Met
CCA translates to Pro

Remember: hash keys are 
unordered so we use sort to be 
sure that the order is always the 

same.

my %genetic_code = (
 "ATG" => "Met",
 "AAA" => "Lys",
 "CCA" => "Pro",
);

Iterating through a hash and sorting by the 
values

foreach my $codon (sort {$genetic_code{$a} cmp $genetic_code{$b}} 
keys %genetic_code){
   my $aa = $genetic_code{$codon};
   print "$codon translates to $aa\n"; 
}
AAA translates to Lys
ATG translates to Met
CCA translates to Pro

we can create  a custom 
sort function using {$a cmp 

$b}

Remember: the key is used to access 
the value

$value = $hash{$key}
my %genetic_code = (
 "ATG" => "Met",
 "AAA" => "Lys",
 "CCA" => "Pro",
);



values() returns an unordered list of values
@array_of_values = values(%hash);

my %genetic_code = (
 "ATG" => "Met",
 "AAA" => "Lys",
 "CCA" => "Pro",
);

my @amino_acids = values(%genetic_code);
print join("--",@amino_acids), "\n";
Pro--Lys--Met

You can use sort values to be 
sure that the order of the values is 

always the same.

Adding additional key/value pairs

my %genetic_code = (
 "ATG" => "Met",
 "AAA" => "Lys",
 "CCA" => "Pro",
);

$genetic_code{"TGT"} = "Cys";

foreach my $codon (keys %genetic_code){
  print "$codon -- $genetic_code{$codon}\n";
}
CCA -- Pro
AAA -- Lys
ATG -- Met
TGT -- Cys



Deleting key/value pairs

my %genetic_code = (
 "ATG" => "Met",
 "AAA" => "Lys",
 "CCA" => "Pro",
);

delete $genetic_code{"AAA"};

foreach my $codon (keys %genetic_code){
  print "$codon -- $genetic_code{$codon}\n";
}
CCA -- Pro
ATG -- Met

Use exists() to test if a key exists.

my $codon = "ATG";
if (exists $genetic_code{$codon}){
  print "$codon -- $genetic_code{$codon}\n";
}else{
  print "key: $codon does not exist\n";
}
ATG -- Met 
##when $codon= "TTT", code prints "key: TTT does not exist"

key exists? return value

yes 1

no ‘’ empty string 
is false

my %genetic_code = (
 "ATG" => "Met",
 "AAA" => "Lys",
 "CCA" => "Pro",
);



Auto increment hash values

Auto increment scalars:
my $num = 1;
print $num , "\n";  #prints 1
$num++;             #same as $num=$num +1;
print $num , "\n";  #prints 2

Auto increment hash values:
my %hash;
$hash{books} = 0;
print $hash{books}, "\n";  #prints 0
$hash{books}++; #same as $hash{books} = $hash{books} + 1
print $hash{books} , "\n"; #prints 1

nothing + 1 equals 1
my %hash;

$hash{books} = 0;
print $hash{books}, "\n";

$hash{books}++;
print $hash{books} , "\n"; # prints 1

When we first start, the key ‘books’ doesn’t exist. 
We try to add 1 to nothing, so the total is 1.



Using hashes for keeping count

my $seq = "ATGGGCGTATGCAATT";
my @nucs = split "", $seq;
print "@nucs\n";
#A T G G G C G T A T G C A A T T

my %nt_count;
foreach my $nt (@nucs){
        $nt_count{$nt}++;
}

foreach my $nt (keys %nt_count){
        my $count = $nt_count{$nt};
        print "$nt\t$count\n";
}

A       4
T       5
C       2
G       5

my $file = shift;
open (my $in_file, '<', $file) 
or die "can't open file $file $!\n";

my %hash;
while (my $line = <$in_file>){
        chomp $line;
        my ($key, $value) = split /\t/, $line;
        $hash{$key} = $value;
}
foreach my $key (sort keys %hash){
        my $value = $hash{$key};
        print "key:$key value:$value\n";
} 

Creating a hash from variable input like data from a file



Regular Expressions
Sofia Robb

What is a regular expression?

A regular expression is a string template against which 
you can match a piece of text. 

They are something like shell wildcard expressions, but 
much more powerful.



 my $sites = 0;
 while (my $line = <>) {
   chomp $line;
   if ($line =~ /GAATTC/){
     print "Found an EcoRI site!\n";
     $sites++;
   }
 }
 print "$sites EcoRI sites total.\n"

Examples of Regular Expressions

This bit of code loops through @ARGV files or STDIN. Finds all lines containing an EcoRI 
site, and bumps up a counter:

my $sites = 0;
  while (my $line = <>) {
    chomp $line;
    if ($line =~ /[GA]C.?G/) {
       print "Found a methylation site!\n";
       $sites++;
    }
  }
  print "$sites methylation sites total.\n"

Examples of Regular Expressions

This does the same thing, but counts one type of methylation site (Pu-C-X-G) instead:



my $h = "Who's afraid of Virginia Woolf?";
print "I'm afraid!\n" if $h =~ /Woo?lf/;

Specifying the String to Search

To specify which string variable to search, use the =~ operator:

1.Ordinary characters: 
 a-z, A-Z, 0-9 and some punctuation.
 These match themselves. 

2.The "." character: 
    matches everything except the newline. 
3.A bracket list of characters
    [AaGgCcTtNn], [A-F0-9], or [^A-Z] 
    (the last means anything BUT A-Z). 
4.Predefined character sets:
\d The digits [0-9]  
\w A word character [A-Za-z_0-9] 
\s White space [ \t\n\r] 
\D A non-digit 
\W A non-word 
\S Non-whitespace 

5.Anchors: 
^ Matches the beginning of the string  
$ Matches the end of the string 
\b Matches a word boundary (between a \w and a \W) 

Regular Expression Atoms
A regular expression is normally delimited by two slashes ("/"). Everything between 
the slashes is a pattern to match.  A pattern is composed of one or more atoms:



• /g..t/ matches "gaat", "goat", and "gotta get a goat" (twice)
 
• /g[gatc][gatc]t/ matches "gaat", "gttt", "gatt", and "gotta get 
an agatt" (once) 

• /\d\d\d-\d\d\d\d/ matches 376-8380, and 5128-8181, but not 
055-98-2818. 

• /^\d\d\d-\d\d\d\d/ matches 376-8380 and 376-83801, but not 
5128-8181.

• /^\d\d\d-\d\d\d\d$/ only matches telephone numbers. 

• /\bcat/ matches "cat", "catsup" and "more catsup please" but 
not "scat". 

• /\bcat\b/ only text containing the word "cat".

Regular Expression Atoms

Examples

?     atom matches zero or exactly once
*     atom matches zero or more times
+     atom matches one or more times
{3}   atom matches exactly three times
{2,4} atom matches between two and four times, inclusive
{4,}  atom matches at least four times

Quantifiers
By default, an atom matches once. This can be modified by following the atom with a quantifier:

Examples:

• /goa?t/ matches "goat" and "got". Also any text that contains 
these words.

• /g.+t/ matches "goat", "goot", and "grant", among others.
• /g.*t/ matches "gt", "goat", "goot", and "grant", among 
others.

• /^\d{3}-\d{4}$/ matches US telephone numbers (no extra text 
allowed.



/wolf|sheep/;
# matches "wolf" or "sheep"

/big bad (wolf|sheep)/;  
# matches "big bad wolf" 
#      or "big bad sheep"

Alternatives and Grouping
A set of alternative patterns can be specified with the | symbol:

Parenthesis and Quantifies

/Who's afraid of the big (bad )?wolf\?/;

# matches "Who's afraid of the big bad wolf?" 
# and     "Who's afraid of the big wolf?"

You can combine parenthesis and quantifiers to quantify entire 
subpatterns:

This also shows how to literally match the special characters -- put a backslash (\) in front of them. 



What about finding strings that don’t 
contain the pattern?

$h = "Who's afraid of Virginia Woolf?";
print "I'm not afraid!\n" if $h !~ /Woo?lf/;

use !~ instead of =~

This is equivalent to "not match" operator !~, which reverses the sense of the match:

$pattern = '/usr/local';
if ($file =~ /^$pattern/){
  print "matches" ;
}

Matching with a Variable Pattern

You can use a scalar variable for all or part of a regular 
expression.

See the o flag for important information about using variables inside patterns.



/Who's afraid of the big bad w(.+)f/

Subpatterns

You can extract and manipulate subpatterns in regular expressions.

To designate a subpattern, surround its part of the pattern with parenthesis (same as with 
the grouping operator). This example has just one subpattern, (.+) :

Once a subpattern matches, you can refer to it later within the 
same regular expression.  

The first subpattern becomes \1, the second \2, the third \3, and 
so on.

Using Subpatterns inside the Match



Using Subpatterns Inside the Match

  while (my $line = <>) {
    chomp $line;
    if ($line =~ /Who's afraid of the big bad w(.)\1f/){
      print "I'm scared!\n" 
    }
  }

This loop will print "I'm scared!" for the following matching lines:

• Who's afraid of the big bad woof
• Who's afraid of the big bad weef
• Who's afraid of the big bad waaf

but not
• Who's afraid of the big bad wolf
• Who's afraid of the big bad wife

Using Subpatterns Inside the Match

/\b(\w+)s love \1 food\b/ 

will match "dogs love dog food", but not "dogs love monkey food".



Using Subpatterns Outside the Match

Outside the regular expression match statement, the matched subpatterns (if any) can be 
found the variables $1, $2, $3, and so forth.

Example. Extract 50 base pairs upstream and 25 base pairs downstream of the TATTAT 
consensus transcription start site:

  while (my $line = <>) {
    chomp $line;
    next unless $line =~ /(.{50})TATTAT(.{25})/;
    my $upstream = $1;
    my $downstream = $2;
  }

Extracting and Saving Subpatterns Using Arrays
If you assign a regular expression match to an array, it will return a list of all the subpatterns that 
matched. Alternative implementation of previous example:

while (my $line = <>) {
    chomp $line;
    my ($upstream,$downstream) = $line =~ /(.{50})TATTAT(.{25})/;
  }

If the regular expression doesn't match at all, then it returns an empty list. Since an 
empty list is FALSE, you can use it in a logical test:

  while (my $line = <>) {
    chomp $line;
    next unless my ($upstream,$downstream) = $line =~ /(.{50})TATTAT(.{25})/;
    print "upstream = $upstream\n";
    print "downstream = $downstream\n";  
  }



Grouping without Making Subpatterns

Because parentheses are used both for grouping (a|ab|c) and for matching subpatterns, you may 
match subpatterns that don't want to. To avoid this, group with (?:pattern):

/big bad (?:wolf|sheep)/;

# matches "big bad wolf" or "big bad sheep",
# but doesn't extract a subpattern.

Subpatterns and Greediness

Because of the greediness of the match, $subpattern will contain "fox ate my box" 
rather than just "fox".

By default, regular expressions are "greedy". They try to match as much as they can. For example:

$h = 'The fox ate my box of doughnuts';
$h =~ /(f.+x)/;
$subpattern = $1;

$h = 'The fox ate my box of doughnuts';
$h =~ /(f.+?x)/;
$subpattern = $1;

Now $subpattern will contain "fox". This is called lazy matching.
Lazy matching works with any quantifier, such as +?, *?, ?? and {2,50}?.

To match the minimum number of times, put a ? after the qualifier, like this:



$h = "Who's afraid of the big bad wolf?";
$i = "He had a wife.";

$h =~ s/w.+f/goat/;  
# yields "Who's afraid of the big bad goat?"

$i =~ s/w.+f/goat/;  
# yields "He had a goate."

String Substitution

String substitution allows you to replace a pattern or character range with another one using the 
s/// and tr/// functions.

The s/// Function

s/// has two parts: the regular expression and the string to replace it with: s/expression/replacement/.

Extract pattern matches and use them in 
the replacement part of the substitution:

$h = "Who's afraid of the big bad wolf?";

$h =~ s/(\w+) (\w+) wolf/$2 $1 wolf/;
# yields "Who's afraid of the bad big wolf?"



$h = "Who's afraid of the big bad wolf?";

$animal = 'hyena';
$h =~ s/(\w+) (\w+) wolf/$2 $1 $animal/;
# yields "Who's afraid of the bad big hyena?"

Using a Variable in the Substitution Part

Translating Character Ranges

The tr/// function allows you to translate one set of characters into another. Specify the source 
set in the first part of the function, and the destination set in the second part:

$h = "Who's afraid of the big bad wolf?";

$h =~ tr/ao/AO/; 
# yields "WhO's AfrAid Of the big bAd wOlf?";

The tr/// Function



Output:

(~) 50% count_Ns.pl 
sequence_list.txt
Sequence 1 contains 0 Ns
Sequence 2 contains 3 Ns
Sequence 3 contains 1 Ns
Sequence 4 contains 0 Ns
...

This example counts N's in a series of DNA 
sequences:

while (my $line = <>) {
    chomp $line;   # assume one sequence per line
    my $count = $line =~ tr/Nn/Nn/;
    print "Sequence $line contains $count Ns\n";
  }

Code:

Input:

AGCTGGGAAAGT
AGCNGNNAAAGT
TAGCNGTTAAAT
GAATCAGCTGGG
...

tr/// returns the number of characters transformed, which is sometimes handy for 
counting the number of a particular character without actually changing the string.

i
Case insensitive match.

g
Global match.

Common Regular Expression Modifiers

Regular expression matches and substitutions have a whole set of options which you can use 
by appending one or more modifiers to the end of the operation.



my $string = 'Big Bad WOLF!';
if ($string =~ /wolf/i){
  print "There's a wolf in the closet!";
}

Case insensitive Matches

Output:

GTT
GCC
TGA
AAT
GGC
GGA
ACC
TTG

Global Matches
Adding the g modifier to the pattern causes the match to be global. Called in a scalar 
context (such as an if or while statement), it will match as many times as it can.

This will match all codons in a DNA sequence, printing them out on separate lines:

The pos() function retrieves the position where the next 
attempt begins

$position_of_next_attempt = pos($sequence)

Code:

  my $sequence = 'GTTGCCTGAAATGGCGGAACCTTGAA';
  while ( $sequence =~ /(.{3})/g ) {
    print $1,"\n";
  }



@frame1 = $sequence =~ /(.{3})/g;
@frame2 = substr($sequence,1) =~ /(.{3})/g;
@frame3 = substr($sequence,2) =~ /(.{3})/g;

If you perform a global match in a list context (e.g. assign its 
result to an array), then you get a list of all the subpatterns that 

matched from left to right. 

This code fragment gets arrays of codons in three reading frames:

o
Only compile variable patterns once.

m
Treat string as multiple lines. ^ and $ will match at start and end of 
internal lines, as well as at beginning and end of whole string. Use \A 
and \Z to match beginning and end of whole string when this is 
turned on.

s
Treat string as a single line. "." will match any character at all, including 
newline.

x
Allow extra whitespace and comments in pattern.

Additional regular expression modifiers



Subroutines

v5 2014 Dave Messina
1

#!/usr/bin/perl 
!
use strict;  
use warnings; 
!
my $seq1 = "ac ggTtAa";  
my $seq2 = "tTcC aaA tgg"; 
!
# clean up $seq1  
# 1) make it all lower case  
$seq1 = lc $seq1;  
# 2) remove white space  
$seq1 =~ s/\s//g; 
!
# clean up $seq2  
# 1) make it all lower case  
$seq2 = lc $seq2;  
# 2) remove white space  
$seq2 =~ s/\s//g; 
!
# print cleaned up sequences  
print "seq1: $seq1\n";  
print "seq2: $seq2\n";

2



• The same cleanup statements are run for $seq1 and 
$seq2.!

• Duplication of code (BAD!).!

• Subroutines to the rescue.!

Problems With This Code

3

Subroutines

• Blocks of code that you can call in different places.!

• Code resides in one place.!

• Only need to write the code once.!

• Easier to maintain.!

• Take arguments and return results.!

• Make code easier to read.!

• Like a mini-program within your program.

4



Creating a Subroutine!

1. Turn the code of interest into a block.!
!

{ 
    # clean up $seq 
    # 1) make it all lower case 
    $seq = lc $seq;  
    # 2) remove white space  
    $seq =~ s/\s//g; 
}

5

Creating a subroutine!

!
2. Label the block with: sub subroutine_name 
!
sub cleanup_sequence {  
    # clean up $seq  
    # 1) make it all lower case  
    $seq = lc $seq;  
     
    # 2) remove white space  
    $seq =~ s/\s//g; 
!
}

6



Creating a Subroutine

3.  Add statements to read the subroutine argument(s) 
and return the subroutine result(s).

7

sub cleanup_sequence { 
!
    # get the sequence argument to the 
    # subroutine – note that just like shift gets 
    # an argument for your program, shift gets an 
    # argument to your subroutine  
    my $seq = shift; 
!
    # clean up $seq  
!
    # 1) make it all lower case  
    $seq = lc $seq;  
    # 2) remove white space  
    $seq =~ s/\s//g; 
!
    # return cleaned up sequence  
    return $seq; 
!
} 

8



 Passing Arguments to a 
Subroutine

!
!
  Arguments are passed in @_ a special array created 
by Perl.!

• Analogous to @ARGV for program arguments.!

  Can use shift to take one argument at a time.!
!
# take the first argument  
my $arg1 = shift;  
# take the second argument  
my $arg2 = shift;

9

 Passing Arguments to a 
Subroutine

!
!

 Can copy the contents of @_ into a list of named 
variables.!

!
my ($arg1, $arg2) = @_;

10



Returning Subroutine Results

 Use return operator to return results.!
!
 Usually return at the end of the subroutine but can 
use it to exit the subroutine earlier.!
!
 Return a single value.!
return $single_value; #scalar 

!
 Return a list.!

return ($variable, “string”, 3); #list 
return @array_of_values; #array

11

Returning Subroutine Results

!
!

  Return an empty list or undef depending on 
context.!

!
!
return; #empty list or undef

12



Calling a Subroutine!

 Calling our subroutine is just like calling an existing 
built-in Perl function.!

!
my $result = my_sub($arg1, $arg2, $arg3, ...);

13

Location of Subroutines

Usually at the bottom of the script.  !
!
Allows you to visually separate main program from the 
subroutines.

14



#!/usr/bin/perl 
use strict; 
use warnings; 
!
my $seq1 = "ac ggTtAa";  
my $seq2 = "tTcC aaA tgg"; 
!
# call cleanup_sequence for each sequence 
$seq1 = cleanup_sequence($seq1);  
$seq2 = cleanup_sequence($seq2); 
# print cleaned up sequences 
print "seq1: $seq1\n"; 
print "seq2: $seq2\n"; 
!
sub cleanup_sequence {  
   # get the sequence argument 
   my $seq = shift;  
   # cleanup $seq  
   # 1) make it all lower case  
   $seq = lc $seq;  
   # 2) remove white space  
   $seq =~ s/\s//g;  
   # return cleaned up sequence  
   return $seq; 
}

15

Scope!

16



!

#!/usr/bin/perl 
!
use strict;  
use warnings; 
!
my $x = 100;  
my $y = 20; 
!
!
if ($x > $y) {  
    my $z = 10;  
    $x = 30;  
    print "x (inside if block): $x\n";  
    print "y (inside if block): $y\n";  
    print "z (inside if block): $z\n"; 
} 
!
print "x (outside if block): $x\n";  
print "y (outside if block): $y\n";  
print "z (outside if block): $z\n";

Global symbol "$z" requires explicit 
package name at ./scope.pl line 19.!
!
Execution of ./scope.pl aborted due 
to compilation errors.

17

Blocks

!
  That’s because $z was declared inside the if block, 
so it’s only accessible inside that block.!
!
  Any time we see {}, we’re creating a block.!
!
  Blocks are like boxes that have one way mirrors – 
you can see outside the box from inside, but not 
inside the box from the outside.!
!
  To fix that error, we need to declare $z outside the 
if block.

18



Blocks

!
  Variables declared inside of a block only exist inside 
the block – once the block is finished,  they will be 
destroyed.!

19

!

#!/usr/bin/perl 
  
use strict;  
use warnings; 
!
my $x = 100;  
my $y = 20;  
my $z = 5; 
!
if ($x > $y) {  
    my $z = 10;  
    $x = 30;  
    print "x (inside if block): $x\n";  
    print "y (inside if block): $y\n";  
    print "z (inside if block): $z\n"; 
} 
!
print "x (outside if block): $x\n";  
print "y (outside if block): $y\n";  
print "z (outside if block): $z\n";

Output:!
$x (inside of block):30!
$y (inside of block): 20!
$z (inside of block):10!
$x (outside if block): 30!
$y (outside if block): 20!
$z (outside if block): 5!

!

20



Scope

  Does the program give the expected behavior?!
!
  By declaring “my $z =10;” inside the if block,  
we’re creating a new variable called $z only 
accessible within the block.!
!
  This new variable will not modify the outside 
variable!!
!
  Note that we can create a new $z variable inside 
the block with no problems – if we do it outside, 
we’ll get a warning.

21

Scope

!

!
•  If we remove “my” from that line, the modification 
to $z will show outside the block.!

22



#!/usr/bin/perl 
!
use strict;  
use warnings; 
!
my $x = 100; 
my $y = 20; 
my $z = 5; 
!
if ($x > $y) {  
    $z = 10;  
    $x = 30;  
    print "x (inside if block): $x\n";  
    print "y (inside if block): $y\n"; 
    print "z (inside if block): $z\n"; 
} 
!
print "x (outside if block): $x\n";  
print "y (outside if block): $y\n";  
print "z (outside if block): $z\n"; 
!
 

Output:!
 $x (inside if block): 30!
 $y (inside if block): 20!
 $z (inside if block): 10!
 $x (outside if block): 30!
 $y (outside if block): 20!
 $z (outside if block): 10!

23



Using Modules

v5 2014

Dave Messina

1

Why use modules?

Sometimes you may want to use the same 
subroutines over and over again in different 
programs!

Bad way: Copy and paste a subroutine!

Good way: Make a module!

There are also many many modules that other 
people have written that you can use!!

To use modules they must be properly installed and 
called with the use command

2



File::Basename

Subroutine: basename !
!
Input: a UNIX path, like /home/dave/dna.fa!
Output: just the file name (the last part of the path), like dna.fa

Subroutine: dirname !
!
Input: a UNIX path, like /home/dave/dna.fa!
Output: just the directory (everything before the basename), like /home/dave/

Using modules somebody else wrote

3

!
  #!/usr/bin/perl!
  # file: basename.pl!
  !
  use strict;!
  use File::Basename;!
!
  my $path = '/home/dave/dna.fa';!
  my $base = basename($path);!
  my $dir  = dirname($path);!
!
  print "The base is $base and the directory is $dir.\n";!

Undefined subroutine &main::basename called at basename.pl 
line 8.!

The base is dna.fa and the directory is /home/dave.Output:

Common!
error:

Using modules somebody else wrote

4



#!/usr/bin/perl!
# file env.pl!
!
use strict;!
use Env;!
!
print "My home is $HOME\n";!
print "My path is $PATH\n";!
print "My username is $USER\n";!

My home is /home/pfbhome/dave!
My path is /usr/local/bin:/bin:/usr/bin:/usr/local/sbin: ...!
My username is dave

Output:

Another module somebody else wrote
This module comes with Perl. It imports a set of scalar variables that describe your 
environment, such as $HOME, $PATH, and $USER.!
!
By adding use Env;, we can bring those variables into our script and access them 
just as if we had declared them in the script.

$HOME, $PATH, and $USER !
are not declared in this script!

5

Which modules are installed?

$ perldoc perlmodlib!
Which modules are installed with basic perl installation?!

http://perldoc.perl.org/perlmodlib.html!

!

$ perldoc perllocal!
Which modules are installed on your machine?

6



Setting up your Perl environment

$ cd ~!
$ wget http://bit.ly/sample_bashrc_pfb2014!
$ cat sample_bashrc >> .bashrc!
$ source .bashrc!

Download this .bashrc file

# Perl setup                                                                                                           !
export PERL_LOCAL_LIB_ROOT="$HOME/perl5";!
export PERL_MB_OPT="--install_base $HOME/perl5";!
export PERL_MM_OPT="INSTALL_BASE=$HOME/perl5";!
export PERL5LIB="$HOME/perl5/lib/perl5/x86_64-linux-gnu-thread-multi:$HOME/perl5/
lib/perl5:$PERL5LIB";

This should now be in your ~/.bashrc

7

Installing modules manually
$ wget http://search.cpan.org/CPAN/authors/id/G/GL/GLASSCOCK/FASTAid-v0.0.4.tar.gz!
$ tar zxvf FASTAid-v0.0.4.tar.gz!

x FASTAid-v0.0.4/!
x FASTAid-v0.0.4/Changes!
...!
!
$ cd FASTAid-v0.0.4!
$ perl Makefile.PL!
Checking if your kit is complete...!
Looks good!
Writing Makefile for FASTAid!
!
$ make!
cp lib/FASTAid.pm blib/lib/FASTAid.pm!
Manifying blib/man3/FASTAid.3pm!
!
$ make test!
ERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e" "test_harness(0, 
'blib/lib', 'blib/arch')" t/*.t!
t/FASTAid.t .. ok     !
All tests successful.!
Files=1, Tests=11,  0 wallclock secs ( 0.02 usr  0.01 sys +  0.03 cusr  0.01 csys 
=  0.07 CPU)!
Result: PASS!
!
$ make install!
cp lib/FASTAid.pm blib/lib/FASTAid.pm!
Manifying blib/man3/FASTAid.3pm!
Installing /home/pfbhome/dave/perl5/lib/perl5/FASTAid.pm!
Installing /home/pfbhome/dave/perl5/man/man3/FASTAid.3pm!

8



Installing Modules Using the CPAN Shell
% cpan!
!
cpan shell -- CPAN exploration and modules installation (v1.59_54)!
ReadLine support enabled!
!
cpan>!
!
From this shell, there are commands for searching for modules, downloading them, and installing them.!

The first time you run the CPAN shell, you need to set one thing.!

cpan> o conf prefs_dir /home/your_username/!
cpan> o conf commit!
!
cpan will also ask you a lot of configuration questions. Generally, you can just hit return to accept the defaults. !

!
To search for a module:!
cpan> i /Wrap/!
Going to read '/Users/dave/.cpan/Metadata'!
  Database was generated on Thu, 18 Oct 2012 12:07:03 GMT!
...!
!
Module  < Text::Wrap             (MUIR/modules/Text-Tabs+Wrap-2013.0523.tar.gz)!
...!
41 items found!
!
cpan> install Text::Wrap!
Running install for module Text::Wrap!
...

9

Where are modules installed?

Module files end with the extension .pm. If the module name is a simple one, like Env, then Perl will look for a file named Env.pm. If the 
module name is separated by :: sections, Perl will treat the :: characters like directories. So it will look for the module File::Basename in 
the file File/Basename.pm!

Perl searches for module files in a set of directories specified by the Perl library path. This is set when Perl is first installed. You can find 
out what directories Perl will search for modules in by issuing perl -V from the command line:!

 % perl -V!
 Summary of my perl5 (revision 5.0 version 6 subversion 1) configuration:!
  Platform:!
    osname=linux, osvers=2.4.2-2smp, archname=i686-linux!
 ...!
  Compiled at Oct 11 2001 11:08:37!
  @INC:!
    /usr/lib/perl5/5.6.1/i686-linux!
    /usr/lib/perl5/5.6.1!
    ...!
You can modify this path to search in other locations by placing the use lib command somewhere at the top of your script:!

 #!/usr/bin/perl  !

  use lib '/home/lstein/lib';!
  use MyModule;!
  ...!
This tells Perl to look in /home/lstein/lib for the module MyModule before it looks in the usual places. Now you can install module files in 
this directory and Perl will find them. !

Sometimes you really need to know where on your system a module is installed. Perldoc to the rescue again -- use the -l command-line 
option:!

% perldoc -l File::Basename!
/System/Library/Perl/5.8.8/File/Basename.pm!
!

10



Making modules
Dave Messina

v4 2013

11

What is a module?

A module is an container which holds a 
collection of related code.!
!
It allows you to use the code over and 
over again without copying and pasting.!

12



package MySequence; !

# file: MySequence.pm!

use strict;  
use warnings;!

!
sub reverseq {!

   my $sequence = shift @_;  
   $sequence = reverse $sequence;!

   $sequence =~tr/gatcGATC/ctagCTAG/;!

   return $sequence;!

}!

sub seqlen {!

   my $sequence = shift @_;  
   $sequence =~ s/[^gatcnGATCN]//g; !

   return length $sequence;!

} !

1;!

Module

A Perl module must end with a true value.

13

#!/usr/bin/perl !

use strict;!
use warnings;  
use MySequence;!
!
my $sequence ='gattccggatttccaaagggttcccaatttggg'; !
my $complement = MySequence::reverseq($sequence);!
!
print "original = $sequence\n"; !
print "complement = $complement\n";!
!

By default, to use subroutines from MySequence, you must explicitly qualify each 
MySequence function by using the notation MySequence::function_name

Script

This one line lets you use all the code in MySequence.

14



package MySequence; !
# file: MySequence.pm!
!
use strict;!
use base 'Exporter';!
!
our @EXPORT = qw(reverseq); !
our @EXPORT_OK = qw(seqlen);!
!
sub reverseq {!
   my $sequence = shift @_;!
   $sequence = reverse $sequence; !
   $sequence =~ tr/gatcGATC/ctagCTAG/; !
   return $sequence;!
}!
!
sub seqlen {!
   my $sequence = shift @_;!
   $sequence =~ s/[^gatcnGATCN]//g; !
   return length $sequence;!
} !
!
1; *

Module using Exporter

15

#!/usr/bin/perl !

# file: sequence.pl!

use strict;!

use warnings;  
use MySequence;!

!
my $sequence ='gattccggatttccaaagggttcccaatttggg'; !

my $complement = reverseq($sequence);!

!
print "original = $sequence\n"; !

print "complement = $complement\n";!

!

Script when MySequence exports reverseq

Now that MySequence exports reverseq automatically, you can use the 
reverseq subroutine without the MySequence:: prefix. !
!
reverseq is now is the same namespace as the main script, just as if it were 
defined in the same file.

16



use base 'Exporter' tells Perl that this module is a type of "Exporter" 
module (more about this in a future lecture).!
!
our @EXPORT = qw(reverseq) tells Perl to export the subroutine 
reverseq automatically.!
!
our @EXPORT_OK = qw(seqlen) tells Perl that it is OK for the user to 
import the seqlen subroutine, but not to export it automatically.!
!
Also, you can export variables along with subroutines:!
our @EXPORT = qw(reverseq seqlen $scalar @array %hash);!

Exporter — implements default 
import method for modules

use base 'Exporter';!
!
our @EXPORT = qw(reverseq); !
our @EXPORT_OK = qw(seqlen);!

17

!
$ printenv PERL5LIB

If I make a module, where should I put it?

Once you've made your own module, you will want 
to put it somewhere Perl knows to look. 

18



Command line operated programs traditionally take their arguments from the command line, 
for example filenames. !
!
These programs often take named command line arguments, so that the order in which you 
write arguments doesn't matter and so that it's clear which argument does what.

Getopt::Long - Extended processing of command line options

$ grep -i ‘AGCG’ > capture.txt!
!
$ make_fake_fasta.pl --length 100 

By convention, single-letter arguments are prefixed with one dash -, and full-word arguments 
are prefixed with two dashes (--). 

19

*

Script using Getopt::long
#!/usr/bin/env perl                                                                                       !
!
use strict;!
use warnings;!
!
use Getopt::Long;!
my $length = 30;!
my $number = 10;!
my $help;!
GetOptions('l|length:i' => \$length,!
! !   'n|number:i' => \$number,!
! !   'h|help'     => \$help);!
!
my $usage = "make_fake_fasta.pl - generate random DNA seqs!
!
Options:!
-n <number>   the number of sequences to make (default: 10)!
-l <length>   the length of each sequence     (default: 30)!
";!
die $usage if $help;!
!
my @nucs = qw(A C T G);!
!
!
for (my $i = 1; $i <= $number; $i++) {!
! my $seq;!
!
! for (my $j = 1; $j <= $length; $j++) {!
    !my $index = int(rand (4));!
    !my $nuc = $nucs[$index];!
    !$seq .= $nuc;!
! }!
! print ">fake$i\n";!
! print $seq, "\n";!
}!
!

20



References 
& 

Multi-Dimensional Data Structures
Sofia Robb

1Friday, October 18, 13

What good are references?

Sometimes you need a more complex data structure 
than just an array or just a hash.

What if you want to keep together several related 
pieces of information?

Gene Sequence Organism

HOXB2 ATCAGCAATATACAATTATAAAGGCCTAAATTTAAAA mouse
HDAC1 GAGCGGAGCCGCGGGCGGGAGGGCGGACGGAC human

2Friday, October 18, 13



References?!?!?
Multi-dimensional data 

structures?!?!? 

References are only addresses. 

Multi-dimensional data structures are just 
hashes and arrays inside of hashes and 
arrays. 

3Friday, October 18, 13

References
•References are pointers, or the address of the data

•All data has an address in memory
•Humans have no need to know the address

•References are useful because they are a scalar variable.
•Arrays and hashes are not scalar variables.
•The only kind of data that you can store in an array or hash 
is scalar.

We can now store hashes and arrays in hashes and arrays by 
storing the address!!!! 

4Friday, October 18, 13



What is a reference, what do you mean 
by an address?

$x=1;
really means 0x84048ec

1SCALAR x:

A variable is a label for the location in 
memory of some data.  This location has an 

address.

Scalar

Well first, what is a variable?

address

5Friday, October 18, 13

Array
@y = (1, ‘a’, 23);

really means

1   ‘a’  23 

0x82056b4

ARRAY y:

6Friday, October 18, 13



A variable is a labeled memory address.

When we read the contents of the variable, we 
are reading the contents of the memory address.

0x82056b4

ARRAY y: 1   ‘a’  23 

How do I find you, what’s your address?

7Friday, October 18, 13

So, what is a reference?

A reference is a variable that contains the memory 
address of some data.

!!!!   It does not contain the data itself. 

!!!!   It contains the memory address where data is 
stored.

8Friday, October 18, 13



Creating a Reference

• Every time a variable is created it gets an address

• To retrieve the address or in other words, create a 
reference, use ‘\’

9Friday, October 18, 13

Creating a Reference to an Array

$address is now a 
reference to the 

array.

# codons for my favorite gene: HDAC
my @codons = ('ATG' , 'GCG' , 'CAG');

my $address = \@codons;
print "$address\n";

%% ./references.pl
ARRAY(0x100812e30)

Output:

10Friday, October 18, 13



Creating a Reference to a Hash

my %HDAC;

$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQG...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol}   = "HDAC";

my $address = \%HDAC;
print "$address\n";

%% ./references.pl
HASH(0x10081e538)

Output:

$address is now a 
reference to the 

hash.

11Friday, October 18, 13

• Arrays are a list of scalars

• Hashes are key/value pairs of scalars

• References are scalars

Storing References

Now that we have a way to retrieve the address we can 
use that address to store an array or a hash in an array 
or hash.

12Friday, October 18, 13



Storing an array reference in an array

my @y = (1, 'a' , 23 );    ##regular array
my $y_array_address = \@y; ##create a reference
print 'address of @y      : ' ,"$y_array_address\n";

my @codons = ('ATG' , 'GCG' , 'CAG'); #regular array
my $codons_array_address = \@codons;  #create a reference
print 'address of @codons : ', "$codons_array_address\n";

##store ref in regular array
push (@y , $codons_array_address); 

## yeilds same as above
# push (@y, \@codons); 
# $y[3] = \@codons;    

print 'contents of @y     : ' , "@y\n";
print 'address of @y      : ' , \@y , "\n";

address of @y      : ARRAY(0x7fb78402c348)
address of @codons : ARRAY(0x7fb78402c3c0)
contents of @y     : 1 a 23 ARRAY(0x7fb78402c3c0)
address of @y      : ARRAY(0x7fb78402c348)

13Friday, October 18, 13

0x7fb78402c3c01 ‘a‘ARRAY y: 23

0x7fb78402c348
1 ‘a‘ARRAY y: 23

## add the address of @codons (0x7fb78402c3c0) to the end of @y

0x7fb78402c3c0

'ATG' 'GCG' 'CAG'ARRAY codons:

push (@y, \@codons)

0x7fb78402c348
1 ‘a‘ARRAY y: 23 0x7fb78402c3c0PUSH

0x7fb78402c348

14Friday, October 18, 13



Storing a Reference as a Hash Value

use Data::Dumper;

my @codons = ('ATG' , 'GCG' , 'CAG');

my $codons_address = \@codons;

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol}   = "HDAC";
$HDAC{codons}   = $codons_address;

## using Data::Dumper to print our data structure
print Dumper \%HDAC; 

Notice the hash reference.

15Friday, October 18, 13

$VAR1 = {
          'symbol'   => 'HDAC',
          'function' => 'Histone Deacetylase',
          'seq'      => 'MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...',
          'codons'   => [
                        'ATG',
                        'GCG',
                        'CAG',
                       ]
        };

output:
Data::Dumper is a nice way to view the contents of 

your data structures without complicated print 
statements.

Or you could use the debugger.

16Friday, October 18, 13



Altering the data

• References are NOT copies of the data. They are 
addresses or pointers to the data

• Since a reference is like a short cut (windows) or 
alias (mac), when the original data changes, the 
change can be seen when using the reference to 
access the data.

• So, if @codons is changed, the hash also changes, 
because the hash contains only the address of the 
array, not a copy of the array.

Addresses/References are like Short Cuts/Aliases

17Friday, October 18, 13

my @codons = ('ATG','GCG','CAG');

my $codons_address = \@codons;

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol}   = "HDAC";
$HDAC{codons}   = $codons_address;

#Replacing the contents of @codons with only 2 codons
@codons = ('ATG' , 'GCG');

#Printing the unaltered %HDAC
print Dumper \%HDAC;

Altering the Original Array affects the reference

$VAR1 = {
          'symbol' => 'HDAC',
          'function' => 'Histone Deacetylase',
          'seq' => 'MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...',
          'codons' => [
                        'ATG',
                        'GCG',
                      ]
        };

!!! Only @codons was altered but the hash also changed

Output:

18Friday, October 18, 13



Anonymous Data structures

■You do not always need to retrieve the address of data to  
store/assign in a variable.

■You can create an anonymous array or hash on the fly. 
■ It is anonymous because it is unnamed.
■ It only has an address, no name, no label.

■We use the [ ] in the anonymous array assignment

■We use the {} in the anonymous hash assignment.

19Friday, October 18, 13

Now:
my $address = [ 'ATG' , 'GCG' ] ;

Creating an Anonymous Array

Notice the [ ] 
instead of ().

!!! the array is never given a name.
!!! it only has an address.

Before:
my @codons = ('ATG' , 'GCG');
my $address = \@codons;

'Before' and 'Now' look 
different but are functionally 

the same.

print ['ATG','GCG'] , "\n";

Output:
ARRAY(0x7f9cf302bb08)

evaluates to an address

Check it out: 

20Friday, October 18, 13



#my @codons =('ATG' , 'GCG');
#my $address = \@codons;

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol}   = "HDAC";
$HDAC{codons}   = [ 'ATG' , 'GCG' ] ;

print Dumper \%HDAC; 

$VAR1 = {
          'symbol' => 'HDAC',
          'function' => 'Histone Deacetylase',
          'seq' => 'MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...',
          'codons' => [
                        'ATG',
                        'GCG'
                      ]
        };

Output:

the array is never given a name.

Storing an Anonymous (unnamed) Array as a Hash Value

21Friday, October 18, 13

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGN...";
$HDAC{function}   = "Histone Deacetylase";
$HDAC{symbol}     = "HDAC";
$HDAC{codons}     = [ 'ATG' , 'GCG' ] ;
$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

print Dumper \%HDAC; 

Storing an Anonymous (unnamed) Hash as a Hash Value

$VAR1 = {
          'symbol' => 'HDAC',
          'function' => 'Histone Deacetylase',
          'expression' => {
                            'heart' => '1.3',
                            'liver' => '2.1'
                          },
          'seq' => 'MAQTQGTRRKVCYYYDGDVGN...',
          'codons' => [
                        'ATG',
                        'GCG'
                      ]
        };

Notice the {} 
instead of ().

Output:

Set all at once:
%hash = ( 
  'key1' => 'value1',
  'key2' => 'value2',
 );

Regular hash

22Friday, October 18, 13



$HDAC{expression} = { 
"liver" => 2.1 ,
"heart" => 1.3
} ;

Storing an Anonymous (unnamed) Hash as a Hash Value

One at a time:
$HDAC{expression}{"liver"} = 2.1 ;
$HDAC{expression}{"heart"} = 1.3 ;

Regular hash

All at once:
%hash = ( 
  'key1' => 'value1',
  'key2' => 'value2',
 );
One at a time:
$hash{'key1'}="value1";
$hash{'key2'}="value2";

All at once:

Notice the {} 
instead of ().

23Friday, October 18, 13

Now, all the data is in the data 
structure, how to you get it out?

Whole chunks of data or pieces of data can be 
retrieved from the multidimensional structures by 
using the address. 

 A.K.A. Dereferencing 

24Friday, October 18, 13



3 Easy Steps to Dereference

1. Get the address, or reference:                           $ADDRESS

2. Wrap the address, or reference in {}:                 {$ADDRESS}

3. Put the symbol of the data type out front @:    @{$ADDRESS}

Dereference === retrieve data from address

25Friday, October 18, 13

Dereference a reference to an array

my @codons =('ATG' , 'GCG' , 'CAG' );

my $codons_address = \@codons;

print "address of the array:\n$codons_address\n\n";
print "array from a dereferenced reference:\n @{$codons_address}\n";

Output:
address of the array:
ARRAY(0x7fd89c016b90)

array from a dereferenced reference:
ATG GCG CAG

26Friday, October 18, 13



Dereference an anonymous array that is a hash value 

$hash{key} = "value";
my $value = $hash{key};

Regular hash

address of the array: ARRAY(0x7f97db822958)
address of the array: ARRAY(0x7f97db822958)

array from a dereferenced reference:
ATG GCG

Output:

$HDAC{codons} = [ "ATG" , "GCG" ] ; #anony array is a hash value
                                    #anony array is an address
my $codons_address = $HDAC{codons};

print "address of the array: " , $HDAC{codons} , “\n”;
print "address of the array: $codons_address\n\n";

print "array from a dereferenced reference:\n @{$codons_address}\n";

Key Value

Did you notice that dereferencing an array and an anonymous array 
are the same? Check out the dereferencing in the last slide and 

compare to this one.

This evaluates to an address

27Friday, October 18, 13

Dereference an anonymous hash that is a hash value 

$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

my $hash_address = $HDAC{expression};

print "address of the hash:\n$hash_address\n\n";

my @keys = keys %{$hash_address};

print "keys from a dereferenced reference:\n@keys\n";

address of the hash:
HASH(0x7f94e38226d0)

keys from dereferenced reference:
heart liver

Output:

Regular hash

my @keys = keys %hash;

This evaluates to an address

print {"liver"=>2.1, "heart"=>1.3},"\n";

Output:
HASH(0x7fadf082bbb0)

Check it out: 

28Friday, October 18, 13



It is not always needed to explicitly retrieve the address

$HDAC{expression} = { "liver" => 2.1,"heart" => 1.3 } ;

#my $hash_address = $HDAC{expression};
#my @keys = keys %{$hash_address};

my @keys = keys %{ $HDAC{expression}  };

print "keys from a dereferenced reference:\n@keys\n";

This evaluates to an address

keys from a dereferenced reference:
heart liver

Output:

Regular hash
my @keys = keys %hash;

This evaluates to an address

29Friday, October 18, 13

Dereferencing to access every element of the anonymous 
array that is a hash value

$HDAC{codons}   = [ "ATG" , "GCG" ] ;

#my @codons = @{ $HDAC{codons} };

foreach my $codon ( @ { $HDAC{codons} } ){
  

print "codon: $codon\n";
}

codon: ATG
codon: GCG

Output:

evaluates to an address

foreach my $codon ( @codons )
{
  print "codon: $codon\n";
}

Regular array:

30Friday, October 18, 13



Dereferencing to access a piece of the 
anonymous array that is a hash value.

$HDAC{codons}   = [ "ATG" , "GCG" ] ;
#my @codons = @{ $HDAC{codons} };

my $zeroth_element =  ${ $HDAC{codons} }[0];

print "the 0th element = $zeroth_element\n";

the 0th element = ATG

Output:

evaluates to an address

$array[1] = "value";
my $value = $array[1]

Regular array

31Friday, October 18, 13

Dereferencing to access a piece of the 
anonymous array that is a hash value.

$HDAC{codons}   = [ "ATG" , "GCG" ] ;

my $zeroth_element =  ${ $HDAC{codons} }[0];

print "the 0th element = $zeroth_element\n";

$last_element = pop @ { $HDAC{codons} };
print "the last element = $last_element\n";

## pop actually changes the array

the 0th element  = ATG
the last element = GCG

Output:

evaluates to an address

$array[1] = "value";
my $value = $array[1];
my $last = pop @array;

Regular array

32Friday, October 18, 13



Dereferencing to access a single key/value pair 
from the anonymous hash in a hash

$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

my $level = ${ $HDAC{expression} }{ "heart" };
print "heart: $level\n";

my $tissue = "liver";
$level = ${ $HDAC{expression} }{ $tissue };
print "liver: $level\n";

heart: 1.3
liver: 2.1

Output:

foreach my $key (keys %hash){
  my $value = $hash{$key};
}

Regular Hash

33Friday, October 18, 13

Dereferencing to access every key/value pair from 
the anonymous hash in a hash

$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

foreach my $tissue ( keys % { $HDAC{expression} } ){
  my $level = ${ $HDAC{expression} }{$tissue};
  print "$tissue: $level\n";
}

heart: 1.3
liver: 2.1

Output:

foreach my $key (keys %hash){
  my $value = $hash{$key};
}

Regular Hash

34Friday, October 18, 13



Lets draw out what a hash of hashes would look like?

35Friday, October 18, 13

key value
gene1 ATG
gene2 CTT
gene3 ATT

regular %genes hash

key value
gene1 0x543
gene2 0x234
gene3 0x152

multidimensional
%genes hash

key value
seq TATGCC
desc something
len 6

0x543

0x234
key value
seq CAAATG
desc something
len 6

key value
seq TATACG
desc something
len 6

0x152

$VAR1 = {

          'gene1' => { 

                        'seq' => "TATGCC",

                        'desc' => 'something',

                        'len' => 6,

           },

 
           'gene2' => { 

                        'seq' => "CAAATG",

                        'desc' => 'something',

                        'len' => 6,

 
            },

    };

{anonymous hash}

{anonymous hash}

{anonymous hash}

Each key has a value 
that is an address to 
an anonymous hash

Each key has a string as a value.

Each key has a string as a value.

Each key has a string as a value.
36Friday, October 18, 13



What about a hash of hashes of hashes?

37Friday, October 18, 13

key value
gene1 0x543
gene2 0x234
gene3 0x152

multidimensional
%genes hash

key value

seq TATGCC

desc something

len 6

nt_comp 0x759

0x543

key value

A 1

T 2

G 1

C 2

0x759

$VAR1 = {

          'gene1' => { 

                      'seq' => "TATGCC",

                      'desc' => 'something',

                      'len' => 6,

                      'nt_comp' => {

                                    'A' => 1,

                                    'T' => 2,

                                    'G' => 1,  

                                    'C' => 2,

                      }

           },

 
           'gene2' => { 

                      'seq' => "CAAATG",

                      'desc' => 'something',

                      'len' => 6,

                      'nt_comp' => {

                                      'A' => 3,

                                      'T' => 1,

                                      'G' => 1,  

                                      'C' => 1,

                         }

 
            },

    };

key value

seq CAAATG

desc something

len 6

nt_comp 0x191

0x234

key value

A 3

T 1

G 1

C 1

0x191

Each key has a value 
that is an address to an 
anonymous hash

{anonymous hash}

{anonymous hash}

{anonymous hash}

{anonymous hash}

Each key has a string as a value.

Each key has a string as a value.

38Friday, October 18, 13



The ref() function

my %hash;

$hash{codons}= ['ATG' , 'TTT'];
my $address = $hash{codons};

ref ( $address );        ## returns ARRAY
ref ( $hash{codons} );   ## returns ARRAY

ref( REF ) 
returns the data type in which the reference points

both $address and $hash{codons} evaluate to the address of the array 

39Friday, October 18, 13

Extra fun stuff to look 
over later. 

• Array of arrays

• Another Scripting Example: 

• Creating a Hash of Hashes

40Friday, October 18, 13



Multidimensional Data: Making an Array of Arrays

my @spotarray = (
                 [0.124, 43.2, 0.102, 80.4],
                 [0.113, 60.7, 0.091, 22.6],
                 [0.084, 112.2, 0.144, 35.3]
                );

## two ways to get the value of the inner index
# my $cell_1_0  = ${$spotarray[1]}[0];
my $cell_1_0  = $spotarray[1][0];

print $cell_1_0;

0.113
Output:

41Friday, October 18, 13

Scripting Example: Creating a Hash of Hashes

We are presented with a table of sequences in the following format: 
the ID of the sequence, followed by a tab, followed by the sequence 
itself.

2L52.1      atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattggaagtaag...
4R79.2      tcaaatacagcaccagctcctttttttatagttcgaattaatgtccaact...
AC3.1       atggctcaaactttactatcacgtcatttccgtggtgtcaactgttattt...
...

For each sequence calculate the length of the sequence and the count 
for each nucleotide. Store the results into hash of hashes in which the 
outer hash's key is the ID of the sequence, and the inner hashes' keys 
are the names and counts of each nucleotide.

42Friday, October 18, 13



#!/usr/bin/perl -w
use strict;

# tabulate nucleotide counts, store into %sequences
my $infile = shift @ARGV;
open IN , '<' , $infile or die "Can't open $infile $!\n";

my %seqs;
while (my $line = <IN>) {
  chomp $line;
  my ($id,$sequence) = split "\t",$line;
  my @nucleotides    = split '', $sequence;  # array of nts
  foreach my $n (@nucleotides) {
     $seqs{$id}{$n}++; # count nts and keep tally
  }
}

# print table of results
print join("\t",'id','a','c','g','t'),"\n";

foreach my $id (sort keys %seqs) {
   print join("\t",$id,
                   $seqs{$id}{a},
                   $seqs{$id}{c},
                   $seqs{$id}{g},
                   $seqs{$id}{t},
              ),"\n";
}

43Friday, October 18, 13

The output will look something like this:

$VAR1 = {
         '2L52.1' => {
                        'c' => 4,
                        'a' => 23,
                        'g' => 12,
                        't' => 11
                      },
          '4R79.2' => {
                        'c' => 12,
                        'a' => 15,
                        'g' => 5,
                        't' => 18
                      }
        };

id      a"   c"   g"  t
2L52.1"  23" 4"   12  11
4R79.2"  15" 12 " 5"  18
...

Data::Dumper Output:

44Friday, October 18, 13



Object Oriented Programming and Perl

Prog for Biol 2011
Simon Prochnik

1Friday, October 18, 13

Why do we teach you about objects and object-oriented 
programming (OOP)?

• Objects and OOP allow you to use other people’s code to do a 
lot in just a few lines.

• For example, in the lecture on bioperl, you will see how to search 
GenBank by a sequence Accession, parse the results and reformat 
the sequence into any format you need in less than a dozen lines 
of object-oriented perl. Imagine how long it would take to write 
that code yourself!

• Someone else has already written and tested the code, so you 
don’t have to. 

• Most people don’t ever write an object of their own: only create 
your own modules and objects if you have to

• search CPAN (www.cpan.org) to see if there is already a module 
that does what you need. There were 18,534 modules on Oct 
14th 2010, this has grown to 100,575 (Oct 20, 2011), 114,367 Oct 
19, 2012! Surely you can find a module to do what you want.

2Friday, October 18, 13



Using objects in perl

• some examples to show how you can use objects

3Friday, October 18, 13

Object-oriented programming is a programming style

sequence

GeneSequence object

Functions (methods)

new()
transcribe()
location()

Data

ATGAGAGTGGAT
AGAGATTAGCTC
GCTAC

Generates 
transcript object

Generates 
chromosomal 

coordinate object

• An object is a special kind of data 
structure (variable) that stores 
specific kinds of data and 
automatically comes with functions 
(methods) that can do useful things 
with that data

• Objects are often designed to work 
with data and functions that you 
would find associated with a real-
world object or thing, for example, 
we might design gene sequence 
objects.

• A gene sequence object might store 
its chromosomal position and 
sequence data and have functions 
like transcribe() and new() to create 
a new object.

4Friday, October 18, 13



An example of a Microarray object that is designed 
specifically to handle microarray data

#!/usr/bin/perl
#File: OO_script.pl
use strict;
use warnings;
use Microarray; # I wrote this example object class
my $microarray = Microarray->new( gene => ‘CDC2’,
                                  expression => 45,
                                  tissue => ‘liver’,
                                  );
my $gene_name = $microarray->gene();
print “Gene for this microarray is $gene_name\n”;
my $tissue = $microarray->tissue();
print “The tissue is $tissue\n”;

Create a new 
object and load data

call the gene() 
subroutine to get 
gene name data 
from the object

Tell perl you want to 
use objects in the 
Microarray class

Output on screen:
Gene for this microarray is CDC2
The tissue is liver

call the tissue() 
subroutine to get 

tissue data from the 
object

5Friday, October 18, 13

An example that deals with statistics 
(Statistics::Descriptive objects)

#!/usr/bin/perl
#File: mean_and_variance.pl
use strict;
use warnings;

use Statistics::Descriptive; # this is on cpan.org
# need to make new object with S::D::Full->new()
my $stat = Statistics::Descriptive::Full->new();
$stat->add_data(1,2,3,4);
my $mean = $stat->mean();
my $var  = $stat->variance();
print “mean is $mean\n”;
print “variance is $variance\n”;

Make new object 
with new() 

Add data

Calculate mean

Calculate variance

Output on screen:
mean is 2.5
variance is 1.66666666666667

6Friday, October 18, 13



An example that deals with statistics 
(Statistics::Descriptive objects)

#!/usr/bin/perl
#File: mean_and_variance.pl
use strict;
use warnings;

use Statistics::Descriptive;

my $stat = Statistics::Descriptive->new();
$stat->add_data(1,2,3,4);
my $mean = $stat->mean();
my $var  = $stat->variance();
print “mean is $mean\n”;
print “variance is $variance\n”;

Make new object 
with new() 

Add data

Calculate mean

Calculate variance

Output on screen:
mean is 2.5
variance is 1.66666666666667

7Friday, October 18, 13

Let’s look at the new OOP syntax in more detail

# tell perl you want to use objects
# in a certain class
use Statistics::Descriptive;

Here’s the class name 
‘Statistics::Descriptive’. perl will look for a 

module with the filename 
..../Statistics/Descriptive.pm

8Friday, October 18, 13



Let’s look at the new OOP syntax in more detail

#create a new object in the 
# ‘Statistics::Descriptive’ class
my $stat = Statistics::Descriptive->new();

An object in perl is 
a scalar variable (a 
special one that 

belongs to a Class). 
All scalar variables 

start with $

We tell perl which 
Class of object we 

want to create

new() creates a new 
object. Every Class 
has a new() method 

This arrow -> goes between 
the class and the new method 

Before you can use an object, you create one. 
This is often done with a call to a new() method.

9Friday, October 18, 13

Let’s look at the new OOP syntax in more detail

# call a method (subroutine) on the $stat
# object
$stat->add_data(1,2,3,4);

This arrow -> goes 
between the object and 
the method (subroutine) 

name 

add_data is the 
name of the 

method we are 
calling.  A method 
is just a subroutine

Here’s the 
object

The data we are 
passing in is the 

numbers 1,2,3 and 4. 
These numbers are 

being passed into the 
subroutine add_data()

Once you have created an object you call methods on it 
to use the object

10Friday, October 18, 13



Object-oriented programming in a little more detail

• Let’s look at which elements of perl are used to provides object 
oriented programming 

11Friday, October 18, 13

Object Oriented Programming and Perl

• To understand object-oriented syntax in perl, we need to recap three things: 
references, subroutines, packages.

• These three elements of perl are recycled with slightly different uses to provide  
object-oriented programming

What you can do Normal perl 
(procedural perl)

Object-oriented perl

organize code that goes 
together for reuse

package
class (the type or kind 
of object, and all the 

code that goes with it)

store data (simple or 
very complex)

a reference
the object itself (a 
reference to a data 

structure)

work on data by writing 
simple code

subroutine a method (function that 
acts on the object)

12Friday, October 18, 13



Object Oriented Programming and Perl

• The OOP paradigm provides i) a solid framework for sharing code -- reuse 

• and ii) a guarantee or contract or specification for how the code will work and 
how it can be used -- an interface

• and iii) hides the details of implementation so you only have to know how to use 
the code, not how it works -- saves you time, quick to learn, harder to introduce 
bugs

• Here we are briefly introducing you to OOP and objects so that you can quickly 
add code that’s already written into your scripts, rather than spend hours re-
inventing wheels. Many more people use objects than write them.

13Friday, October 18, 13

I: Recap references

example of syntax
$ref_to_hash = {key1=>'value1',key2=>'value2',...}
code example
my $microarray = {gene => ‘CDC2’,
                  expression => 45,
                  tissue => ‘liver’,
                 };

key value

gene CDC2

expression 45

tissue liver

$microarray anonymous hash

Here is the data structure in memory

We can store any 
pieces of data we 
would like to keep 
together in a hash

scalar hash 
reference

14Friday, October 18, 13



II: recap subroutines

#!/usr/bin/perl -w
use strict;
my $seq;
while (my $seqline = <>) { # read sequence from standard in
  my $clean   = cleanup_sequence($seqline);  # clean it up
  $seq       .= $clean;                      # add it to full sequence
}
sub cleanup_sequence {
        my ($sequence) = @_;  # set $sequence to first argument 
        $sequence = lc $sequence;  # translate everything into lower case
        $sequence =~ s/[\s\d]//g;  # remove whitespace and numbers
        $sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid 
                                     characters!";
        return $sequence;
}

• solve a problem, write code once, and call the code simply

• reusing a single piece of code instead of copying, pasting and modifying 
reduces the chance you’ll make an error and simplifies bug fixing.

15Friday, October 18, 13

III: now let’s recap packages

#file: Sequence.pm
package Sequence;
use strict;
use base Exporter;
our @EXPORT = (‘cleanup_sequence’);
sub cleanup_sequence {
        my ($sequence) = @_;  # set $sequence to first argument 
        $sequence = lc $sequence;  # translate everything into lower case
        $sequence =~ s/[\s\d]//g;  # remove whitespace and numbers
        $sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid 
characters!";
        return $sequence;
}
1;

#!/usr/bin/perl -w
#File: read_clean_sequence.pl
use strict;
use Sequence;
my $seq;
while (my $seqline = <>) { # read sequence from standard in
  my $clean   = cleanup_sequence($seqline);  # clean it up
  $seq       .= $clean;                      # add it to full sequence
}

• organise code that goes together into reusable modules, packages

read_clean_sequence.pl

Sequence.pm

16Friday, October 18, 13



Let’s recap subroutines: new example with references

#!/usr/bin/perl
use strict;
use warnings;
my $microarray = { gene => ‘CDC2,

                expression => 45,
                tissue => ‘liver’,

                 };
...
my $gene_name = gene($microarray);
...
sub gene {

my ($ref) = @_;
return ${$ref}{gene};

}
sub tissue {

my ($ref) = @_;
return ${$ref}{tissue};

}

17Friday, October 18, 13

recap packages

#!/usr/bin/perl
#File: script.pl
use strict; use warnings;
use Microarray;

my $microarray = {gene => ‘CDC2’,
                  expression => 45,
                  tissue => ‘liver’,
}
my $gene_name = gene($microarray);
print “Gene for this microarray is 
$gene\n”;

#File: Microarray.pm
package Microarray;
use strict;
use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my ($ref) = @_;
return ${$ref}{gene};

}
sub tissue {

my ($ref) = @_;
return ${$ref}{tissue};

}
1;

script.pl

Microaray.pm

perl module file

main script 
file

18Friday, October 18, 13



Let’s look at how you create object code

• This is mostly for reference. 

• You’ll probably use it rarely, if at all

19Friday, October 18, 13

Three Little Rules

• Rule 1: To create a class, build a package

• Rule 2: To create a method, write a subroutine

• Rule 3: To create an object, bless a reference

74 CHAPTER 3 GETTING STARTED

3.1.1 Rule 1: To create a class, build a package
Perl packages already have a number of classlike features:

• They collect related code together;
• They distinguish that code from unrelated code;
• They provide a separate namespace within the program, which keeps subroutine names

from clashing with those in other packages;
• They have a name, which can be used to identify data and subroutines defined in the

package.

In Perl, those features are sufficient to allow a package to act like a class. 
Suppose we wanted to build an application to track faults in a system. Here’s how to de-

clare a class named Bug in Perl:
package Bug;

That’s it! Of course, such a class isn’t very interesting or useful, since it has no attributes
or behavior. And that brings us to the second rule…

3.1.2 Rule 2: To create a method, write a subroutine
Methods are just subroutines, associated with a particular class, that exist specifically to oper-
ate on objects that are instances of that class.

Happily, in Perl, a subroutine that is declared in a particular package is associated with
that package. So to write a Perl method, we just write a subroutine within the package acting
as our class.

For example, here’s how we provide an object method to print our Bug objects:

package Bug;

sub print_me

{

# The code needed to print the Bug goes here

}

package Bug;

use strict;

sub new

{

   my ($class) = @_;

   my $objref = {};

    .

    .

   bless $objref, $class;

}

sub print_me

{

   my ($self) = @_;

    .

    .

}

Rule 1:
To create a class,
build a package .

Rule 3:
To create an object,
bless a referent.

Bug.pm

Rule 2
To create a method,
write a subroutine .

Figure 3.1 Three little rules

20Friday, October 18, 13



Rule 1: To create a class, build a package

• all the code that goes with an object (methods, special 
vaiables) goes inside a special package 

•  perl packages are just files whose names end with ‘.pm’ e.g. 
Microarray.pm

• package filenames should start with a capital letter

• the name of the perl package tells us the class of the object. This is 
really the type or kind of object we are dealing with.

• Micorarray.pm is a package, so it will be easy to 
convert into object-oriented code

21Friday, October 18, 13

Rule 2: To create a method, write a subroutine

• we already have gene() in Microarray.pm

• this can be turned into a method

• we need one extra subroutine to create new objects

• the creator method is called new() and has one piece of magic...

22Friday, October 18, 13



Rule 3: To create an object, bless a reference

• The new() subroutine uses the bless function to create an object

• full details coming up... but here’s the skeleton of a new() method

sub new {
...
my $self = {};
bless $self, $class;
...

}

create a reference, a 
hashref {} is the most 
common seen in perl

bless a reference 
into a class

23Friday, October 18, 13

Let’s recap packages

#!/usr/bin/perl -w
#File: script.pl
use strict;
use Microarray;

my $microarray = { gene => ‘CDC2’,
                   expression => 45,
                   tissue => ‘liver’,
                 };
my $gene_name = gene($microarray);
print “Gene for this microarray is $gene\n”;

#File: Microarray.pm
package Microarray;
use strict;
use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my $ref = shift;
return ${$ref}{gene};

}
sub tissue {

my $ref = shift;
return ${$ref}{tissue};

}
1;

24Friday, October 18, 13



Transforming a package into an object-oriented module or class

#File: Microarray.pm
package Microarray;
use strict;
use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my ($ref) = @_;
return ${$ref}{gene};

}
sub tissue {

my ($ref) = @_;
return ${$ref}{tissue};

}
1;

procedural perl package 
(what you saw yesterday)

...transforming the package into a class...

#File: Microarray.pm
package Microarray;
use strict;

sub gene {
my $self = shift; # same as my ($self) = @_;
return ${$self}{gene};

}
sub tissue {

my $self = shift;
return ${$self}{tissue};

}
1;

25Friday, October 18, 13

sub new {
! my $class = shift;
! my %args = @_;!
! my $self = {}; 
! foreach my $key (keys %args) {!
! !  ${$self}{$key} = 
! ! ! ! $args{$key};!
! }
! # the magic happens here
! bless $self, $class; 
! return $self;
}

The new() method is a subroutine that creates a 
new object

the first argument is always the 
class of the object you are 
making. perl gives you this as 
the first argument 
automatically

a hash reference is the data 
structure you build an object from 
in perl

bless makes the object $self (which is 
a hash reference) become a member 
of the class $class

here we initialize variables in the 
object (in case there are any)

Some people like to write 
${$self}{$key}  

as  
$self -> {$key}

26Friday, October 18, 13



bless creates an object by making a reference belong to a class

Make an anonymous hash in the debugger
$a = {};
p ref $a;
HASH

Make a MySequence object in the debugger

$self = {};
$class = ‘MySequence’;
bless $self , $class;

x $self
0  MySequence=HASH(0x18bd7cc)
     empty hash
p ref $a
MySequence

27Friday, October 18, 13

final step

object-oriented module or class
#File: Microarray.pm
package Microarray;
use strict;

sub new {
my $class = shift;
my %args = @_;!
my $self = {}; 
foreach my $key (keys %args) {!

! ${$self}{$key} = $args{$key};!
}
# the magic happens here
bless $self, $class; 
return $self;

}

sub gene {
my $self = shift;
return ${$self}{gene};

}
sub tissue {

my $self = shift;
return ${$self}{tissue};

}
1;

28Friday, October 18, 13



OOP script

#!/usr/bin/perl
use strict; use warnings;
#File: script.pl
my $microarray = { gene => ‘CDC2’,
                   expression => 45,
                   tissue => ‘liver’,
                  };
my $gene_name = gene($microarray);
print “Gene for this microarray is $gene\n”;

#!/usr/bin/perl
#File: OO_script.pl
use strict; use warnings; 
use Microarray;
my $microarray = Microarray->new( gene => ‘CDC2’,
                                  expression => 45,
                                  tissue => ‘liver’,
                                  );
my $gene_name = $microarray->gene();
print “Gene for this microarray is $gene_name\n”;
my $tissue = $microarray->tissue();
print “The tissue is $tissue\n”;

procedural version

OO version

29Friday, October 18, 13

Lastly, did I mention “code lazy”?

• This lecture has introduced you to object-oriented 
programming

• You only need to use other people’s objects (beg, borrow, 
buy, steal).

• Only create your own modules and objects if you have to.

30Friday, October 18, 13



Problems

1.Take a look at the Statistics::Descriptive module on cpan here http://search.cpan.org/
~shlomif/Statistics-Descriptive-3.0202/lib/Statistics/Descriptive.pm

2.Write a script that uses the methods in Statistics::Descriptive to calculate the 
standard deviation, median, min and max of the following numbers 

12,-13,-12,7,11,-4,-12,9,6,7,-9

Optional questions

4. Add a method to Microarray.pm called expression() which returns the expression 
value

5. Curently calling $a = $m->gene() gets the value of gene in the object $m. Modify the 
gene() method so that if you call gene() with an argument, it will set the value of gene 
to be that argument e.g.
$m->gene(‘FOXP1’);       # this should set the 
                         #gene name to ‘FOXP1’
print $m->gene();   # this should print the value ‘FOXP1’

31Friday, October 18, 13

Further reading on inheritance

• If you want to make an object that is a special case or subclass of another, 
more general, object, you can have it inherit all the general data storage 
and functions of the more general object. 

• This saves coding time by re-using existing code. This also avoids copying 
and pasting existing code into the new object, a process that makes code 
harder to maintain and debug.

• For example, a MicroRNA_gene object is a special case of a Gene object 
and might have some specific functions like cut_RNA_hairpin() as well as 
general functions like transcribe() it can inherit from the general gene 
object.

• More formally, a subclass inherits variables and functions from its 
superclass (like a child and a parent). Here are some examples

package MicroRNA;
use base ‘Gene’; # Gene is a parent
use base ‘Exporter’; # Exporter is another parent

32Friday, October 18, 13



Bioperl
6R¿D�5REE

:KDW�LV�%LRSHUO"

� &ROOHFWLRQ�RI�WRROV�WR�KHOS�\RX�JHW�\RXU�ZRUN�GRQH

� 2SHQ�VRXUFH��FRQWULEXWHG�E\�XVHUV
� � � �
� 8VHG�E\�*02'��ZRUPEDVH��À\EDVH��PH��\RX

� KWWS���ZZZ�ELRSHUO�RUJ



:K\�XVH�%LR3HUO"�

� � &RGH�LV�DOUHDG\�ZULWWHQ�
� � 0DQLSXODWH�VHTXHQFHV�
� � 5XQ�SURJUDPV��H�J���EODVW��FOXVWDOZ�DQG�SK\OLS��
� � 3DUVLQJ�SURJUDP�RXWSXW��H�J���EODVW�DQG�DOLJQPHQWV��
� � $QG�PXFK��PXFK�PRUH���KWWS���ZZZ�ELRSHUO�RUJ�ZLNL�%SWXWRULDO�SO�
� �

/HDUQLQJ�DERXW�ELRSHUO

0DQLSXODWLRQ�RI�VHTXHQFHV�IURP�D�¿OH
�
4XHU\�D�ORFDO�IDVWD�¿OH

&UHDWLQJ�D�VHTXHQFH�UHFRUG�

)LOH�IRUPDW�FRQYHUVLRQV

5HWULHYLQJ�DQQRWDWLRQV

3DUVLQJ�%ODVW�RXWSXW

0DQLSXODWLQJ�0XOWLSOH�$OLJQPHQWV

2WKHU�&RRO�7KLQJV



/HDUQLQJ�DERXW�%LRSHUO�

1DYLJDWLQJ�%LRSHUO�ZHEVLWH
'HREIXVFDWRU
%LRSHUO�GRFV

ZZZ�ELRSHUO�RUJ�0DLQ�3DJH







'HREIXVFDWRU

GRF�ELRSHUO�RUJ





%LR��6HT,2�PRGXOH�V\QRSVLV
GRF�ELRSHUO�RUJ

%LR��6HT,2�PRGXOH�GHVFULSWLRQ
GRF�ELRSHUO�RUJ



%LR��6HT,2�PHWKRG�OLVW
GRF�ELRSHUO�RUJ

%LR��6HT,2�QHZ�PHWKRG�GHVFULSWLRQ
GRF�ELRSHUO�RUJ



0DQLSXODWLRQ�RI�VHTXHQFHV�IURP�D�¿OH

3UREOHP�

<RX�KDYH�D�VHTXHQFH�¿OH�DQG�\RX�ZDQW�WR�GR�
VRPHWKLQJ�WR�HDFK�VHTXHQFH�

:KDW�GR�\RX�GR�¿UVW"
� +RZ7R��
� � � KWWS���ZZZ�ELRSHUO�RUJ�ZLNL�+2:72V







#!/usr/bin/perl -w  
�¿OH��LQ)DVWDBORRS�SO
XVH�VWULFW�
XVH�%LR��6HT,2�

my �¿OH� �VKLIW��

my �VHT,2BREMHFW = %LR��6HT,2�!QHZ(
�������������������������¿OH� !��¿OH,
�������������������������IRUPDW� !�µIDVWD¶�
���������������������

while (my �VHTBREMHFW = �VHT,2BREMHFW�!QH[WBVHT){
        �GR�VWXII�WR�HDFK�VHTXHQFH�LQ�WKH�IDVWD
}



:KDW�LV�D�6HT,2�REMHFW"
:KDW�LV�D�6HT�REMHFW"

2EMHFWV�DUH�OLNH�ER[HV�WKDW�KROG
\RXU�GDWD�DQG

WRROV��PHWKRGV��IRU�\RXU�GDWD

2EMHFWV

  data:

PHWKRGV�
new()

QH[WBVHT��

6HT,2�2EMHF
W

%LR��6HT,
2�2EMHFW

new()



6HT,2�2EMHF
W

PHWKRGV�
new()

WUDQVODWH��
OHQJWK��

 seq:

%LR��6HT�
2EMHFW

6HT,2�2EMHF
W

  data:

PHWKRGV�
new()

QH[WBVHT��

QH[WBVHT��

%LR��6HT,
2�2EMHFW

#!/usr/bin/perl -w  
�¿OH��LQ)DVWDBORRS�SO
XVH�VWULFW�
XVH�%LR��6HT,2�

��JHW�IDVWD�¿OHQDPH�IURP�XVHU�LQSXW
my �¿OH� �VKLIW��

��FUHDWH�D�6HT,2�REM�ZLWK��¿OH�DV�¿OHQDPH
���VHT,2BREMHFW�FRQWDLQV�DOO�WKH�LQGLYLGXDO�VHTXHQFH
��������WKDW�DUH�LQ�WKH�¿OH�QDPHG��¿OH
my �VHT,2BREMHFW = %LR��6HT,2�!QHZ(
�������������������������¿OH� !��¿OH,
�������������������������IRUPDW� !�µIDVWD¶�
���������������������

��XVLQJ�ZKLOH�ORRS�DQG�QH[WBVHT�PHWKRG�WR�³JHW�WR´�
����DQG�FUHDWH�D�6HT�REM�IRU�HDFK�LQGLYLGXDO�VHTXHQFH
����LQ�WKH�6HT,2�REM�RI�PDQ\�VHTXHQFHV
while (my �VHTBREMHFW = �VHT,2BREMHFW�!QH[WBVHT){
        �GR�VWXII�WR�HDFK�VHTXHQFH�LQ�WKH�IDVWD
}



���XVU�ELQ�SHUO��Z��
XVH�VWULFW�
XVH�%LR��6HT,2�

P\��¿OH� �VKLIW�
P\��VHT,2BREMHFW� �%LR��6HT,2�!QHZ(
����������������������¿OH� !��¿OH�
����������������������IRUPDW� !�µIDVWD¶�
������������������������������������������
P\��RXWBVHT,2B2EM� �%LR��6HT,2�!QHZ��IRUPDW� !�µIDVWD¶��

ZKLOH��P\��VHTBREMHFW� ��VHT,2BREMHFW�!QH[WBVHT�^
��������P\��LG� ��VHTBREMHFW�!LG�
��������P\��GHVF� ��VHTBREMHFW�!GHVF�
��������P\��VHT6WULQJ� ��VHTBREMHFW�!VHT�
��������P\��UHY&RPS� ��VHTBREMHFW�!UHYFRP�
��������P\��DOSKDEHW� ��VHTBREMHFW�!�DOSKDEHW�
��������P\��WUDQVODWLRQBVHTBREM��� ��VHTBREMHFW�!�WUDQVODWH�
��������P\��WUDQVODWLRQ�� ��WUDQVODWLRQBVHTBREM��!�VHT�
��������P\��VHT/HQ� ��VHTBREMHFW�!OHQJWK�

��������SULQW�³WUDQVODWLRQ���WUDQVODWLRQ?Q´�
��������SULQW�³DOSKDSHW���DOSKDEHW?Q´�
��������SULQW�³VHT/HQ���VHT/HQ?Q´�
��������
� �SULQWV�WR�67'287
� �RXWBVHT,2B2EM�!ZULWHBVHT(�VHTBREMHFW���
}

���*HW�D�¿OH�QDPH�IURP�XVHU�
LQSXW��#$5*9��DQG�VWRUHV�LQ�
�¿OH

���&UHDWH�D�QHZ�VHT,2�REMHFW�
LQ��VHT,2BREMHFW��XVLQJ�
¿OHQDPH��¿OH�DQG�IRUPDW�
µIDVWD¶

���&UHDWH�D�VHFRQG�VHT,2�
REMHFW�LQ��RXW�XVLQJ�IRUPDW�
µIDVWD¶

���/RRS�WKUX�HDFK�VHT�REMHFW�
LQ��VHT,2BREMHFW�VWRULQJ�
LQIRUPDWLRQ�IURP�WKH�REMHFW�LQ�
YDULDEOHV�

���3ULQW�RXW�WKH�VWRUHG�
LQIRUPDWLRQ

���3ULQW�RXW��VHTBREMHFW�XVLQJ�
WKH�PHWKRG�RU�WRRO�µZULWHB
VHT��¶�DQG�WKH�VHT,2�REMHFW�
�RXW�

�¿OH��LQ)DVWDBGR6WXIIBRXW)DVWD�SO

IDVWD�LQSXW�

RXWSXW�



7DEOH�IURP�
KWWS���ZZZ�ELRSHUO�RUJ�ZLNL�+2:72�%HJLQQHUV

/LVW�RI�VHT�REMHFW�PHWKRGV

&KDQJH� µIRUPDW¶� LQ� WKH�
QHZ��� PHWKRG� IURP� µIDVWD¶�
WR� µJHQEDQN¶� WR� FKDQJH� WKH�
ZD\� WKH� 6HT,2� REMHFW� �RXW�
LV�GLVSOD\HG�LQ�67'287�

�¿OH��LQ)DVWDBRXW*HQ%DQN�SO
���XVU�ELQ�SHUO��Z��
XVH�VWULFW�
XVH�%LR��6HT,2�

P\��¿OH� �VKLIW�
P\��VHT,2BREMHFW� �%LR��6HT,2�!QHZ(
�����������������������������������������¿OH� !��¿OH�
�����������������������������������������IRUPDW� !�µIDVWD¶�
������������������������������������������

P\��RXWBVHT,2B2EM �%LR��6HT,2�!QHZ(-format => ‘genbank’��

ZKLOH��P\��VHTBREMHFW� ��VHT,2BREMHFW�!QH[WBVHT�^
���������RXWBVHT,2B2EM!ZULWHBVHT(�VHTBREMHFW����SULQWV�WR�67'287
}



4XHU\�D�ORFDO�IDVWD�¿OH

4XHU\�D�ORFDO�IDVWD�¿OH

<RX�KDYH�D�IDVWD�¿OH�WKDW�FRQWDLQV�PDQ\�UHFRUGV�

<RX�ZDQW�WR�UHWULHYH�D�VSHFL¿F�UHFRUG�

<RX�GR�QRW�ZDQW�WR�ORRS�WKURXJK�DOO�UHFRUGV�XQWLO�\RX�
¿QG�WKH�FRUUHFW�UHFRUG�

8VH�%LR��'%��)DVWD�





&DQ�DOVR�¿QG�WKHVH�SDJHV�DW�KWWS���GRF�ELRSHUO�RUJ�ELRSHUO�OLYH�



%LR��'%��IDVWD�PRGXOH�V\QRSVLV
GRF�ELRSHUO�RUJ

%LR��'%��IDVWD�PRGXOH�GHVFULSWLRQ
GRF�ELRSHUO�RUJ



%LR��'%��IDVWD�PHWKRG�GHVFULSWLRQ
GRF�ELRSHUO�RUJ

4XHU\�D�ORFDO�
IDVWD�¿OH

RXWSXW

�¿OH�ORFDOBVHTBTXHU\�SO
���XVU�ELQ�SHUO��Z
XVH�VWULFW�
XVH�%LR��'%��)DVWD�

P\��GE¿OH� �µXQLSURWBVSURW�IDVWD¶�
P\��GEBREM� �%LR��'%��)DVWD�!QHZ(�GE¿OH��

��UHWULHYH�D�VHTXHQFH
P\��LG� �µVS_4�����_+'$&�B+80$1¶�
P\��VHTBREM� ��GEBREM�!JHWB6HTBE\BLG(�LG��

LI����VHTBREM���^
��������SULQW�³VHT��³��VHTBREM�!VHT�´?Q´�
`�HOVH�^
��������ZDUQ�³&DQQRW�¿QG��LG?Q´��
}



���XVU�ELQ�SHUO��Z
XVH�VWULFW�
XVH�%LR��'%��)DVWD�

P\��GE¿OH� �µXQLSURWBVSURW�IDVWD¶�
P\��GEBREM� �%LR��'%��)DVWD�!QHZ(�GE¿OH��

��UHWULHYH�D�VHTXHQFH
P\��LG� �µVS_4�����_+'$&�B+80$1¶�
P\��VHTBREM� ��GEBREM�!JHWB6HTBE\BLG(�LG��

LI����VHTBREM���^
��������SULQW�³VHT��³��VHTBREM�!VHT�´?Q´�
`�HOVH�^
��������ZDUQ�³&DQQRW�¿QG��LG?Q´��
}

&UHDWLQJ�D�VHTXHQFH�UHFRUG

&UHDWLQJ�D�VHTXHQFH�UHFRUG

<RX�KDYH�D�VHTXHQFH�DQG�ZDQW�WR�FUHDWH�D�6HT�REMHFW�
RQ�WKH�À\�

8VH�%LR��6HT�



���XVU�ELQ�SHUO��Z
XVH�VWULFW�
XVH�%LR��6HT�
XVH�%LR��6HT,2�

P\��VHT2EM� �%LR��6HT�!QHZ��VHT� !�µ$7*$$7*$7*$$¶�
�������������������������GLVSOD\BLG� !�µVHTBH[DPSOH¶�
�������������������������GHVFULSWLRQ !�µWKLV�VHT�LV�DZHVRPH¶��

P\��RXWBVHT,2B2EM� �%LR��6HT,2�!QHZ��IRUPDW� !�µIDVWD¶��
�RXWBVHT,2B2EM�!ZULWHBVHT(�VHT2EM��

SULQW�³,G��³��VHT2EM�!GLVSOD\BLG��³?Q´�
SULQW�³/HQJWK��³���VHT2EM�!OHQJWK��³?Q´�
SULQW�³6HT��³��VHT2EM�!VHT�´?Q´�
SULQW�³6XEVHT���������³���VHT2EM�!VXEVHT�������³?Q´�
SULQW�³7UDQVODWLRQ��³���VHT2EM�!WUDQVODWH�!VHT��³?Q´�

&UHDWH�D�VHTXHQFH�UHFRUG�RQ�WKH�À\�

���&UHDWH�D�QHZ�VHT�
REMHFW

���&UHDWH�DQG�SULQW�
D�QHZ�VHT,2�REMHFW�
LQ�IDVWD�IRUPDW�XVLQJ�
�VHT2EM

���*HW�IHDWXUHV�RI�
�VHT2EM�E\�XVLQJ�
VHT2EM�PHWKRGV

1RWLFH�WKH�FRXSOLQJ�RI�PHWKRGV�

�¿OH�FUHDWH6HT2Q)O\�SO

2XWSXW

>seq_example this seq is awesome
ATGAATGATGAA
Id: seq_example
Length: 12
Seq: ATGAATGATGAA
Subseq (3..6): GAAT
Translation: MNDE



)LOH�IRUPDW�FRQYHUVLRQV

)LOH�IRUPDW�FRQYHUVLRQV

<RX�KDYH�*HQ%DQN�¿OHV�DQG�ZDQW�WR�H[WUDFW�RQO\�WKH�
VHTXHQFH�LQ�IDVWD�IRUPDW�

8VH�%LR��6HT,2�



KWWS���ZZZ�ELRSHUO�RUJ�ZLNL�+2:72�6HT,2

LOCUS       MUSIGHBA1                408 bp    mRNA    linear   ROD 27-APR-1993
DEFINITION  Mouse Ig active H-chain V-region from MOPC21, subgroup VH-II,
            mRNA.
ACCESSION   J00522
VERSION     J00522.1  GI:195052
KEYWORDS    constant region; immunoglobulin heavy chain; processed gene; variable re-
gion; variable region subgroup VH-II.
SOURCE      Mus musculus (house mouse).
  ORGANISM  Mus musculus
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
            Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE   1  (bases 1 to 408)
  AUTHORS   Bothwell,A.L., Paskind,M., Reth,M., Imanishi-Kari,T., Rajewsky,K.
            and Baltimore,D.
  TITLE     Heavy chain variable region contribution to the NPb family of
            antibodies: somatic mutation evident in a gamma 2a variable region
  JOURNAL   Cell 24 (3), 625-637 (1981)
   PUBMED   6788376
COMMENT     Original source text: Mouse C57Bl/6 myeloma MOPC21, cDNA to mRNA,
            clone pAB-gamma-1-4. [1] studies the response in C57Bl/6 mice to
            NP proteins. It is called the b-NP response because this mouse
            strain carries the b-IgH haplotype. See other entries for b-NP
            response for more comments.
)($785(6�������������/RFDWLRQ�4XDOL¿HUV
     source          1..408
                     /db_xref=”taxon:10090”
                     /mol_type=”mRNA”
                     /organism=”Mus musculus”
     CDS             <1..>408
                     /db_xref=”GI:195055”
                     /codon_start=1
                     /protein_id=”AAD15290.1”
                     /translation=”RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT
                     FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSL
                     RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS”
                     /note=”Ig H-chain V-region from MOPC21”
     sig_peptide     <1..48
     mat_peptide     49..>408
                     /product=”Ig H-chain V-region from MOPC21 mature peptide”
     misc_recomb     343..344
                     /note=”V-region end/D-region start (+/- 1bp)”
     misc_recomb     356..357
                     /note=”D-region end/J-region start”
BASE COUNT       95 a     98 c    111 g    104 t
ORIGIN      57 bp upstream of PvuII site, chromosome 12.
        1 aggctcaatt tagttttcct tgtccttatt ttaaaaggtg tccagtgtga tgtgcagctg
       61 gtggagtctg ggggaggctt agtgcagcct ggagggtccc ggaaactctc ctgtgcagcc
      121 tctggattca ctttcagtag ctttggaatg cactgggttc gtcaggctcc agagaagggg
      181 ctggagtggg tcgcatacat tagtagtggc agtagtaccc tccactatgc agacacagtg
      241 aagggccgat tcaccatctc aagagacaat cccaagaaca ccctgttcct gcaaatgacc
      301 agtctaaggt ctgaggacac ggccatgtat tactgtgcaa gatggggtaa ctacccttac
      361 tatgctatgg actactgggg tcaaggaacc tcagtcaccg tctcctca
//

*HQ%DQN�)RUPDW

>MUSIGHBA1 Mouse Ig active H-chain V-region from MOPC21, 
subgroup VH-II, mRNA.
AGGCTCAATTTAGTTTTCCTTGTCCTTATTTTAAAAGGTGTCCAGTGTGATGTGCAGCTG
GTGGAGTCTGGGGGAGGCTTAGTGCAGCCTGGAGGGTCCCGGAAACTCTCCTGTGCAGCC
TCTGGATTCACTTTCAGTAGCTTTGGAATGCACTGGGTTCGTCAGGCTCCAGAGAAGGGG
CTGGAGTGGGTCGCATACATTAGTAGTGGCAGTAGTACCCTCCACTATGCAGACACAGTG
AAGGGCCGATTCACCATCTCAAGAGACAATCCCAAGAACACCCTGTTCCTGCAAATGACC
AGTCTAAGGTCTGAGGACACGGCCATGTATTACTGTGCAAGATGGGGTAACTACCCTTAC
TATGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA

)DVWD�)RUPDW

 



&RQYHUW�IURP�*HQ%DQN�WR�IDVWD�

�¿OH�FRQYHUWBJHQEDQN�IDVWD�SO���XVU�ELQ�SHUO��Z
XVH�VWULFW�
XVH�%LR��6HT,2�

P\���LQIRUPDW��RXWIRUPDW�� ��µJHQEDQN¶�¶IDVWD¶��
P\���LQ¿OH��RXW¿OH�� �#$5*9�

P\��LQBVHT,2B2EM� �%LR��6HT,2�!QHZ(
�����������������IRUPDW� !��LQIRUPDW�
�����������������¿OH� !��LQ¿OH�
������������������
P\��RXWBVHT,2B2EM� �%LR��6HT,2�!QHZ(
�����������������IRUPDW� !��RXWIRUPDW�
�����������������¿OH� !�³!�RXW¿OH´
������������������

ZKLOH���P\��VHT2EM� ��LQBVHT,2B2EM�!QH[WBVHT���^
���������RXWBVHT,2B2EM�!ZULWHBVHT(�VHT2EM��
}

5HWULHYLQJ�DQQRWDWLRQV



5HWULHYLQJ�DQQRWDWLRQV

<RX�KDYH�*HQ%DQN�¿OHV�DQG�ZDQW�WR�UHWULHYH�
DQQRWDWLRQV�

8VH�%LR��6HT,2�

6DPSOH�*HQ%DQN�¿OH�ZLWK�)HDWXUHV�$QQRWDWLRQV
LOCUS       MUSIGHBA1                408 bp    mRNA    linear   ROD 27-APR-1993
DEFINITION  Mouse Ig active H-chain V-region from MOPC21, subgroup VH-II,
            mRNA.
ACCESSION   J00522
VERSION     J00522.1  GI:195052
KEYWORDS    constant region; immunoglobulin heavy chain; processed gene; variable re-
gion; variable region subgroup VH-II.
SOURCE      Mus musculus (house mouse).
  ORGANISM  Mus musculus
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
            Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE   1  (bases 1 to 408)
  AUTHORS   Bothwell,A.L., Paskind,M., Reth,M., Imanishi-Kari,T., Rajewsky,K.
            and Baltimore,D.
  TITLE     Heavy chain variable region contribution to the NPb family of
            antibodies: somatic mutation evident in a gamma 2a variable region
  JOURNAL   Cell 24 (3), 625-637 (1981)
   PUBMED   6788376
COMMENT     Original source text: Mouse C57Bl/6 myeloma MOPC21, cDNA to mRNA,
            clone pAB-gamma-1-4. [1] studies the response in C57Bl/6 mice to
            NP proteins. It is called the b-NP response because this mouse
            strain carries the b-IgH haplotype. See other entries for b-NP
            response for more comments.
)($785(6�������������/RFDWLRQ�4XDOL¿HUV
     source          1..408
                     /db_xref=”taxon:10090”
                     /mol_type=”mRNA”
                     /organism=”Mus musculus”
     CDS             <1..>408
                     /db_xref=”GI:195055”
                     /codon_start=1
                     /protein_id=”AAD15290.1”
                     /translation=”RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT
                     FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSL
                     RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS”
                     /note=”Ig H-chain V-region from MOPC21”
     sig_peptide     <1..48
     mat_peptide     49..>408
                     /product=”Ig H-chain V-region from MOPC21 mature peptide”
     misc_recomb     343..344
                     /note=”V-region end/D-region start (+/- 1bp)”
     misc_recomb     356..357
                     /note=”D-region end/J-region start”
BASE COUNT       95 a     98 c    111 g    104 t
ORIGIN      57 bp upstream of PvuII site, chromosome 12.
        1 aggctcaatt tagttttcct tgtccttatt ttaaaaggtg tccagtgtga tgtgcagctg
       61 gtggagtctg ggggaggctt agtgcagcct ggagggtccc ggaaactctc ctgtgcagcc
      121 tctggattca ctttcagtag ctttggaatg cactgggttc gtcaggctcc agagaagggg
      181 ctggagtggg tcgcatacat tagtagtggc agtagtaccc tccactatgc agacacagtg
      241 aagggccgat tcaccatctc aagagacaat cccaagaaca ccctgttcct gcaaatgacc
      301 agtctaaggt ctgaggacac ggccatgtat tactgtgcaa gatggggtaa ctacccttac
      361 tatgctatgg actactgggg tcaaggaacc tcagtcaccg tctcctca
//



SULPDU\BWDJ WDJ YDOXH

*HW�DQQRWDWLRQV�IURP�D�*HQ%DQN�¿OH

MUSIGHBA1(1..408)       source  db_xref:taxon:10090
MUSIGHBA1(1..408)       source  mol_type:mRNA
MUSIGHBA1(1..408)       source  organism:Mus musculus
MUSIGHBA1(1..408)       CDS     codon_start:1
MUSIGHBA1(1..408)       CDS     db_xref:GI:195055
MUSIGHBA1(1..408)       CDS     note:Ig H-chain V-region from MOPC21
MUSIGHBA1(1..408)       CDS     protein_id:AAD15290.1
MUSIGHBA1(1..408)       CDS     translation:RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFTFSSF
GMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSLRSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS
MUSIGHBA1(49..408)      mat_peptide     product:Ig H-chain V-region from MOPC21 mature pep-
tide
MUSIGHBA1(343..344)     misc_recomb     note:V-region end/D-region start (+/- 1bp)
MUSIGHBA1(356..357)     misc_recomb     note:D-region end/J-region start

2XWSXW

�¿OH��JHWBDQQRWBIURPBJHQEDQN�SO

JHWB6HT)HDWXUH�
SURGXFHV�DQ�DUUD\�RI�
%LR��6HT)HDWXUH,�REMHFWV

���XVU�ELQ�SHUO��Z
XVH�VWULFW�
XVH�%LR��6HT,2�

P\��LQ¿OH� �VKLIW�
P\��VHT,2� �%LR��6HT,2�!QHZ(
�����������������¿OH� !��LQ¿OH�
�����������������IRUPDW� !�µJHQEDQN¶�
����������
ZKLOH��P\��VHT2EM� ��VHT,2��!�QH[WBVHT�^
��������P\��QDPH� ��VHT2EM��!�LG�
��������IRUHDFK�P\��IHDWXUHBREM���VHT2EM�!JHWB6HT)HDWXUHV�^
����������������P\��SULPDU\BWDJ� ��IHDWXUHBREM�!SULPDU\BWDJ�
����������������P\���VWDUW���HQG�� ���IHDWXUHBREM�!VWDUW����IHDWXUHBREM�!HQG��
����������������P\��UDQJH� ��VWDUW���³��´����HQG�
����������������IRUHDFK�P\��WDJ���VRUW��IHDWXUHBREM�!JHWBDOOBWDJV���^
������������������������P\�#YDOXHV� ��IHDWXUHBREM�!JHWBWDJBYDOXHV(�WDJ��
������������������������P\��YDOXHBVWU� �MRLQ�³�´��#YDOXHV�
������������������������SULQW�³�QDPH(�UDQJH�?W�SULPDU\BWDJ?W�WDJ��YDOXHBVWU?Q´�
����������������`
��������`
}



0DQLSXODWLQJ�0XOWLSOH�$OLJQPHQWV

8VH�%LR��$OLJQ,2�

IRU�SDUVLQJ�DQG�ZULWLQJ�PXOWLSOH�DOLJQPHQW�¿OH�IRUPDWV�
LQFOXGLQJ�

IDVWD��SK\OLS��QH[XV��FOXVWDOZ��PVI��PHJD�
PHPH��SIDP��SVL��VHOH[��VWRFNKROP�



&RQYHUW�IURP�IDVWDBDOQ�WR�QH[XV

QH[WBDOQ�SURGXFHV�D�
%LR��6LPSOH$OLJQ�REMHFW

�¿OH��PXOWLBDOLJQBFRQYHUW�SO

���XVU�ELQ�SHUO��Z
XVH�VWULFW�
XVH�%LR��$OLJQ,2�

P\��DOLJQBIDVWD� �VKLIW�
P\��LQBDOLJQ,2BREM� �%LR��$OLJQ,2�!QHZ(
�������������������������IRUPDW� !�
IDVWD
�
�������������������������¿OH� !��DOLJQBIDVWD
��������������������������
P\��RXWBDOLJQ,2BREM� �%LR��$OLJQ,2�!QHZ(
�������������������������IRUPDW� !�
QH[XV
�
�������������������������¿OH� !��!�DOLJQBIDVWD�QH[�
��������������������������
ZKLOH��P\��DOLJQBREM� ��LQBDOLJQ,2BREM�!QH[WBDOQ��^
���������RXWBDOLJQ,2BREM�!ZULWHBDOQ(�DOLJQBREM��
}

%LR��6LPSOH$OLJQ�2EMHFW

5HPRYH�VRPH�VHTXHQFHV�DQG�UHZULWH�WKH�UHVXOW

([WUDFW�RU�UHPRYH�FROXPQV
�

&DOFXODWH�FRQVHQVXV�VWULQJ�DQG�SHUFHQW�LGHQWLW\



3DUVLQJ�%/$67�2XWSXW

3DUVLQJ�%/$67�UHSRUWV

8VH�%LR��6HDUFK,2



:KHUH�GR�\RX�VWDUW"



BLASTX 2.2.12 [Aug-07-2005]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, 
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), 
“Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs”,  Nucleic Acids Res. 25:3389-3402.

Query= smed-HDAC1-1
         (1213 letters)

Database: swissprot.aa 
           427,028 sequences; 157,875,145 total letters

Searching..................................................done

                                                                 Score    E
6HTXHQFHV�SURGXFLQJ�VLJQL¿FDQW�DOLJQPHQWV������������������������ELWV��9DOXH

sp|P56517|HDAC1_CHICK RecName: Full=Histone deacetylase 1; Short...   535   e-151

>sp|P56517|HDAC1_CHICK RecName: Full=Histone deacetylase 1; Short=HD1
          Length = 480

 Score =  535 bits (1379), Expect = e-151
 Identities = 255/343 (74%), Positives = 292/343 (85%), Gaps = 1/343 (0%)
 Frame = +3

Query: 3    CPVFDGLFEFCQLSAGGSVASAVKLNKNKADIAINWSGGLHHAKKSEASGFCYVNDIVMG 182
            CPVFDGLFEFCQLSAGGSVASAVKLNK + DIA+NW+GGLHHAKKSEASGFCYVNDIV+ 
Sbjct: 100  CPVFDGLFEFCQLSAGGSVASAVKLNKQQTDIAVNWAGGLHHAKKSEASGFCYVNDIVLA 159

Query: 183  ILELLKYHERVLYVDIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFPXXXXXXXXXXXXX 362
            ILELLKYH+RVLY+DIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFP             
Sbjct: 160  ILELLKYHQRVLYIDIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFPGTGDLRDIGAGKG 219

Query: 363  XNYAVNFPLRDGIDDESYESIFKPVVEKVIESFKPNAIVLQCGADSLSGDRLGCFNLSLK 542
              YAVN+PLRDGIDDESYE+IFKPV+ KV+E+F+P+A+VLQCG+DSLSGDRLGCFNL++K
Sbjct: 220  KYYAVNYPLRDGIDDESYEAIFKPVISKVMETFQPSAVVLQCGSDSLSGDRLGCFNLTIK 279

Query: 543  GHGKCVEYMRQQPIPLLMLGGGGYTIRNVARCWTYETALALGTTIPNELPYNDYYEYFTP 722
            GH KCVE+++   +P+LMLGGGGYTIRNVARCWTYETA+AL T IPNELPYNDY+EYF P
Sbjct: 280  GHAKCVEFVKSFNLPMLMLGGGGYTIRNVARCWTYETAVALDTEIPNELPYNDYFEYFGP 339

Query: 723  DFKLHISPSNMANQNTPEYLERMKQKLFENLRSIPHAPSVQMQDIPEDAMDIDDGEQMDN 902
            DFKLHISPSNM NQNT EYLE++KQ+LFENLR +PHAP VQMQ IPEDA+  D G++ + 
Sbjct: 340  DFKLHISPSNMTNQNTNEYLEKIKQRLFENLRMLPHAPGVQMQPIPEDAVQEDSGDE-EE 398

Query: 903  ADPDKRISILASDKYREHEADLSDSEDEGD-NRKNVDCFKSKR 1028
             DP+KRISI  SDK    + + SDSEDEG+  RKNV  FK  +
Sbjct: 399  EDPEKRISIRNSDKRISCDEEFSDSEDEGEGGRKNVANFKKAK 441

 Database: /common/data/swissprot.aa
    Posted date:  Oct 4, 2009  2:02 AM
  Number of letters in database: 157,875,145
  Number of sequences in database:  427,028
  
Lambda     K      H
   0.318    0.134    0.401 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 

Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Hits to DB: 281,587,467
Number of Sequences: 427028
Number of extensions: 5577736
Number of successful extensions: 16223
Number of sequences better than 1.0e-10: 1
Number of HSP’s better than  0.0 without gapping: 15290
Number of HSP’s successfully gapped in prelim test: 0
Number of HSP’s that attempted gapping in prelim test: 0
Number of HSP’s gapped (non-prelim): 16078
length of database: 157,875,145
effective HSP length: 119
effective length of database: 107,058,813
effective search space used: 30404702892
frameshift window, decay const: 40,  0.1
T: 12
A: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)

5HVXOW

+LW

+63

5HVXOW

1&%,�%/$67�
5HSRUW

See

KWWS���ZZZ�ELRSHUO�RUJ�ZLNL�+2:72�6HDUFK,2

IRU�D�*5($7�H[DPSOH�RI�D�EODVW�UHSRUW�

FRGH�WR�SDUVH�LW�

D�WDEOH�RI�PHWKRGV�

DQG�WKH�YDOXHV�WKH�PHWKRGV�UHWXUQ�

%RRNPDUN�LW��



%LR��6HDUFK,2�REMHFW�IRU�%/$67�UHSRUWV

���XVU�ELQ�SHUO��Z
XVH�VWULFW�
XVH�%LR��6HDUFK,2�
�¿OH��EODVWBSDUVHUBLQWUR�SO

P\��EODVWBUHSRUW� �VKLIW�

P\��VHDUFK,2BREM� �%LR��6HDUFK,2�!QHZ(
��������������������¿OH� !��EODVWBUHSRUW�
��������������������IRUPDW� !�µEODVW¶
�������������������

5HVXOW�REMHFW�DQG�PHWKRGV

SURJUDP %/$67;��TXHU\1DPH VPHG�+'$&�����TXHU\'HVF KLVWRQH�GHDFHW\ODVH���TXHU\/HQ ����

2XWSXW�

�¿OH��VDPSOHB%ODVWBSDUVHUB��SO
���XVU�ELQ�SHUO��Z
XVH�VWULFW�
XVH�%LR��6HDUFK,2�

P\��EODVWBUHSRUW� �VKLIW�

P\��VHDUFK,2BREM� �%LR��6HDUFK,2�!QHZ(
���������������������������������¿OH� !��EODVWBUHSRUW�
���������������������������������IRUPDW� !�µEODVW¶
����������������������������������

ZKLOH��P\��UHVXOWBREM� ��VHDUFK,2BREM��!QH[WBUHVXOW���^
��������P\��SURJUDP� ��UHVXOWBREM��!DOJRULWKP�
��������P\��TXHU\1DPH� ��UHVXOWBREM��!TXHU\BQDPH�
��������P\��TXHU\'HVF� ��UHVXOWBREM��!TXHU\BGHVFULSWLRQ�
��������P\��TXHU\/HQ� ��UHVXOWBREM��!TXHU\BOHQJWK�
��������SULQW�³SURJUDP �SURJUDP?WTXHU\1DPH �TXHU\1DPH?W´�
��������SULQW�³TXHU\'HVF �TXHU\'HVF?WTXHU\/HQ �TXHU\/HQ?Q´�
}



KWWS���ZZZ�ELRSHUO�RUJ�ZLNL�+2:72�6HDUFK,2

KLW1DPH VS_3�����_+'$&�B&+,&.���KLW$FF 3��������KLW/HQ ���������KLW6LJ �H�������KLW6FRUH ���
2XWSXW�

+LW�REMHFW�DQG�PHWKRGV
�¿OH��VDPSOHB%ODVWBSDUVHUB��SO

PXVW�JHW�KLW�REMHFWV�
IURP�D�UHVXOW�REMHFW

���XVU�ELQ�SHUO��Z
XVH�VWULFW�
XVH�%LR��6HDUFK,2�

P\��EODVWBUHSRUW� �VKLIW�

P\��VHDUFK,2BREM� �%LR��6HDUFK,2�!QHZ(
���������������������������������¿OH� !��EODVWBUHSRUW�
���������������������������������IRUPDW� !�µEODVW¶
����������������������������������

ZKLOH��P\��UHVXOWBREM� ��VHDUFK,2BREM�!QH[WBUHVXOW���^
��������ZKLOH��P\��KLWBREM� ��UHVXOWBREM�!QH[WBKLW�^
����������������P\��KLW1DPH� ��KLWBREM�!QDPH�
����������������P\��KLW$FF� ��KLWBREM�!DFFHVVLRQ�
����������������P\��KLW/HQ� ��KLWBREM�!OHQJWK�
����������������P\��KLW6LJ� ��KLWBREM�!VLJQL¿FDQFH�
����������������P\��KLW6FRUH� ��KLWBREM�!UDZBVFRUH�

����������������SULQW�³KLW1DPH �KLW1DPH?WKLW$FF �KLW$FF?WKLW/HQ �KLW/HQ?W´�
����������������SULQW�³KLW6LJ �KLW6LJ?WKLW6FRUH �KLW6FRUH?Q´�
��������`
}



KWWS���ZZZ�ELRSHUO�RUJ�ZLNL�+2:72�6HDUFK,2

���XVU�ELQ�SHUO��Z
XVH�VWULFW�

XVH�%LR��6HDUFK,2�

P\��EODVWBUHSRUW� �VKLIW�

P\��VHDUFK,2BREM� �%LR��6HDUFK,2�!QHZ(
���������������������������������¿OH� !��EODVWBUHSRUW�
���������������������������������IRUPDW� !�µEODVW¶
����������������������������������

ZKLOH��P\��UHVXOWBREM� ��VHDUFK,2BREM�!QH[WBUHVXOW���^
��������ZKLOH��P\��KLWBREM� ��UHVXOWBREM�!QH[WBKLW�^
����������������ZKLOH��P\��KVSBREM� ��KLWBREM��!QH[WBKVS�^
������������������������P\��HYDOXH� ��KVSBREM�!HYDOXH�
������������������������P\��KLW6WULQJ� ��KVSBREM�!KLWBVWULQJ�
������������������������P\��TXHU\6WULQJ� ��KVSBREM�!TXHU\BVWULQJ�
������������������������P\��KRPRORJ\6WULQJ� ��KVSBREM�!KRPRORJ\BVWULQJ�

������������������������SULQW�³KVS�HYDOXH���HYDOXH?Q´�
������������������������SULQW�³+,7�������³�VXEVWU��KLW6WULQJ�������´?Q´�
������������������������SULQW�³+202/2*<��³�VXEVWU��KRPRORJ\6WULQJ�������´?Q´�
������������������������SULQW�³48(5<�����³�VXEVWU��TXHU\6WULQJ�������´?Q´�
����������������`
��������`
} hsp evalue: 1e-151

HIT     : CPVFDGLFEFCQLSAGGSVASAVKLNKQQTDIAVNWAGGLHHAKKSEASG
HOMOLOGY: CPVFDGLFEFCQLSAGGSVASAVKLNK + DIA+NW+GGLHHAKKSEASG
QUERY   : CPVFDGLFEFCQLSAGGSVASAVKLNKNKADIAINWSGGLHHAKKSEASG

2XWSXW�

+63�REMHFW�DQG�PHWKRGV
�¿OH��VDPSOHB%ODVWBSDUVHU�SO

PXVW�JHW�KVS�REMHFWV�
IURP�D�KLW�REMHFW



KWWS���ZZZ�ELRSHUO�RUJ�ZLNL�+2:72�6HDUFK,2

2WKHU�&RRO�7KLQJV

:KROH�VHW�RI�ZUDSSHUV�IRU�UXQQLQJ�%LRLQIRUPDWLFV�WRROV
LQ�ELRSHUO�UXQ

5XQ�%/$67�ORFDOO\�RU�VXEPLW�UHPRWH�MREV��WKURXJK�1&%,�

5XQ�3$0/���KDQGOHV�VHWXS�DQG�WDNH�GRZQ�RI�WHPSRUDU\
¿OHV�DQG�GLUHFWRULHV

5XQ�DOLJQPHQW�SURJV�WKURXJK�VLPLODU�LQWHUIDFHV��7&RIIHH��086&/(��
&OXVWDOZ

5HODWLRQDO�'DWDEDVHV�IRU�VHTXHQFH�DQG�IHDWXUHV

5HSRVLWRU\�RI�VFULSWV�WR�GR�UHDOO\�FRRO�WKLQJV���KWWS���ZZZ�ELRSHUO�RUJ�ZLNL�6FULSWV�



+RZ�GR�\RX�¿QG�DOO�WKH�DYDLODEOH�PHWKRGV"

)URP�WKH�%LR3HUO�+RZ7R�ZH�NQRZ�WR�XVH�
%LR��6HDUFK,2"

:KDW�1H[W""""

³)ROORZ�WKH�2EMHFWV´�8VLQJ�&3$1

6WDUW�E\�6HDUFKLQJ�IRU�%LR��6HDUFK,2



5HDG�WKH�PHWKRGV��¿QG�WKH�RQH�WKDW�VHHPV�
WKH�EHVW

5HPHEHU�%LR3HUO�+RZ�7R�XVHV�QH[WBUHVXOW

QH[WBUHVXOW�5HWXUQV�DQRWKHU�REMHFW��:KDW�
PHWKRGV�EHORQJ�WR�WKH�

%LR��6HDUFK��5HVXOW��5HVXOW,�REMHFW"





QH[WBKLW�UHWXUQV�DQ�REMHFW��:KDW�PHWKRGV�
EHORQJ�WR�%LR��6HDUFK��+LW��+LW,�REMHFW"



QH[WBKVS�UHWXUQV�DQ�REMHFW��:KDW�PHWKRGV�
EHORQJ�WR�%LR��6HDUFK��+63��+63,�REMHFW"



<HD���KLWBVWULQJ�UHWXUQV�D�VWULQJ��QRW�DQ�
REMHFW��'RQH��



HTML

1Sunday, October 20, 2013

HTML

• HyperText Markup Language 

• Not a programming language 

• Stored in text files (just like Perl)

2Sunday, October 20, 2013



A basic page

<html>
<head>

<title>My web page title</title>
</head>
<body>

Your HTML content here
</body>

</html>

3Sunday, October 20, 2013

A kosher page
<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>!

<title>An XHTML 1.0 Strict standard template</title> 

</head>

<body> 

<p>... Your HTML content here ...</p>

</body>
 
</html>

4Sunday, October 20, 2013



Why use web Standards?

• Accessibility

• To robots

• To people

• Stability

5Sunday, October 20, 2013

<Tags />
Most tags open and close 
•Tags must be nested properly

•Some tags stand alone 

<br /> <hr />

•Some tags take attributes

<img alt="My dog" src="rover.gif"/> 

<a href="theonion.com">The Onion</a>

•Elements consist of start and end tags flanking content

Right Wrong
<strong>

<em>
Strong and emphasis

</em>
</strong>

<strong>
<em>

Strong and emphasis
</strong>

</em>

6Sunday, October 20, 2013



XHTML tags

http://www.w3schools.com/tags/

7Sunday, October 20, 2013

Text tags

• Heading tag
<H1>This is a top level heading</H1>
<H6>This is the bottom level heading</H6>

• Paragraph tag
<p>This is definitely a paragraph</p>

• Line Break
This is just two lines<br /> With a hard break.

• Emphasis and Strong
That’s <em>exactly</em> what I mean - I am <strong>sick</strong> of this slide

• Comment Tag
<!-- This is a comment. You won't see this on the web-->

8Sunday, October 20, 2013



Tables
<table border="1">

<tr>
<th> Column 1 heading</th> 
<th> Column 2 heading</th> 
<th> Column 3 heading</th>
</tr> 

<tr> !
<td>Row 2, cell 1</td>
<td colspan="2">Row 2, cell 2, also spanning Row 2, cell 3</td>
</tr>

<tr>
<td rowspan="2">Row 3, cell 1, also spanning Row 4, cell 1</td> 
<td>Row 3, cell 2</td> 
<td>Row 3, cell 3</td>
</tr>

<tr>
<td>Row 4, cell 2</td>
<td>Row 4, cell 3</td> 
</tr>

</table>

http://htmldog.com/guides/htmlintermediate/tables/
9Sunday, October 20, 2013

Lists
<ol> 

<li>First things first</li> 
<ul>

<li>Who you know</li> 
</ul>
<li>Not</li> 
<ul>

<li>What you know</li>
<li>What you can do with it</li> 

</ul>
</ol>

10Sunday, October 20, 2013



Links

• Relative
<a href="myDirectory/index.html">Go down a directory</a> 
<a href="../index.html">Go up a directory</a>

• Absolute
<a href="/">Go to the root</a> 
<a href="http://nytimes.com">Go to the NY Times</a>

• Anchors
<a href="#theEnd">Go to the end</a> 
<h1 id="theEnd">This is the end</h1>

11Sunday, October 20, 2013

Images

<img src="images/Early.png" alt="An Appalachian Mud Squid">

12Sunday, October 20, 2013



Forms

• POST vs GET

GET   = Data is in the URL

POST = Data is in the message body

<form name="input" action="html_form_submit.pl" method="post">

13Sunday, October 20, 2013

Text Fields
<form name="input" action="handleMyForm.pl" method="get">

First name:
<input type="text" name="firstname" /> 
<br/>
Last name: 
<input type="text" name="lastname" /> 
<input type="submit" value="Submit" />

</form>

14Sunday, October 20, 2013



Radio Buttons

<form name="input" action="handleMyForm.pl" method="get">
<input type="radio" name="sex" value="male"/> Male 
<br/>
<input type="radio" name="sex" value="female"/> Female
<br/>
<input type="submit" value="Submit" />

</form>

15Sunday, October 20, 2013

xHTML + CSS = Web

16Sunday, October 20, 2013



Cascading Style Sheets

• Help separate content from appearance

• One style sheet can be applied to hundreds 
of web pages

• Change styles in just one location

17Sunday, October 20, 2013

How CSS works

• Statements consist of

• Selectors

• Declarations

• Properties:Values (units)

http://westciv.com/wiki/CSS_Guide:_How_do_style_sheets_work

18Sunday, October 20, 2013



CSS:Where do I put it?

• Embedded in the <head> of each page 
<head><style type="text/css"> </style></head>

• Linked in the <head>

 Advantages: templating, speed
<link rel="stylesheet" type="text/css" 
href="/styles/style.css" />

• Inline (avoid this)
<p style="color: red">text</p>

19Sunday, October 20, 2013

CSS Selectors

•HTML selectors - raw tags in the style sheet) 

•Class selectors

use .className in style sheet
use class="className" in HTML 

•ID selectors

use #idName in style sheet 
use id="idName" in HTML

20Sunday, October 20, 2013



Divs and Spans
• Divs

• Use <div id="myDiv"> </div> to define 
block elements. Useful for both formatting 
and positioning.

• The id is unique. It refers to one element

• Spans

• Use when you want to apply a class to 
some text inline

• This is my sequence

 <span class="dna">ACTGATCTAGCT</span>

21Sunday, October 20, 2013

BlueprintCSS

 CSS framework

• grid 

• “sensible typography” 

• stylesheet for printing

22Sunday, October 20, 2013



Do Not Reinvent the Wheel

http://www.freecsstemplates.org
23Sunday, October 20, 2013

Where does my
website go?

• On Mac OS X

• Personal web: ~/Sites

• Main web: /Library/Webserver/Documents

• Linux: /var/www/html or /var/apache2/htdocs

• XP Home: C:\Program Files\ApacheGroup 
\Apache\htdocs

• Could be elsewhere. Don’t give up!

24Sunday, October 20, 2013



Naming your html files

• .html .htm 

• Why index.html is special

25Sunday, October 20, 2013

Resource: HTML

• HTML Dog

http://htmldog.com

• W3C tags

http://www.w3schools.com/tags

26Sunday, October 20, 2013



Resources: CSS

Cheat sheet:
http://www.addedbytes.com/download/css-cheat-sheet-v2/pdf/

CSS tutorial
http://westciv.com/wiki/Main_Page

Two column style sheet and tutorial
http://www.456bereastreet.com/lab/ 
developing_with_web_standards/csslayout/2-col/

27Sunday, October 20, 2013

Tools of the Trade

• Web Developer Plugin for Firefox

• CSS editors

• MacRabbit CSSEdit

• SimpleCSS

• TopStyle (Windows

28Sunday, October 20, 2013



Scraping

• We can parse web pages like any other 
text.

29Sunday, October 20, 2013

#!/usr/bin/perl
# A quick script to parse PFAM search results
use strict;
use warnings;

my $search = shift;
system ("wget -q -O pfam_search.txt 'http://pfam.sanger.ac.uk/
search/keyword?query=" . $search . "'");

open (FILE, "<", "pfam_search.txt") or die "Cannot open file: $!
\n";

# create a hash of the ids in our web page
# We use a hash as an easy way to eliminate duplicates
my %pfam_ids;
while (my $line = <FILE>) {
! if ($line =~ /(PF\d+)/) {
! ! $pfam_ids{$1}++;
! }
}

# Print the IDs on one line
print join ("\t", $search, sort keys %pfam_ids), "\n";

30Sunday, October 20, 2013



Web programming with 
CGI.pm

1Wednesday, October 24, 12

What is CGI all about?

• Somewhat dry and abstract definition of CGI from Wikipedia: The Common 
Gateway Interface (CGI) is a standard method for web servers to delegate the 
generation of web pages to executable files. Such files are known as CGI 
scripts; they are programs, often stand-alone applications, usually written in a 
scripting language.

• Until now, you have run scripts from the command line.

• Your scripts are run from a directory such as ~/perl/ or ~/scripts/ and the output is 
printed on the screen or to a file

• In web programming, scripts go in a directory that a web server can run scripts 
in like ~username/Sites/cgi-bin/ or /Library/Webserver/CGI-Executables/ (on a 
Mac) and on a web server (depends on how the webserver is set up)

• The output of scripts is text or HTML and is sent to a browser running on a client 
machine where it is rendered as a web page.

• This set up allows you to create dynamic web pages that are generated in response 
to user input e.g. if the user enters a search query on a form on a web page, the 
search terms are sent to a CGI script which runs on the web server and returns the 
results of the search as HTML which is then displayed in the web browser exactly as 
if it was a web page.

2Wednesday, October 24, 12



Running scripts on your workstations.

Client

Code

Data

CPU

Screen

Keyboard

3Wednesday, October 24, 12

Running CGI scripts

Web server
Client

Let’s draw this diagram together

4Wednesday, October 24, 12



Setting up and executing CGI scripts on your computers

• The web server Apache is running on the server.

• We will be writing CGI scripts in perl. They run as normal perl scripts, but have to go 
in a special directory.

• We have configured ~/Sites/cgi-bin/ to be the directory for CGI scripts (remember 
your home directories are on the (web)server too).

sprochnik% cd Sites/cgi-bin/

[coursemain:~/Sites/cgi-bin] sprochnik% ls -la
drwxr-xr-x+ 4 sprochnik  staff   136B Oct 23 14:49 .
drwxr-xr-x+ 7 sprochnik  staff   238B Oct 23 11:56 ..
-rwxr-xr-x+ 1 sprochnik  staff   474B Oct 23 14:49 boo.pl

• Save your CGI scripts in this directory.

• This directory has to be executable by ‘other’. You can use 
chmod +755 <dirname> 
to do this.

• Your web scripts also have to be executable by ‘other’.  You can do this with chmod 
+755 myscript.pl 

5Wednesday, October 24, 12

Mapping a CGI script to a URL

• You will execute a CGI script by typing a URL that points to the 
script into a web browser and ‘navigating’ to the script.

• Let’s look an example of how you translate a path on the file server 
into a URL in a web browser

• If you have a CGI script with the following path:

~sprochnik/Sites/cgi-bin/myCGIscript.pl

• (or, in full, /Network/Servers/coursemain.cshl.edu/Volumes/
cmain/INFOUsers/sprochnik/Sites/cgi-bin/
myCGIscript.pl)

•  can be executed by typing the following URL into a browser

http://coursemain.cshl.edu/~sprochnik/cgi-bin/
myCGIscript.pl

6Wednesday, October 24, 12



10/17/10 

2 

A CGI Script that Creates Plain Text 

 #!/usr/bin/perl!
 # file: plaintext.pl!

  print "Content-type: text/plain\n\n";!

  print "When that Aprill with his shoures soote\n";!
  print "The droghte of March hath perced to the roote,\n";!
  print "And bathed every veyne in swich licour\n";!
  print "Of which vertu engendered is the flour...\n";!

http://mckay.cshl.edu/cgi-bin/course/plaintext.pl 

A CGI Script that Creates HTML 

 #!/usr/bin/perl!
 # file: chaucer.pl!

  print "Content-type: text/html\n\n";!

  print "<html><head><title>Chaucer</title></head><body>\n";!
  print "<h1>Chaucer Sez</h1>\n";!

  print "When that Aprill with his shoures soote<br>\n";!
  print "The droghte of March hath perced to the roote,<br>\n";!
  print "And bathed every veyne in swich licour<br>\n";!
  print "Of which vertu engendered is the flour...<p>\n";!

  print "<cite>-Geoffrey Chaucer</cite>\n";!
  print "<hr>\n";!
  print "</body></html>\n";!

http://mckay.cshl.edu/cgi-bin/course/chaucer.pl 



10/17/10 

3 

A CGI Script that Does Something Useful 

http://mckay.cshl.edu/cgi-bin/course/process_genes.pl 

A CGI script can do anything a Perl script can do, such as opening files and processing them. 
Just print your results to STDOUT. 

#!/usr/bin/perl -w                                                                                                                                                                                               !
# file: process_cosmids.pl                                                                                                                                                                                       !
use strict;!

my @GENES   = qw/act-1 dpy-5 unc-13 let-653 skn-1 C02D5.1/;!
my $URL     = 'http://www.wormbase.org/db/gene/gene?name=';!

print "Content-type: text/html\n\n";!
print "<html><head><title>Genes</title></head><body>\n";!
print "<h1>Genes</h1>\n";!
print "<ol>\n";!

for my $gene (@GENES) {!
  print qq(<li><a href="$URL$gene">$gene</a>\n);!
}!

print "</ol>\n";!
print "</body></html>\n";!

Creating Fill-Out Forms 
HTML includes about a half-dozen elements for creating fill-out form 
elements. A form must begin with <FORM> and end with </FORM>:  



10/17/10 

4 

Creating Fill-Out Forms II 

Creating Fill-Out Forms III 









10/17/10 

5 

Creating Fill-Out Forms IV 

Creating Fill-Out Forms V 



10/17/10 

6 

Creating Fill-Out Forms VI 

Creating Fill-Out Forms VII 



10/17/10 

7 

What is CGI.pm? 

1.  Standard module in Perl distribution (>= 5.004) 
2. Emits correct HTTP headers 
3. HTML shortcuts 
4. Parses CGI parameters 
5. "Sticky" form fields 
6. Creates & processes cookies 
7. File uploads  

Make HTML Beautiful 
CGI.pm defines functions that emit HTML. The page is easier to read and write than raw HTML* 

<h1>!
  Eat Your Vegetables!
</h1>!
<ol>!
  <li>peas</li>!
  <li>broccoli</li>!
  <li>cabbage</li>!
  <li>!
      peppers !
         <ul>!
            <li>red</li>!
            <li>yellow</li>!
            <li>green</li>       !
         </ul>!
    </li>!
<ol>!
<hr>!

 #!/usr/bin/perl!
 # Script: vegetables1.pl!

 use CGI ':standard';!

 print header,!
    start_html('Vegetables'),!
    h1('Eat Your Vegetables'),!
    ol(!
       li('peas'),!
       li('broccoli'),!
       li('cabbage'),!
       li('peppers',!

!  ul(!
!     li('red'),!
!     li('yellow'),!
!     li('green')!
!     )!
!  ),!

       ),!
    hr,!
    end_html;!

http://mckay.cshl.edu/cgi-bin/course/vegetables.pl * if you speak Perl! 



10/17/10 

8 

Make HTML Concise 



10/17/10 

9 

http://mckay.cshl.edu/cgi-bin/course/vegetables2.pl 

Using CGI.pm for the Genes Script 

http://mckay.cshl.edu/cgi-bin/course/process_genes2.pl 

#!/usr/bin/perl -w                                                                                                                                                                                               !
# file: process_genes2.pl                                                                                                                                                                                        !

use strict;!
use CGI ':standard';!

my @GENES   = qw/act-1 dpy-5 unc-13 let-653 skn-1 C02D5.1/;!
my $URL     = 'http://www.wormbase.org/db/gene/gene?name=';!

my @list_items;!
for my $gene (@GENES) {!
  push @list_items,a({-href=>"$URL$gene"},$gene);!
}!

print header(),!
    start_html('Genes'),!
    h1('Genes'),!
    ol(!
       li(\@list_items)!
       ),!
    end_html;!



10/17/10 

10 

Setting & Retrieving CGI Parameters 



10/17/10 

11 

A Simple Form 

Form Generating Functions I 



10/17/10 

12 

Form Generating Functions II 

A reverse complementation script 



10/17/10 

13 

File Uploading 
HTML: <INPUT TYPE="FILE">       CGI.pm: filefield() 

Annoying complication:  
You have to start the form with start_multipart_form() rather than start_form().  

Let’s modify reversec.pl to support file uploads: 

•  First part (script too big for one page), print the form 

http://mckay.cshl.edu/cgi-bin/course/sequpload.pl 

sequpload.pl continued…   
If param() returns true, that means that we 
have some user input 



10/17/10 

14 

Adding Cascading Stylesheets 
#!/usr/bin/perl -w                                                                                                                                                                                               !
# Script: veggies_with_style.pl                                                                                                                                                                                  !
use CGI ':standard';!

my $css = <<END;!
<style type="text/css">!
 li.yellow { color: yellow }!
 li.green  { color: green  }!
 li.red    { color: red    }!
 ol {!
   background-color: gainsboro;!
   padding: 5px;!
   margin-left: 200px;!
   width: 150px;!
 }!
 ul { background-color: black }!
</style>!
END!

print header,!
    start_html( -title => 'Vegetables',!
                -head  => $css );!
print!
    h1('Eat Your Vegetables'),!
    ol(!
       li(['broccoli', 'peas', 'cabbage']),!
       li('peppers',!
          ul(!
             li({-class => 'red'},'red'),!
             li({-class => 'yellow'},'yellow'),!
             li({-class => 'green'},'green')!
             )!
          ),!
       ),!
    hr,!
    end_html;!

http://mckay.cshl.edu/cgi-bin/course/veggies_with_style.pl 

External stylesheet 

http://mckay.cshl.edu/cgi-bin/course/veggies_with_style2.pl 

#!/usr/bin/perl -w                                                                                                                                                                                               !
# Script: veggies_with_style.pl                                                                                                                                                                                  !
use CGI ':standard';!

my $css = '/css/veggies.css';!

print header,!
    start_html( -title => 'Vegetables',!
                -style  => $css );!
print!
    h1('Eat Your Vegetables'),!
    ol(!
       li(['broccoli', 'peas', 'cabbage']),!
       li('peppers',!
          ul(!
             li({-class => 'red'},'red'),!
             li({-class => 'yellow'},'yellow'),!
             li({-class => 'green'},'green')!
             )!
          ),!
       ),!
    hr,!
    end_html;!



10/17/10 

15 

CGI Exercises 
Problem #1 

Write a CGI script that prompts the user for his or her name and age. When the 
user presses the submit button, convert the age into "dog years" (divide by 7) and 
print the result. 

Problem #2 

Accept a DNA sequence and break it into codons. 

Extra credit: Translate the codons into protein.  



Tools for grabbing web content

• perl module LWP.pm

• from the command line: wget, curl

• wget -o html.log -O googlecontent.html http://
www.google.com 

• -o is the log file

• -O is the HTML output text file

• curl http://www.google.com > google.html

• redirect STDOUT to an output file

7Wednesday, October 24, 12



Structural(varia+on!

Programming)for)Biology)!
CSH,!October!2014!!

!
!

Tomas!Marques8Bonet!
ICREA!Research!Professor!

InsBtut!de!Biologia!EvoluBva!



11!years!from!my!1st!CSH!!



Who!we!are?!

•  EvoluBonary!genomics!
– Barcelona,!Biomedical!Research!Park!



What!do!we!do?!!

•  Natural!selecBon!!
on!human!evoluBon!

•  Transcriptome!!and!EpigeneBcs!in!Primates!

•  Canid!evoluBon!



Con/nuum)of)Genomic)Varia/on)

! Single)base8pair)changes)

! Cpg)Methyla/on)

! Small)inser/ons/dele/ons)

! Mobile)elements)

! Large8scale)genomic)copy))
number)varia/on!(>10!kb)!

! Local)Rearrangements)

! Chromosomal)varia/on)

Structural)V
ariants)(SV

))

Chromosome(

Single((
nucleo0de(

C
opy N

um
ber Variation 



Genomic)Structural)Varia/on)
Fr
eq

ue
nc
y!

Size!

SNPs!

cytogeneBc!

structural!!
variaBon!

• !Gene8altering,!e.g.!immune!
response,!drug!metabolism!

• !Abundant:!majority!of!human!
heterozygosity!

• !Numerous!plausible!funcBonal!
consequences!

1!bp! 1!chr!



Types of Structural Variation)

Hurles et al. 2008 



Why)Study)Structural)Varia/on?)

•  Common!in!“normal”!human!genomes88
major!cause!of!phenotypic!variaBon!

•  Common!in!certain!diseases,!parBcularly!
cancer!

•  Now!showing!up!in!rare!disease;!auBsm,!
schizophrenia!



17q21.31!deleBon!syndrome!!
MR,!global!delay!and!!
congenital!cardiac!defects!!

Zody)et(al.)Nature!GeneBcs!(2008)!

16p12.1!deleBon!syndrome!!
childhood!intellectual!disability,!developmental!delay!

Antonacci)et(al.)Nature!GeneBcs!(2010)!



Challenges!of!CNV!studies!

•  Oaen!involves!repeated!regions!

•  Rearrangements!are!complex!

•  Can!involve!highly!repeBBve!elements!



Methods)to!Find)SVs)

ArrayCGH (SNP based and genomic) 

Local and de novo assembly 
 
Read pair analysis 
 
Read depth analysis 
 
Split read analysis 
 

 

Sequence!based!

Experimental!approach!!



METHOD)1:)Copy)Number)Varia/on:)
Array)Compara/ve)Genomic)Hybridiza/on)

Modified:Feuk et al. Nat Rev Genet 2006 



Genome)Tiling)Arrays!

800!bp!

25836mer!



Typical)Analysis)Procedure)

•  For!each!probe,!calculate!a!log2!raBo!of!test/
reference!
– Log2!serves!to!center!values!around!0!
– Hemizygous!deleBon!in!test:!log2(test/
reference)=log2(1/2)=81!

– DuplicaBon!in!test:!
!!!log2(test/reference)=log2(3/2)=0.59!
– Homozygous!duplicaBon:!
!!log2(test/reference)=log2(4/2)=1!



Copy Number Variations in the Human Genome 

Chromosome)Posi/on)

Person)1)

Person)2)

Si
gn
al
)

Si
gn
al
)

Extra)DNA)
Missing)DNA)



log2!

State!!
Assignment!

SegmentaBon!using!a!38state!HMM!(Viterbi!Algorithm)!

38State!HMM!

Normal!

Loss!

Gain!



Steemers!et(al.(

METHOD)2:)Copy)Number)Varia/on:)
SNP)genotyping)Array)



SNP)Fluorescence8Based)Dele/on)Discovery)

A!B!B!A!

B!A!B!B!

1!2!3!4!!!

‘B
8A
lle
le
!F
re
q’
!

0.5!

0!

1!

1!2!3!4!!!

AB!

BB!

0!

81!

1!

1!2!3!4!!!

‘L
og
R’
! CopyNum=2!

A8!

B8!

A!B!B!A!

1!2!3!4!!!

B8
Al
le
le
!F
re
q!

0.5!

0!

1!

1!2!3!4!!!

0!

81!

1!

1!2!3!4!!!

Lo
gR

! CopyNum=1!



A!B!B!A!

B!A!B!B!

1!2!3!4!!!

0!

81!

1!

1!2!3!4!!!

Lo
gR

!
B8
Al
le
le
!F
re
q!

0.5!

0!

1!

1!2!3!4!!!

AB!

BB!

CopyNum=2!

A!B!B!A!

B!A!B!B!

A!B!B!A!

1!2!3!4!!!

B8
Al
le
le
!F
re
q!

0.5!

0!

1!

1!2!3!4!!!

AAB!

BBB!

ABB!

0!

81!

1!

1!2!3!4!!!

Lo
gR

!

CopyNum=3!



Lo
gR

!a
nd

!B
8A
lle
le
!F
re
qu

en
cy
!

0!

81!

0.5!

1!

80.5!

Human!chromosome!2!posiBon!

~90)kbp)



Sequencing)Methods)

• Going!Backwards…!Sanger,!454,!Illumina…..!

• CNV!and!SV!are!hotspots!of!research…!but!reality!is:!
• LimitaBons!of!the!methods!

• Indirect!methods.!ALL!have!problems!!!
• What!do!we!want?!

• Clone!sequencing/Phasing!(Moleculo?)!
• Finish!sequence!and!beler!assemblies!(PACBIO?)!
!



• Theory!vs.!Reality!

• Most!assemblies!(even!with!Sanger!technology!)!are!collapsed.!

De)novo)assemblies)



Quality!of!“old!days”!assemblies!

0% 20% 40% 60% 80% 100% 
Sloth 

Shrew 
Alpaca 

Armadillo 
Hedgehog 

Tarsier 
Tree shrew 

Tenrec 
Hyrax 

Mouse lemur 
Pika 

Kangaroo rat 
Pig 

Microbat 
Megabat 
Dolphin 
Rabbit 

Squirrel 
Guinea pig 

Elephant 
Cat 

Horse 
Rat 

Gibbon 
Macaque 

Orang-utan 
Ferret 
Panda 

Dog 
Bushbaby 
Marmoset 

Gorilla 
Chimpanzee 

Cow 
Mouse 
Human 

1 hit 2+ hits partial/ambiguous missing 
Propor0on(of((11K((
mammalian(genes((

FINISHED!

DRAFT!

Phasing!(Clone!
sequencing)!
!
!
!
Clone!end!(BACs)!
!
!
!
Long!reads!!(Sanger)!
!



Quality!of!assemblies!(II)!

0% 5% 10% 15% 20% 25% 
Armadillo 

Hedgehog 
Shrew 
Tenrec 

Tree shrew 
Pika 

Mouse lemur 
Tarsier 
Hyrax 

Alpaca 
Kangaroo rat 

Pig 
Megabat 
Microbat 
Dolphin 

Elephant 
Sloth 

Gorilla 
Bushbaby 
Macaque 

Rabbit 
Guinea pig 
Marmoset 

Cat 
Cow 

Squirrel 
Horse 
Ferret 
Panda 

Rat 
Gibbon 

Dog 
Orangutan 

Mouse 
Chimpanzee 

Aligns < 30% Aligns < 50% Aligns < 80% 

Incomplete!!
respresentaBon!of!
human!genes!!



LimitaBons!of!NGS!assemblies!

Alkan et al. Nature Methods 2010 



Diploid Sample 
Genomic DNA 

End-Sequence Pairs 

Fosmid Vector 

Human DNA 

Tuzun et al. (2005) 

< 32 kb  
Putative 
Insertion 

>48 kb  
Putative 
Deletion 

       Insert Size Distribution   

Apparent Insert Size 

Number of 
Clones 

Map to 
reference 

Method)2:)End8Sequence)Pair)
(ESP))Analysis)



End-Sequence Pairs 

Fosmid Vector 

Human DNA 

Tuzun et al. (2005) 

< 32 kb  
Putative 
Insertion 

>48 kb  
Putative 
Deletion 

       Insert Size Distribution   

Apparent Insert Size 

Number of 
Clones 

Map to 
reference 

discordant 
by orientation 
(yellow/gold) 

discordant 
by size 
(red) 

Insertion Deletion Inversion 

reference 
sample 

Method)2:)End8Sequence)Pair)
(ESP))Analysis)



What!can!we!find?!

Structural!variaBon!detecBon:!

Alkan!et!al.!Nature!Review!GeneBcs!2011!



Deletion 
Inversion 

Insertion (Fosmid) 

Gaps 

Map)of)Validated)Variants)

ABC14 (CEPH) 
ABC13 (Yoruba) 
ABC12 (CEPH) 
ABC11 (China) 
ABC10  (Yoruba) 
ABC9 (Japan) 
ABC8 (Yoruba) 
ABC7 (Yoruba) 
G248 
 

• Genome wide map of variants 
• Ability to resolve structure of  
 individual haplotypes 

chr17 



G248 

ABC8 (Yoruba) 

ABC9 (Japan) 

ABC12 (CEPH) 

ABC7 (Yoruba) 

ABC11 (China) 

ABC13 (Yoruba) 

ABC14 (CEPH) 

ABC10 (Yoruba) 

Deletion 
Inversion 

Insertion (Fosmid) 

Gaps 
 Novel Sequence 



0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9

Number of individuals (libraries) reporting variant site

N
um

be
r 

of
 s

ite
s

Deletions

Insertions

Inversions

Reference genome represents minor allele 
839 

311 

168 
116 

76 66 53 32 34 

Frequency)of)Validated)Sites)

261 (15%) sites where reference genome represents a minor allele 



Individual sequence 

32 

Read depth signal 

Reads 

Mapping 

Reference genome 

Counting mapped reads 

Method)3:)Sequence!Read!Depth!
Analysis)

#!reads!
HMM!calls!



Individual sequence 

33 

Read depth signal 

Reads 

Mapping 

Reference genome 

Counting mapped reads 

Method)3:)Sequence!Read!Depth!
Analysis)

#!reads!
HMM!calls!



Sequence!coverage!and!detecBon!power!



ValidaBon!of!copy8number!esBmaBons!

Alkan(et(al.,(Nature(Gene0cs,(2009(



Defensin!gene!cluster!+!FAM90A7(

Alkan(et(al.,(Nature(Gene0cs,(2009(Associated(with(psoriasis(and(
Crohn’s(disease(



Scaling!up:!1000!Genomes!and!more!

0)

20)

40)

60)

80)

100)

120)

1) 2) 3) 4) 5) 6) 7) 8) 9) 10)

Histogram)of)Pilot)1)Illumina)effec/ve)coverage)

Yoruba)56)

CEPH)48)

Japanese)27)

Han)29)

Individuals)sequenced)in)Pilot)1)

EffecBve!Coverage!

N
um

be
r!o

f!g
en

om
es
!

Sudmant,(Kitzman,(et(al.,(Science,(2010(

Individuals)sequenced)in)Pilot)2) Other)Genomes)



Copy)number)varia/on)in))
human)popula/ons)

Sudmant(et(al.(Science(2010(



DeleBons !



Split8read)Analysis)

InserBon!

DeleBon!Reference 

Read 

Reference 

Read 

Breakpoint!

Dele/on)Event)

Inser/on)Event)



M A  B  C  D A  B  C  D A  B  C  D A  B  C  D A  B  C  D A  B  C  D A  B  C  D A  B  C  D M

500 bp 

1500 bp 

3000 bp 

b 

a 

CGH)

PEM(

A))CGH!

Without inversion With inversion c 

B) Fiber-FISH  
(For inversions) 

C))PCR!

Experimental)Valida/on)



Methods)to!Find)SVs)
ArrayCGH (SNP based and genomic) 
     Based on ratios, Saturate quite fast, poor breakpoint resolution 

Read pair analysis 
Deletions, small novel insertions, inversions, transposons 
Size and breakpoint resolution dependent to insert size 

Read depth analysis 
Deletions and duplications 
Relatively poor breakpoint resolution 

Split read analysis 
Small novel insertions/deletions, and mobile element 

insertions  
1bp breakpoint resolution 

Local and de novo assembly 
SV in unique segments 
1bp breakpoint resolution 

Sequence!based!

Experimental!approach!!



Review!soaware!



Soaware!I!

Zhao)et)al.)BMC)Bioinforma/cs)2013)
Duan)et)al.)Plos)One)2013!

break!point!posiBon!esBmaBon:!readDepth!=!EWT>CNVnator>FREEC>CNV8seq>SegSeq;!
copy!number!esBmaBon:!CNVnator>CNV8seq>readDepth>FREEC>EWT>Seg�Seq;!



NGS Sequence data
Jason Stajich

UC Riverside

jason.stajich[at]ucr.edu

twitter:hyphaltip stajichlab

Lecture available at http://github.com/hyphaltip/CSHL_NGS

NGS sequence data
• Quality control

• Alignment

• Variant calling

◦ SNPs

◦ Indels



Sequence data sources
• Sanger

◦ Long reads, high quality, expensive

• Illumina

◦ Short reads 50-150bp (HiSeq) and up to 250bp (MiSeq)

◦ Cheap and Dense read total (HiSeq 200-300M paired-reads for ~$2k)

• 454

◦ Longish reads 300-500 bp, some homopolymer seq problems,

◦ Expensive ($10k for 1M reads), recent chemistry problems

◦ Going away in 3 years

• PacBio

◦ Long reads, but small amount (10k)

◦ Low seq quality and not cheap

◦ Can help improve assemblies, probably not sufficient for an assembly alone (too expensive to
get deep enough coverage)

Sequence data source (cont)
• SOLiD

◦ Short reads, 30-50bp. Reasonably price-point for the density

◦ 1/5 as many reads as Illumina HiSeq

• Ion Torrent

◦ Cheaper machine, fast, 100bp reads and reported 100M

◦ Quality okay for some applications



Sequencer comparisons
Glenn TC, "Field guide to next-generation DNA sequencers" DOI:10.1111/j.1755-0998.2011.03024.x

File formats
FASTQ

@SRR527545.1 1 length=76
GTCGATGATGCCTGCTAAACTGCAGCTTGACGTACTGCGGACCCTGCAGTCCAGCGCTCGTCATGGAACGCAAACG
+
HHHHHHHHHHHHFGHHHHHHFHHGHHHGHGHEEHHHHHEFFHHHFHHHHBHHHEHFHAH?CEDCBFEFFFFAFDF9

FASTA format

>SRR527545.1 1 length=76
GTCGATGATGCCTGCTAAACTGCAGCTTGACGTACTGCGGACCCTGCAGTCCAGCGCTCGTCATGGAACGCAAACG

SFF - Standard Flowgram Format - binary format for 454 reads

Colorspace (SOLiD) - CSFASTQ

@0711.1 2_34_121_F3
T11332321002210131011131332200002000120000200001000
+
64;;9:;>+0*&:*.*1-.5:$2$3&$570*$575&$9966$5835'665



Quality Scores in FASTQ files
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS.....................................................
..........................XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX......................
...............................IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII......................
.................................JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ......................
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL....................................................
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
|                         |    |        |                              |                     |

33                        59   64       73                            104                   126

S - Sanger        Phred+33,  raw reads typically (0, 40)
X - Solexa        Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64,  raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64,  raw reads typically (3, 40)

with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
(Note: See discussion above).

Read naming
ID is usually the machine ID followed by flowcell number column, row, cell of the read.

Paired-End naming can exist because data are in two file, first read in file 1 is paired with first read in
file 2, etc. This is how data come from the sequence base calling pipeline. The trailing /1 and /2
indicate they are the read-pair 1 or 2.

In this case #CTTGTA indicates the barcode sequence since this was part of a multiplexed run.

File: Project1_lane6_1_sequence.txt

@HWI-ST397_0000:2:1:2248:2126#CTTGTA/1
TTGGATCTGAAAGATGAATGTGAGAGACACAATCCAAGTCATCTCTCATG
+HWI-ST397_0000:2:1:2248:2126#CTTGTA/1
eeee\dZddaddddddeeeeeeedaed_ec_ab_\NSRNRcdddc[_c^d

File: Project1_lane6_2_sequence.txt

@HWI-ST397_0000:2:1:2248:2126#CTTGTA/2
CTGGCATTTTCACCCAAATTGCTTTTAACCCTTGGGATCGTGATTCACAA
+HWI-ST397_0000:2:1:2248:2126#CTTGTA/2
]YYY_\[[][da_da_aa_a_a_b_Y]Z]ZS[]L[\ddccbdYc\ecacX



Paired-end reads
These files can be interleaved, several simple tools exist, see velvet package for shuffleSequences
scripts which can interleave them for you.

Interleaved was requried for some assemblers, but now many support keeping them separate.
However the order of the reads must be the same for the pairing to work since many tools ignore the
IDs (since this requires additional memory to track these) and instead assume in same order in both
files.

Orientation of the reads depends on the library type. Whether they are

---->   <----   Paired End (Forward Reverse)
<----   ---->   Mate Pair  (Reverse Forward)

Data QC
• Trimming

◦ Adaptive or a hard cutoff

◦ sickle, FASTX_toolkit, SeqPrep

• Additional considerations for Paired-end data

• Evaluating quality info with reports



FASTX toolkit
• Useful for trimming, converting and filtering FASTQ and FASTA data

• One gotcha - Illumina quality score changes from 64 to 33 offset

• Default offset is 64, so to read with offset 33 data you need to use -Q 33 option

• fastx_quality_trimmer

• fastx_splitter - to split out barcodes

• fastq_quality_formatter - reformat quality scores (from 33 to 64 or)

• fastq_to_fasta - to strip off quality and return a fasta file

• fastx_collapser - to collapse identical reads. Header includes count of number in the bin

FASTX - fastx_quality_trimmer
• Filter so that X% of the reads have quality of at least quality of N

• Trim reads by quality from the end so that low quality bases are removed (since that is where
errors tend to be)

• Typically we use Phred of 20 as a cutoff and 70% of the read, but you may want other settings

• This is adaptive trimming as it starts from end and removes bases

• Can also require a minimum length read after the trimming is complete



FASTX toolkit - fastx_trimmer
• Hard cutoff in length is sometimes better

• Sometimes genome assembly behaves better if last 10-15% of reads are trimmed off

• Adaptive quality trimming doesn't always pick up the low quality bases

• With MiSeq 250 bp reads, but last 25-30 often low quality and HiSeq with 150 bp often last 20-30
not good quality

• Removing this potential noise can help the assembler perform better

Trimming paired data
• When trimming and filtering data that is paired, we want the data to remain paired.

• This means when removing one sequence from a paired-file, store the other in a separate file

• When finished will have new File_1 and File_2 (filtered & trimmed) and a separate file
File_unpaired.

• Usually so much data, not a bad thing to have agressive filtering



Trimming adaptors
• A little more tricky, for smallRNA data will have an adaptor on 3' end (usually)

• To trim needs to be a matched against the adaptor library - some nuances to make this work for
all cases.

◦ What if adaptor has low quality base? Indel? Must be able to tolerate mismatch

• Important to get right as the length of the smallRNAs will be calculated from these data

• Similar approach to matching for vector sequence so a library of adaptors and vector could be
used to match against

• Sometimes will have adaptors in genomic NGS sequence if the library prep did not have a tight
size distribution.

Trimming adaptors - tools
• cutadapt - Too to matching with alignment. Can search with multiple adaptors but is pipelining

each one so will take 5X as long if you match for 5 adaptors.

• SeqPrep - Preserves paired-end data and also quality filtering along with adaptor matching



FASTQC for quality control
• Looking at distribution of quality scores across all sequences helpful to judge quality of run

• Overrepresented Kmers also helpful to examine for bias in sequence

• Overrepresented sequences can often identify untrimmed primers/adaptors

FASTQC - per base quality



FASTQC - per seq quality



FASTQC - per seq GC content



FASTQC - Sequence Length



FASTQC - kmer distribution



FASTQC - kmer table



Getting ready to align sequence

Sequence aligners



Short read aligners
Strategy requires faster searching than BLAST or FASTA approach. Some approaches have been
developed to make this fast enough for Millions of sequences. maq - one of the first aligners
Burrows-Wheeler Transform is a speed up that is accomplished through a transformation of the data.
Require indexing of the search database (typically the genome). BWA, Bowtie ? LASTZ ? BFAST



Workflow for variant detection
• Trim

• Check quality

• Re-trim if needed

• Align

• Possible realign around variants

• Call variants - SNPs or Indels

• Possibly calibrate or optimize with gold standard (possible in some species like Human)

NGS Alignment for DNA
• Short reads (30-200bp)

◦ Bowtie and BWA - implemented with the BWT algorithm, very easy to setup and run

◦ SSAHA also useful, uses fair amount of memory

◦ BFAST - also good for DNA, supports Bisulfide seq,color-space but more complicated to run

• Longer reads (e.g. PacBio, 454, Sanger reads)

◦ BWA has A mode using does a Smith-Waterman to place reads. Can tolerate large indels much
better than standard BWA algorithm but slower. BWA-MEM is the currently reccomended mode
- BWA-SW was the earlier implementation and may be more tested, BWA-MEM is the
successor.

◦ LAST for long reads



BWA alignment choices
From BWA manual

On 350-1000bp reads, BWA-SW is several to tens of times faster than the existing programs. Its
accuracy is comparable to SSAHA2, more accurate than BLAT. Like BLAT, BWA-SW also finds chimera
which may pose a challenge to SSAHA2. On 10-100kbp queries where chimera detection is important,
BWA-SW is over 10X faster than BLAT while being more sensitive.

BWA-SW can also be used to align ~100bp reads, but it is slower than the short-read algorithm. Its
sensitivity and accuracy is lower than SSAHA2 especially when the sequencing error rate is above 2%.
This is the trade-off of the 30X speed up in comparison to SSAHA2’s -454 mode.

When running BWA you will also need to choose an appropriate indexing method - read the manual.
This applies when your genome is very large with long chromosomes.

Colorspace alignment
• For SOLiD data, need to either convert sequences into FASTQ or run with colorspace aware aligner

◦ BWA, SHRiMP, BFAST can do color-space alignment



Realignment for variant identification
• Typical aligners are optimized for speed, find best place for the read.

• For calling SNP and Indel positions, important to have optimal alignment

• Realignment around variable positions to insure best placement of read alignment

◦ Stampy applies this with fast BWA alignment followed by full Smith-Waterman alignment
around the variable position

◦ Picard + GATK employs a realignment approach which is only run for reads which span a
variable position. Increases accuracy reducing False positive SNPs.

Alignment data format
• SAM format and its Binary Brother, BAM

• Good to keep it sorted by chromosome position or by read name

• BAM format can be indexed allowing for fast random access

◦ e.g. give me the number of reads that overlap bases 3311 to 8006 on chr2



What are we trying to achieve?



Manipulating SAM/BAM
• SAMtools

◦ One of the first tools written. C code with Perl bindings Bio::DB::Sam (Lincoln Stein FTW!) with
simple Perl and OO-BioPerl interface

◦ Convert SAM <-> BAM

◦ Generate Variant information, statistics about number of reads mapping

◦ Index BAM files and retrieve alignment slices of chromosome regions

• Picard - java library for manipulation of SAM/BAM files

• BEDTools - C tools for interval query in BED,GFF and many other format fiels

◦ Can generate per-base or per-window coverage from BAM files with GenomeGraph

• BAMTools C++ tools for BAM manipulation and statistics

Using BWA,SAMtools
# index genome before we can align (only need to do this once)
$ bwa index genome/Saccharomyces.fa
# -t # of threads
# -q quality trimming
# -f output file
# for each set of FASTQ files you want to process these are steps
$ bwa aln -q 20 -t 16 -f W303_1.sai Saccharomyces W303_1.fastq
$ bwa aln -q 20 -t 16 -f W303_2.sai Saccharomyces W303_2.fastq
# do Paired-End alignment and create SAM file
$ bwa sampe -f W303.sam genome/Saccharomyces.fa W303_1.sai W303_2.sai \

W303_1.fastq W303_2.fastq

# generate BAM file with samtools
$ samtools view -b -S W303.sam > W303.unsrt.bam
# will create W303.bam which is sorted (by chrom position)
$ samtools sort W303.unsrt.bam W303.sorted
# build index
$ samtools index W303.sorted.bam



New BWA options
Some recent improvements to bwa for 70-100bp reads is the bwa mem alignment algorithm. All in one
step now to create the sam file.

$ bwa mem -t 32 -M genome/Saccharomyces.fa W303_1.fastq W303_2.fastq > W303.sam

can even use samtools an pipe it to bam
on the fly
$ bwa mem -t 32 -M genome/Saccharomyces.fa W303_1.fastq \
W303_2.fastq |  samtools view -bS > W303.unsrt.bam

BAM using Picard tools
Can also convert and sort all in one go with Picard

$ java -Xmx2g -jar SortSam.jar IN=W303.sam OUT=W303.sorted.bam \
SORT_ORDER=coordinate VALIDATION_STRINGENCY=SILENT CREATE_INDEX=true

Or if you already created a bam file, but need to sort it, the input can also be a nam file

$ java -Xmx2g -jar SortSam.jar IN=W303.unsrt.bam OUT=W303.sorted.bam \
SORT_ORDER=coordinate VALIDATION_STRINGENCY=SILENT CREATE_INDEX=true

Lots of other resources for SAM/BAM manipulation in Picard documentation on the web
http://picard.sourceforge.net/command-line-overview.shtml.



View header from BAM file
$ samtools view -h W303.sorted.bam
samtools view -h W303.sorted.bam | more
@HD VN:1.0  GO:none SO:coordinate
@SQ SN:chrI LN:230218   UR:file:genome/Saccharomyces.fa M5:6681ac2f62509cfc220d78751b8dc524
@SQ SN:chrII    LN:813184   UR:file:genome/Saccharomyces.fa M5:97a317c689cbdd7e92a5c159acd290d2

$ samtools view -bS W303.sam > W303.unsrt.bam
$ samtools sort W303.unsrt.bam W303.sorted
# this will produce W303.sorted.bam
$ samtools index W303.sorted.bam
$ samtools view -h @SQ  SN:chrV LN:576874
@SQ SN:chrVI    LN:270161
@SQ SN:chrVII   LN:1090940
@SQ SN:chrVIII  LN:562643
@SQ SN:chrIX    LN:439888
@SQ SN:chrX LN:745751
@SQ SN:chrXI    LN:666816
@SQ SN:chrXII   LN:1078177
@SQ SN:chrXIII  LN:924431
@SQ SN:chrXIV   LN:784333
@SQ SN:chrXV    LN:1091291
@SQ SN:chrXVI   LN:948066
@SQ SN:chrMito  LN:85779
@PG ID:bwa  PN:bwa  VN:0.6.2-r131
SRR527547.1387762   163 chrI    1   17  3S25M1D11M1S    =   213 260

CACCCACACCACACCCACACACCCACACCCACACCACACC  IIIIIIIIIIIHIIIIHIIIGIIIHDDG8E?@:??DDDA@
XT:A:M    NM:i:1  SM:i:17 AM:i:17 XM:i:0  XO:i:1

SAM format



Read Groups
One component of SAM files is the idea of processing multiple files, but that these track back to
specific samples or replicates.

This can be coded in the header of the SAM file

@RG ID:Strain124 PL:Illumina PU:Genomic LB:Strain124 CN:Broad

It can also be encoded on a per-read basis so that multiple SAM files can be combined together into a
single SAM file and that the origin of the reads can still be preserved. This is really useful when you
want to call SNPs across multiple samples.

The AddOrReplaceReadGroups.jar command set in Picard is really useful for manipulating these.

samtools flagstat
4505078 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 duplicates
4103621 + 0 mapped (91.09%:-nan%)
4505078 + 0 paired in sequencing
2252539 + 0 read1
2252539 + 0 read2
3774290 + 0 properly paired (83.78%:-nan%)
4055725 + 0 with itself and mate mapped
47896 + 0 singletons (1.06%:-nan%)
17769 + 0 with mate mapped to a different chr
6069 + 0 with mate mapped to a different chr (mapQ>=5)



Realigning around Indels and SNPs
To insure high quality Indelcalls, the reads need to realigned after placed by BWA or other aligner.
This can be done with PicardTools and GATK. Note that -jar GATK and picard-tools folders need to
refer to the whole path where they are located (unless are in your current directory)

Need to Deduplicate reads

$ java -Xmx3g -jar picard-tools/MarkDuplicates.jar INPUT=W303.sorted.bam \
OUTPUT=W303.dedup.bam METRICS_FILE=W303.dedup.metrics \
CREATE_INDEX=true VALIDATION_STRINGENCY=SILENT

Fixing Read-Groups

I am using W303 since it is the strain name for this sequencing record. We'd do this for each file RGLB
would be processed as a bam file then later combine them. For now we will just treat it all like one
sample

$ java -Xmx3g -jar $PICARD/AddOrReplaceReadGroups.jar INPUT=W303.dedup.bam \
OUTPUT=W303.readgroup.bam SORT_ORDER=coordinate CREATE_INDEX=True \
RGID=W303 RGLB=SRR527545 RGPL=Illumina RGPU=Genomic RGSM=W303 \
VALIDATION_STRINGENCY=SILENT

Then identify Intervals around variants
$ java -Xmx3g -jar GATK/GenomeAnalysisTK.jar -T RealignerTargetCreator \
-R genome/Saccharomyces.fa \
-o W303.intervals -I W303.readgroup.bam

Then realign based on these intervals

$ java -Xmx3g -jar GATK/GenomeAnalysisTK.jar -T IndelRealigner \
-R genome/Saccharomyces.fa \
-targetIntervals W303.intervals -I W303.readgroup.bam -o W303.realign.bam



SAMtools and VCFtools to call SNPs
$ samtools mpileup -D -S -gu -f genome/Saccharomyces.fa ABC.bam | \
bcftools view -bvcg - > ABC.raw.bcf

$ bcftools view ABC.raw.bcf | vcfutils.pl varFilter -D100 > ABC.filter.vcf

GATK to call SNPs
# run GATK with 4 threads (-nt)
# call SNPs only (-glm, would specific INDEL for Indels or can ask for BOTH)
$ java -Xmx3g -jar GenomeAnalysisTK.jar -T UnifiedGenotyper \

-glm SNP -I W303.realign.bam -R genome/Saccharomyces.fa \
-o W303.GATK.vcf -nt 4



GATK to call INDELs
# run GATK with 4 threads (-nt)
# call SNPs only (-glm, would specific INDEL for Indels or can ask for BOTH)
$ java -jar GenomeAnalysisTK.jar -T UnifiedGenotyper\

-glm INDEL -I W303.realign.bam \
-R genome/Saccharomyces.fa -o W303.GATK_INDEL.vcf -nt 4

VCF Files
Variant Call Format - A standardized format for representing variations. Tab delimited but with
specific ways to encode more information in each column.

##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are filtered)">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=PL,Number=G,Type=Integer,Description="Normalized, Phred-scaled likelihoods for genotypes as defined in the VCF specification">
##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as listed">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">

#CHROM  POS ID  REF ALT QUAL    FILTER  INFO    FORMAT  W303
chrI    141 .   C   T   47.01   .   AC=1;AF=0.500;AN=2;BaseQRankSum=-0.203;DP=23;Dels=0.00;
FS=5.679;HaplotypeScore=3.4127;MLEAC=1;MLEAF=0.500;MQ=53.10;MQ0=0;MQRankSum=-2.474;QD=2.04;ReadPosRankSum=-0.771;
SB=-2.201e+01   GT:AD:DP:GQ:PL  0/1:19,4:23:77:77,0,565

chrI    286 .   A   T   47.01   .   AC=1;AF=0.500;AN=2;BaseQRankSum=-0.883;DP=35;Dels=0.00;
FS=5.750;HaplotypeScore=0.0000;MLEAC=1;MLEAF=0.500;MQ=46.14;MQ0=0;MQRankSum=-5.017;QD=1.34;ReadPosRankSum=-0.950;
SB=-6.519e-03   GT:AD:DP:GQ:PL  0/1:20,15:35:77:77,0,713



Filtering Variants
GATK best Practices http://www.broadinstitute.org/gatk/guide/topic?name=best-practices
emphasizes need to filter variants after they have been called to removed biased regions.

These refer to many combinations of information. Mapping quality (MQ), Homopolymer run length
(HRun), Quality Score of variant, strand bias (too many reads from only one strand), etc.

-T VariantFiltration -o STRAINS.filtered.vcf
--variant W303.raw.vcf \
--clusterWindowSize 10  -filter "QD<8.0" -filterName QualByDepth \
-filter "MQ>=30.0" -filterName MapQual \
-filter "HRun>=4" -filterName HomopolymerRun \
-filter "QUAL<100" -filterName QScore \
-filter "MQ0>=10 && ((MQ0 / (1.0 * DP)) > 0.1)" -filterName MapQualRatio \
-filter "FS>60.0" -filterName FisherStrandBias \
-filter "HaplotypeScore > 13.0" -filterName HaplotypeScore \
-filter "MQRankSum < -12.5" -filterName MQRankSum  \
-filter "ReadPosRankSum < -8.0" -filterName ReadPosRankSum  >& output.filter.log

VCFtools
A useful tool to JUST get SNPs back out from a VCF file is vcf-to-tab (part of vcftools).

$ vcf-to-tab < INPUT.vcf > OUTPUT.tab

#CHROM  POS REF W303
chrI    141 C   C/T
chrI    286 A   A/T
chrI    305 C   C/G
chrI    384 C   C/T
chrI    396 C   C/G
chrI    476 G   G/T
chrI    485 T   T/C
chrI    509 G   G/A
chrI    537 T   T/C
chrI    610 G   G/A
chrI    627 C   C/T



VCFtools to evaluate and manipulate
$ vcftools --vcf W303.GATK.vcf --diff W303.filter.vcf
N_combined_individuals: 1
N_individuals_common_to_both_files: 1
N_individuals_unique_to_file1:  0
N_individuals_unique_to_file2:  0
Comparing sites in VCF files...
Non-matching REF at chrI:126880 C/CTTTTTTTTTTTTTTT. Diff results may be unreliable.
Non-matching REF at chrI:206129 A/AAC. Diff results may be unreliable.
Non-matching REF at chrIV:164943 C/CTTTTTTTTTTTT. Diff results may be unreliable.
Non-matching REF at chrIV:390546 A/ATTGTTGTTGTTGT. Diff results may be unreliable.
Non-matching REF at chrXII:196750 A/ATTTTTTTTTTTTTTT. Diff results may be unreliable.
Found 8604 SNPs common to both files.
Found 1281 SNPs only in main file.
Found 968 SNPs only in second file.

# calculate Tajima's D in binsizes of 1000 bp [if you have multiple individuals]
$ vcftools --vcf Sacch_strains.vcf --TajimaD 1000

Summary
• Reads should be trimmed, quality controlled before use. Preserving Paired-End info is important

• Alignment of reads with several tools possible, BWA outlined here

• SAMTools and Picard to manipulate SAM/BAM files

• Genotyping with SAMtools and GATK

• Summarizing and manipulating VCF files with VCFtools



VAAST 
Variant Annotation Analysis and Search Tool 

CSHL Programming for Biology Oct 2014 
 
Barry Moore 
Director, Science & Research 
USTAR Center for Genetic Discovery 
Department of Human Genetics 
University of Utah 



Outline 

! Historical Perspective 

! Variant Calling (Follow the Probabilities) 

! VAAST 
o  VAT 
o  VST 
o  VAAST 2.0 

! Rare Disease Applications 

! Common Disease Applications 

! Future Directions 



Motivation 

! Billions of years of evolution have fine tuned our DNA 
sequence. 

! Genetic alterations to that sequence can cause disease. 

! Knowing which mutations provides clues to understanding the 
disease. 

! What are the mutations – developing technology. 

! Which mutation – developing analysis methodolgies. 



A Very Breif History of Medical Genetics 

! Cytogenetics 
o  Downs Syndrome - 1959 

! Linkage Mapping 
o  HTT (Huntington's Disease) gene mapped – 1983 

! Positional Cloning 
o  CFTR (Cystic Fibrosis) gene discovered - 1989 

! Sequencing, microarrays and GWAS 
o  ARMD, CD, MI, IBD – 2005-2006 

! Next generation sequencing – personalized genomics 
o  Charcot-Marie-Tooth, Miller Syndrome, Ogden Syndrome 2010-2011 



geneA geneB geneX geneY geneZ 

Disease 

Healthy 

Genome Wide Association 



$10,000,000 
Venter Genome 

$1,000,000 
Watson 

$1,000 
You? 



VAAST Overview 

! Probabilistic tool for disease gene discovery 

! Aggragative variant analysis – feature based 

! Both allele and AAAS frequencies 

! Conservation-controlled AAS 

! Impliments numerous filters 

! Standardized ontology based formats 

! Modular and flexible in design 



Outline 

! Historical Perspective 

! Variant Calling (Follow the Probabilities) 

! VAAST 
o  VAT 
o  VST 
o  VAAST 2.0 

! Rare Disease Applications 

! Common Disease Applications 

! Future Directions 



NGS Data Analysis 

! Trillions of glowing DNA fragments produce base calls (reads). 

! 100s of millions of sequence reads produce alignments. 

! 10s of millions of variant sites produce variant calls. 

! 10s of thousands of variants analyzed for association with 
disease. 

! 1 gene causes disease. 



Follow the Probabilities 

! Base calling – Bayesian inference 

! Base quality score recalibration – Covariant analysis 

! Mapping quality – Pseudo-probabilistic 

! Variant calling – Bayesian inference 

! Variant quality score recalibration – LOD ratio based on a 
trained Gaussian mixture model 

! VAAST - CLRT 



Variant'calling'+'Individual!

•  What!is!the!probability!that!this!site!is!reference!

vs.!variant!given!the!reads!aligned!at!this!site.!

•  What!is!the!probability!that!this!site!has!

homozygous!reference!!genotype!vs.!

heterozygous!genotype!given!the!reads!aligned!

at!this!site.!



Variant'calling'+'Popula3on!
•  What!is!the!probability!that!this!site!is!reference!(FOR'
THE'POPULATION)!given:!!
o  The!reads!aligned!at!this!site!FOR'THE'POPULATION'

•  What!is!the!probability!that!the!genotype!is!

homoygous!reference!(FOR'THE'INDIVIDUAL)!given:!
o  The!reads!aligned!at!this!site!FOR'THE'INDIVIDUAL'
o  The!probability!that!this!site!is!variant!FOR'THE'
POPULATION'



Variant'calling'+'Popula3on!
TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA 

                   TGCCTGTACAGCTCGTTTTCTACAAGATTC 

        AACTGAACTCCTGCCTGTACGGCTCGT 

           TGAACTCCTGCCTGTACGGCTCGTTTTCTA 

                       TGTACAGCTCGTTTTCTACAAGATTCCAGA 

               CTCCTGCCTGTACGGCTCGTTTTCTACAAG 

              ACTCCTGCCTGTACGGCTCGTTTTCTACAA 

                    GCCTGTACGGCTCGTTTTCTACAAGATTCC 

Reference Sequence 

                   TGCCTGTACAGCTCGTTTTCTACAAGATTC 

        AACTGAACTCCTGCCTGTACGGCTCGT 

           TGAACTCCTGCCTGTACAGCTCGTTTTCTA 

In
d
iv
id
u
a
l!

P
o
p
u
la
?
o
n
!



Missing'data!

•  Low/no!sequence!coverage!
•  Low!base!quali?es!
•  Variant!callers!typically!emit!only!variant!sites!

•  What!happens!when!we!don't!dis?nguish!

between!missing!data!and!reference!sites!

•  Annota?ng!noGcalls!can!help!solve!this!problem!

•  Popula?on!based!variant!calling!provides!this!



Missing data 

geneA geneB geneX geneY geneZ 

Disease 

Healthy 



Variant Calling Format (VCF) 

##fileformat=VCFv4.1 
##FILTER=<ID=LowQual,Description="Low quality"> 
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality"> 
##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth"> 
##contig=<ID=1,length=249250621> 
1    745370  .  TA    T    1310.90   PASS       DP=210;    GT:GQ   0/1:99    0/1:99 
1    749592  .  G     A    20        LowQual    DP=7;      GT:GQ   ./.       1/1:6 
1    749683  .  C     T    602.40    PASS       DP=69;     GT:GQ   ./.       1/1:13 
1    749856  .  C     T    261.37    PASS       DP=79;     GT:GQ   1/1:9     0/1:99 
1    749899  .  G     A    302.28    PASS       DP=53;     GT:GQ   0/0:9     0/1:99 
1    752566  .  G     A    1047.91   PASS       DP=47;     GT:GQ   1/1:30    0/1:29 
1    752721  .  A     G    7625.90   PASS       DP=360;    GT:GQ   1/1:99    0/1:99 

C
H

R
O

M
 

P
O

S
 

ID
 

R
E

F 

A
LT

 

Q
A

U
L 

FI
LT

E
R

 

IN
FO

 

FO
R

M
AT

 

IN
D

IV
ID

U
A

L 

IN
D

IV
ID

U
A

L 



VAAST 

! A tool for identifying disease genes and variants 

! Collaboratatively developed 
o  Mark Yandell (University of Utah) 
o  Chad Huff (MD Anderson) 
o  Martin Reese (Omicia Inc.) 

! Inputs 
o  Target genome variant files 
o  Background genome 

variant files 
o  Genomic features (gene 

models) 
o  Genomic sequence 

! Outputs a prioritized list of 
features (genes/
transcripts) associated 
with the disease genomes. 
o  VAAST Score 
o  P-value 
o  Confidence interval 



Variant 
Annotation 

Variant 
Selection 

Variant 
Analysis 

Variant 
Annotation 
Tool 

Variant 
Selection 
Tool 

Variant 
Annotation 
Analysis 
Search 
Tool 



GVF 

VAT 
(Variant Annotation Tool) 

VST 
(Variant Selection Tool) 

Reference 
Genome 

Annotated 
Variants 

Merged 
Variant Sets 

Reference 
Genes 

VAAST Pipeline 

Annotated 
Variants 

Annotated 
Variants 

3.5 Million 
Variants 

Fasta GFF3 

GVF/
VCF 

CDR 



VAAST 

Prioritized 
Candidate 

Genes 

Background 
Genomes 

Target 
Genomes 

CDR CDR 

VAAST 
Report 



VAAST File Types 

! Input 
o  Fasta - Genome 
o  GFF3 - Genes 
o  GVF - Variants 

! Output 
o  GVF – Annotated Variants 
o  CDR – Population Variants 
o  VAAST – Prioritized gene list 



Fasta 

>chr1 
TAACAAAATAAGATCCAGAAACTTTCCATTAGCGTGGGGGTGACCATGAA 
ATGCCTGGTCAAAAACCCGGGCACTGATTGTCATAACCATTATGCAACTG 
GTGTTGCGTCCATCAGAATCTAGTTTAAGAATACTCTTCTCTCTATAGGA 
GTCTTCGCGGCAGACCTAGCCTGCTCTGTGTCCTCCTGAAATGAAGGAAT 
GTTCTCTCCCATTATTTCTTCTAACAGCTTGGTTAGCAAGCTCCGCCCTC 
TTCTTTATCTGACCTTCTAACGACCTCACCAGATGTGTGAAGCAGCCCGG 
CTCCATGTGTATCAGgcacgcacgcacacacgcacgcacacCAACCTGCA 
AAGGAAATAACGGGGCAGCCCTGCAGTGTGAAAAGCAATGGGATTTTGTG 
GGTTCCACCTCCTCACCTAAGCATCCCTGGTCTACGCTATGTCACGACCC 
TCTGCTGAACCACGTCAGGGTGAACCCCNNNNNNNNNNNNN 
 





Variants, Features and Effects 

Variant Type 
• sequence_altera?on!
• dele?on!
• inser?on!
• duplica?on!
• inversion!
• subs?tu?on!
• SNV'
• MNP!

• complex!subs?tu?on!

• transloca?on!

Variant Effect 
• sequence_variant!
• gene_variant!
• five_prime_UTR_variant!

• three_prime_UTR_variant!

• exon_variant!
• splice_region_variant!
• splice_donor_variant!
• splice_acceptor_variant!
• intron_variant!
• coding_sequence_variant!
• stop_retained!
• stop_lost!
• stop_gained!
• synonymous_variant!

• missense_variant'
• amino_acid_subs?tu?on!

• frameshiO_variant!

• inframe_variant!

!

Feature Type 
• sequence_feature!
• gene!
• mRNA!

• exon!
• CDS'
• splice!site!
• ncRNA!



Sequence Ontology 



Generic Feature Format (GFF3) 

##gff-version 3 
##sequence-region chr1 1 1497228 
chr1   . gene 1000 9000 . + . ID=gene00001;Name=EDEN 3 
chr1   . mRNA 1050 9000 . + . ID=mRNA00001;Parent=gene00001;Name=EDEN.1 
chr1   . mRNA 1050 9000 . + . ID=mRNA00002;Parent=gene00001;Name=EDEN.2 
chr1   . mRNA 1300 9000 . + . ID=mRNA00003;Parent=gene00001;Name=EDEN.3 
chr1   . exon 1300 1500 . + . ID=exon00001;Parent=mRNA00003 
chr1   . exon 1050 1500 . + . ID=exon00002;Parent=mRNA00001,mRNA00002 
chr1   . exon 3000 3902 . + . ID=exon00003;Parent=mRNA00001,mRNA00003 
chr1   . exon 5000 5500 . + . ID=exon00004;Parent=mRNA00001,mRNAchr1  mRNA00003 
chr1   . exon 7000 9000 . + . ID=exon00005;Parent=mRNA00001,mRNA00002,mRNA00003 

S
eq

id
 

S
ou

rc
e 

Ty
pe

 

S
ta

rt 

E
nd

 

S
co

re
 

S
tra

nd
 

P
ha

se
 

A
ttr

ib
ut

es
 



##gvf-version 1.06 
##genome-build GRCh37.1 
##sequence-region chr16 1 88827254 
chr16 UG SNV 291141 291141 33 + . ID=ID_1;Variant_seq=A,G;Reference_seq=G; 
chr16 UG SNV 291360 291360 17 + . ID=ID_2;Variant_seq=G;Reference_seq=C; 
chr16 UG SNV 302125 302125 67 + . ID=ID_3;Variant_seq=T,C;Reference_seq=C; 
chr16 UG SNV 302365 302365 43 + . ID=ID_4;Variant_seq=G,C;Reference_seq=C; 
chr16 UG SNV 302700 302700 75 + . ID=ID_5;Variant_seq=T;Reference_seq=C; 
chr16 UG SNV 303084 303084 16 + . ID=ID_6;Variant_seq=G,T;Reference_seq=T; 
chr16 UG SNV 303156 303156 90 + . ID=ID_7;Variant_seq=T,C;Reference_seq=C; 
chr16 UG SNV 303427 303427 52 + . ID=ID_8;Variant_seq=T,C;Reference_seq=C; 
chr16 UG SNV 303596 303596 66 + . ID=ID_9;Variant_seq=T,C;Reference_seq=C; 

S
eq

id
 

S
ou

rc
e 

Ty
pe

 

S
ta

rt 

E
nd

 

S
co

re
 

S
tra

nd
 

P
ha

se
 

A
ttr

ib
ut

es
 

Genome Variation Format 



Variant Annotation Tool (VAT) 

! Adds functional annotation of the effect of sequence 
alterations (SNV, insertion,deletion) on sequence features 
(genes, mRNA) 

! Takes as input a reference sequence (Fasta file), and set of 
gene models (GFF3 file) and a set of variants (GVF) 

! Produces an annotated GVF file as output 

VAT –a genome.fasta –f gene.gff3 variants.gvf > variants.vat.gvf 



Variant_effect attribute 

! Describes the effect of a sequence alteration on a sequence 
feature 
o  The sequence_variant (the effect) 
o  The Variant_seq allele index (which allele causes this effect) 
o  The sequence_feature (what type of feature is affected) 
o  The feature IDs (which features are affected 

Variant_seq=A,T; 
Variant_effect=missense_variant 0 mRNA NM_001160184 NM_032129; 



Variant Selection Tool (VST) 

! Applies complex set operations (intersection, union etc) to 
GVF files and produces a condensed representation of the 
genotypes. 

! Takes as input a description of the set operation and a group 
of GVF files. 

! Outputs population genotypes in CDR format. 

VST –o 'I(0,1)' exome1.gvf exome2.gvf > affected.cdr 
 
VST –o 'C(0,U(1,2))' kid.gvf mom.gvf dad.gvf > denovo.cdr 



VST set operations 

! (U)nion: All variants in all files. 

! (I)ntersection: Variants shared by all files. 

! (C)omplement: The left relative complement or variants 
unique to the first file (set). 

! (D)ifference: The symetric difference or variants unique 
to any one file (set). 

! (S)hared: Variants shared by n files. S(n,0..2); 
'S(">2",0..2)'). 
o   =  Exactly n files share the variant. 
o  >  Greater than n files share the variant. 
o  <  Less than n files share the variant. 



VAAST Condenser File (CDR) 

chr1  877831  877831  SNV  missense_variant     T|W  0-3|C:C|R:R 
chr1  881627  881627  SNV  synonymous_variant   G|L  0,2-3|A:A|L:L  1|A:G|L:L 
chr1  881918  881918  SNV  missense_variant     G|S  2|A:G|L:S 
chr1  887801  887801  SNV  synonymous_variant   A|T  1|A:G|T:T      0,2-3|G:G|T:T 
chr1  888639  888639  SNV  synonymous_variant   T|E  0|C:C|E:E      1|C:T|E:E 
chr1  888659  888659  SNV  missense_variant     T|I  0,1-2|C:C|V:V  3|C:T|V:I 
chr1  889238  889238  SNV  missense_variant     G|A  1|A:G|V:A 
chr1  897325  897325  SNV  synonymous_variant   G|A  0,2|C:C|A:A    1|C:G|A:A 
chr1  897738  897738  SNV  synonymous_variant   C|L  1|C:T|L:L 
chr1  900505  900505  SNV  synonymous_variant   G|V  3|C:C|V:V      2|C:G|V:V 
chr1  900972  900972  SNV  3_prime_UTR_variant  T    0,2|G:G        1|G:T 
chr1  901023  901023  SNV  3_prime_UTR_variant  T    0,2-3|C:C      1|C:T 
##      GENOME-LENGTH   914121104 
##      GENOME-COUNT    7 
##      GENDER  F:0-1,3       M:2 
##      FILE-INDEX      0       A12.vat.gvf 
##      FILE-INDEX      1       B34.vat.gvf 
##      FILE-INDEX      2       C56.vat.gvf 
##      FILE-INDEX      2       D78.vat.gvf 

S
eq

id
 

Ty
pe

 

S
ta

rt 

E
nd

 

E
ffe

ct
 

R
ef

er
en

ce
 

G
en

ot
yp

es
 



VAAST 

! Scores and prioritizes features in a probabalistic fashion for 
their likelihood of being associated with a disease phenotype. 

! Takes as input a set of gene models (GFF3), a set of variants 
for background/healthy genomes (CDR) and a set of variants 
for target/disease genomes (CDR). 

VAAST –m lrt –o Output_name genes.gff3 background.cdr target.cdr 



VAAST Uses Variant Frequencies in a 
Probabilistic Fashion 

Composite Likelihood Ratio Test 

Maximum Likelihood 
of the Null Model 
(No Difference) 

Maximum Likelihood 
of the Alternate Model 
(There is Difference) 



VAAST Uses Variant Frequencies in a 
Probabilistic Fashion 

ML!of!Null!

ML!of!Alt!

LRT!for!AAS!

(HGMD/1KG)!

! p: MAF 

! B/T: Backgroud/Target Allele Counts 

! X/Y: Minor/Major Allele 



Conservation-controlled amino acid 
scoring matrix – CASM 
! The amino acid severity parameter is adjusted to account for 

the degree of phylogenetic conservation at a site. 

! Conservation data comes from PhastCons scores which 
estimate a probability of a site being under negative selection 
(conserved). 

! Each AAS type is scored at all sites with a PhastCons score of 
0 and 1 (the two extremes). 

! The AAS severity parameter at any PhastCons score is then 
lineraly interpolated between those extremes. 

! The effect is that the AAS severity paremeter dimishes with 
diminishing conservation.  



VAAST Uses Variant Frequencies in a 
Probabilistic Fashion 
! VAAST gives us the likelihood of the composite genotype of a 

given gene in the target given the background. 

! Do allele and AAS frequencies differ between background and 
target genomes within a given gene or feature? 

! Composite likelihood calculation assumes independence 
across sites.  To control for LD, statistical significance is 
estimated by permutation test. 

! Multiple test correction for number of features (~20,000) is two 
orders of magnitude better than for the number of variants 
(~3,500,000). 



VAAST: highly accurate variant 
prioritization 

A1454 high quality, published disease-causing/predisposing OMIM alleles1 
B1454 Variants randomly selected from 5 different healthy  CEU individuals’ genomes 
    
 

                                                  Percent Judged Deleterious 
Dream 

tool 
SIFT2 ANNOVAR3 PolyPhen2 Mutation 

Taster 
VAAST 

Disease 
allelesA 

100% 58% 71% 84% 84% 99% 

Healthy 
allelesB 

0% 12% 1% 16% 16% 10% 

Accuracy   
(Sn + Sp)/2 100% 80% 88% 86% 86% 95% 



VAAST Filters 

! Inheritance model 
o  Dominant: Only score one allele per feature 
o  Recessive: Only score two alleles per feature 

! Locus heterogeneity 
o  Require all affected individuals to have a scoring allele 

! Complete penetrance 
o  Don't score a feature if anyone in the background shares it's scoring 

alleles. 

! Rate/PAR 
o  Hold the MAF in the background/target below the given value. 



Dangers of filtering 

! Filters are binary – you either pass or fail. 

! Filters (usually) don't consider missing data. 

! Filters aren't able to incoporate multiple factors into the 
equation. 



G:R 
G:A 

G:A 
G:R 

G:A 
G:R 

Mom Dad 

R:Q 

R:Q R:Q 
R: * 

CHR 16:  DHODH CHR 5: DNAH5 

• Ng et al, Nature Genetics 42, 30–35, 2010 
• Roach, et al, Science 328 636, 2010 

Alleles Responsible for Miller Syndrome 
in Utah Kindred 

R: * 

R: * 

Mom Dad 

Son Daughter Son Daughter 



DNAH5!

DHODH!

Schematic of VAAST Analysis of Utah 
Miller Kindred Using a Single Quartet 

 



A rare X-linked mendelian disorder 

! A Utah family coming to the University Hospital for 20+ years 

! About half of the male offspring die around 1 year of age 

! Aged appearance 

! Craniofacial anomalies 

! Hypotonia 

! Global developmental delays 

! Cardiac arrhythmias 



Four Affected Boys over Two 
Generations 

I 

II 

III 



Identifying Candidate Genes  

! VAAST identified NAA10 as candidate gene 
o  Run entire pipeline in an afternoon 
o  3 candidate genes (NAA10 ranked 2) proband only 
o  1 candidate gene (NAA10) with pedigree 



VAAST benchmark – 100 OMIM diseases 

! Randomly choose known disease genes from OMIM 

! Randomly insert  one or more published disease causing 
variants for that gene into a personal exome 

! Assay the ability of VAAST, SIFT1 and ANNOVAR2 to identify 
the disease gene in a genome-wide screen 

! Repeat for 100 different genes under a variety of different 
scenarios, e.g. dominant, recessive, various case cohort sizes 
etc. 



VAAST benchmark – 100 OMIM Diseases 

Hu et al. Genet Epidemiol. 2013 



VAAST benchmark – common disease 

Hu et al. Genet Epidemiol. 2013 

Power comparisons over published LPL 
(Power is calculated based on 100 bootstraps) 



VAAST in non-human organisms 

Shapiro et al. Science. 2013 



pVAAST for pedigree analyses 

! Extends VAAST to incorporate family data (pedigrees) 

! pVAAST performs linkage analysis by calculating a gene-
based LOD designed for NGS 

! The LOD score at each locus is incorporated directly into the 
CLRT. 

! In large-scale simulation studies and re-analysis of known 
disease pedigress, pVAAST had significantly higher statistical 
power compared other tools – including VAAST. 



VAAST 1.0 cardiac septal defect 

Loca?on!along!the!genome!

L
o
g
!p
Gv
a
lu
e
!

Loca?on!along!the!genome!

L
o
g
!p
Gv
a
lu
e
!

Loca?on!along!the!genome!

GATA4%

Loca?on!along!the!genome!

Run!?me:!!24!hours!on!42!CPUs!

V
A
A
S
T
!1
.0
!l
o
g
!p
Gv
a
lu
e
!

Hu et al submitted, Original study: Garg et al. Nature. 2003 



Loca?on!along!the!genome!

L
o
g
!p
Gv
a
lu
e
!

Loca?on!along!the!genome!

L
o
g
!p
Gv
a
lu
e
!

Loca?on!along!the!genome!

Loca?on!along!the!genome!

Run!?me:!!4!hours!on!42!CPUs!

p
V
A
A
S
T
!l
o
g
!p
Gv
a
lu
e
!

GenomeGwide!significance!

(p=0.05/21000=2.4x10G6)!

GATA4%

pVAAST - cardiac septal defect 



Phevor 

RPeh VO
Phenotype Driven
VAAST Ontological
Re-ranking Tool

Phenomizer
Gene Properties 
•  Gene Ontology 

•  biological process 
•  molecular function 
•  cellular component 

Disease Phenotype 
•  Human Phenotype 

Ontology 
•  Mammalian 

Phenotype Ontology 
•  Disease Ontology 

Candidate Gene Ranking 



Phevor benchmark 
0 

200 

400 

600 0% 

25% 

50% 

75% 

100% 

Phenomizer VAAST Phevor 

A
ve

ra
ge

 R
an

k 
of

 D
is

ea
se

-C
au

si
ng

 G
en

es
 

Pe
rc

en
t R

an
ke

d 
D

is
ea

se
-C

au
si

ng
 G

en
es

 

Top Candidate Top 10 Candidate 

Ranked Target Genes Average Rank 

•  50!Dominant!DiseaseG

Causing!Variants!

•  50!Corresponding!
Phenomizer!Reports!

•  Spiked!into!a!single!
healthy!exome!

•  Average!Ranks!
•  Phenomizer!–!134*!

•  VAAST!–!300!

•  Phevor!–!1.3!



Omicia - Opal 

Development supported by NIH SBIR grants 1R4HG003667 to Omicia/Yandell,  
SBIR 1R44HG002991 to Omicia  



VAAST in Opal 



VAAST in Summary 
• Probabilistic Disease Gene Finder 

• Feature Based 

• Both Allele and AAS Frequencies 

• Considers the Inheritance Model 

• As few as 1-2 target genomes can be sufficient to 
identify causative gene. 

• Complete analysis pipeline 

• Many parameters allow fine-grained control of analysis 

• pVAAST and Phevor on the way for otherwise under-
powered analyses. 





Acknowledgements 
VAAST'Development'
• Chad!Huff!
• Hao%Hu%
• Lynn!Jorde!
• Edward%Kirulata%
• Marco%Falcioni%
• Barry%Moore%
• Mar?n!Reese!

• Jinchuan!Xing!
• Mark!Yandell!

Yandell'Lab'
• Michael!Campbell!

• Daniel!Ence!
• Steven!Flygare!
• Carson!Holt!
• Brei!Kennedy!
• Zev!Kronenberg!
• Qing!Li!
• Gordon!Lemmon!

• Barry!Moore!

• EJ!Osbourne!
• Scoi!Watkins!

• Mark!Yandell!

Omicia'
• Marco!Falcioni!

• Edward!Kirulata!
• Mar?n!Reese!

• Jeff!Rule!
• Charlene!Rigby!
• Andrew!Gao!

Sequence'Ontology'
• Mike!Bada!

• Colin!Batchelor!
• Karen!Eilbeck!
• Barry!Moore!

• Shawn!Reynearson!

Funding'
• NHGRI!



Acknowledgements 





Base'Quality'Score!
•  BaseGcalling!considers!many!possible!sources!of!error!
in!the!sequencing!process:!

o Mixed!clusters!

o  Out!of!phase!clusters!
o  Overlapping!emission!spectra!

•  The!base!quality!score!(BQS)!is!based!on!the!
probability!that!the!base!was!called!wrong.!

•  The!quality!score!is!"Phred!scaled"!
o G10!*!log10(probability!of!miscall)!



@HWI-ST179R:404:D1YNUACXX:7:1101:1228:1937 1:N:0:ATCACG
NTGATACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAAGATGATGGC
+
#1=DDDFFGHHHHJJHHIIHIIIFHJJFHCHGIJJGIICGIJIGIJJEHIAGHIIGJJJGIJIIHI:DGCHIG
@HWI-ST179R:404:D1YNUACXX:7:1101:1184:1940 1:N:0:ATCACG
NATGTCAGCCCACCCAGGAGCAACACAGACCCAAGGGAACCCCCACTCCCAGCCAAGAGAAGCCGTGAGTGAA
+
#1=BADDDHHHFHIIIIIIIIIII>GIHGIIIIIIIIIIIIIIIEIGGHIIIHFHHEEEECCCCB9>=?5>CD
@HWI-ST179R:404:D1YNUACXX:7:1101:1193:1964 1:N:0:ATCACG
NTGCCCCACAGGGGCGGTGTAAGACAGGAGTCCATCTGGGGCAGGGTGAGAGGATGGGGGTCAGAGGCACTAA
+
#1=DDFFFHHDHFIJJJ6@<FHJGIJJIIIC>EEEHHEFFFCDDDD(8?BADD??@BDDD07ACDDDB@B<CC
@HWI-ST179R:404:D1YNUACXX:7:1101:1166:1977 1:N:0:ATCACG
CTTCTTGCACCTCAAGGGATCACTCCCCTCTAGGCCGTTGCCTGTGCCATTTCCTCTCGCTGGGAAACCCTCT
+
@?<D:DDDDHHFHGIIIIF;DGGAHHIIGHHHIIIIIDHIIIDH9B?CCB=?@?B::>:>@3>>@C@CCB<@#
@HWI-ST179R:404:D1YNUACXX:7:1101:1423:1940 1:N:0:ATCACG
NAGATGTTGGCTATAGGAATACGGCAGGAAAATGAAACGTTGTGCATGGCAGGGCAGCATCACTTTGGGGATC
+
#11ADDDDHHHDHICFHGHIIHHIIIII7DC?EH@B?C@6;<B;3=CC:AAC5>?B9?&8?<?##########

FastQ!

G10*log10(0.0013))!+!33!=!72!!=>!H!(ASCII)!

PHRED!Scaled! FastQ!Encoded!



FastQC'Report!



Sequence'Alignment!
•  BLAST!

o  Fast!(at!least!we!used!to!think!so)!
o  Accurate!–!SmithGWaterman!algorithm!guaruntees!

op?omal!alignment.!

o  Seed!and!extend!(SW!dynamic)!

•  ShortGread!aligners!
o  Fast!
o  Sort!of!accurate!–!Many!hueris?cs!

o  Seeding!and!extension!(hueris?cs!terminate!unlikely!

extens?ons).!



SAM/BAM!•  QNAME: !Query!Name!(which!read)!

•  FLAG: !Bit!Flag!(Categorical!details!of!the!alignment)!

•  RNAME: !Reference!Name!(which!chromosome)!

•  POS: ! !Posi?on!(The!star?ng!loca?on!of!the!alignment)!

•  MAPQ: !Mapping!Quality!(How!well!did!the!sequence!map)!

•  (CIGAR,!PNEXT,!RNEXT,!TLEN)!

•  SEQ: ! !Sequence!

•  QUAL: !Base!quali?es!



Challenges'for'short+read'aligners!
•  Repeta?ve!regions!

o Mul?ple!algnments!with!the!same!score!

o  How!many!of!mul?ple!alignments!to!score!

o Which!SNV!should!I!choose!

•  Inser?ons!and!dele?ons!
o  Aligners!hate!to!open!gaps!
o Working!one!read!doesn't!allow!context!

o  Indel!edges!are!inconsistent!
o  A!halo!of!bogus!SNVs!can!be!induced!



Mul3+mapping'reads!



Challenges'for'short+read'aligners!
•  Repeta?ve!regions!

o Mul?ple!algnments!with!the!same!score!

o  How!many!of!mul?ple!alignments!to!score!

o Which!SNV!should!I!choose!

•  Inser?ons!and!dele?ons!
o  Aligners!hate!to!open!gaps!
o Working!one!read!at!a!?me!doesn't!allow!context!

o  Indel!placements!are!inconsistent!

o  A!halo!of!bogus!SNVs!can!be!induced!



Indel'alignment!

TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA 

                   TGCCTGTACAGCTCGTT-TCTACAAGATTC 

        AACTGAACTCCTGCCTGTACAGCTCGT 

           TGAACTCCTGCCTGTACAGCTCG-TTTCTA 

                       TGTACAGCTCGTTT-CTACAAGATTCCAGA 

               CTCCTGCCTGTACAGCTCGTTTTCTACAAG 

              ACTCCTGCCTGTACAGCTCGTTTC-TACAA 

                    GCCTGTACAGCTCGT-TTCTACAAGATTCC 

Reference Sequence 



Polishing'Alignments!

•  Base!quality!recalibra?on!–!covariant!analysis!
o Readgroup!
o Cycle!
o  Sequence!context!

•  Local!reGalignment!around!indels!(Local!

assembly)!

o  Improves!indel!calls!

o Reduces!SNV!fales!posi?ve!



Covariant'based'BQS'recalibra3on!

TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA 

                   TGCCTGTACAGCTCGTTTTCTACGAGATTC 

        AACTGAACTCCTGCCTGTACAGCTCGT 

           TGAACTCCTGCCTGTACAGCTCGTTTTCTA 

                       TGTACAGCTCGTTTTCTACGAGATTCCAGA 

               CTCCTGCCTGTACAGCTCGTTTTCTACGA

              ACTCCTGCCTGTACAGCTCGTTTTCTACG 

                    GCCTGTACAGCTCGTTTTCTACGAGATTCC 

Reference Sequence 



Polishing'Alignments!

•  Base!quality!recalibra?on!–!Covariant!analysis!
o Readgroup!
o Cycle!
o  Sequence!context!

•  Local!reGalignment!around!indels!(Local!

assembly)!

o  Improves!indel!calls!

o Reduces!SNV!fales!posi?ve!



Indel'alignment!

TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA 

                   TGCCTGTACAGCTCGTT-TCTACAAGATTC 

        AACTGAACTCCTGCCTGTACAGCTCGT 

           TGAACTCCTGCCTGTACAGCTCG-TTTCTA 

                       TGTACAGCTCGTTT-CTACAAGATTCCAGA 

               CTCCTGCCTGTACAGCTCGTTTTCTACAAG 

              ACTCCTGCCTGTACAGCTCGTTTC-TACAA 

                    GCCTGTACAGCTCGT-TTCTACAAGATTCC 

Reference Sequence 



Indel'alignment!

TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA 

                   TGCCTGTACAGCTCGTT-TCTACAAGATTC 

        AACTGAACTCCTGCCTGTACAGCTCGT 

           TGAACTCCTGCCTGTACAGCTCGTT-TCTA 

                       TGTACAGCTCGTT-TCTACAAGATTCCAGA 

               CTCCTGCCTGTACAGCTCGTT-TCTACAAG 

              ACTCCTGCCTGTACAGCTCGTT-TCTACAA 

                    GCCTGTACAGCTCGTT-TCTACAAGATTCC 

Reference Sequence 



Variant'Calling!

TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA 

                   TGCCTGTACAGCTCGTTTTCTACAAGATTC 

        AACTGAACTCCTGCCTGTACGGCTCGT 

           TGAACTCCTGCCTGTACAGCTCGTTTTCTA 

                       TGTACAGCTCGTTTTCTACAAGATTCCAGA 

               CTCCTGCCTGTACGGCTCGTTTTCTACAAG 

              ACTCCTGCCTGTACAGCTCGTTTTCTACAA 

                    GCCTGTACGGCTCGTTTTCTACAAGATTCC 

Reference Sequence 

? 



Bayes'Theorem!

•  Incorporates!the!probability!of!our!data!given!the!
hypotyhesis!

•  Incorporates!prior!informa?on!–!the!probability!this!

site!is!reference.!

•  Incorporates!the!probability!of!the!data!under!all!
hypotheses!

•  Provides!a!probability!of!belief!in!the!hypothesis!

P(Ref|Data) =  
P(Data|Ref) * P(Ref)  

P(Data)  



Variant'quality'score!

•  The!probability!that!the!site!was!incorrectly!
called!

•  Phred!scaled!so!its!more!intui?ve!

•  Can!be!used!to!filter!low!quality!sites!



Genotype'quality'score!
•  The!probability!that!the!site!was!incorrectly!
genotyped.!

•  Is!similar!to!VQS!when!calling!single!individual's!

variants!–!but!not!when!calling!popula?on!variants.!

•  Can!be!used!to!filter!low!quality!sites!on!an!individual!
basis!when!calling!variants!on!a!popula?on.!

•  This!is!the!value!that!you!want!to!use!to!evaluate!the!
quality!of!an!variant.!



Variant'filtering'and'recalibra3on!
!

•  Filtering!on!VQS!or!GQS!is!so!yesterday!!
•  Popula?on!based!variant!calling!allows!popula?on!
based!covariant!analysis!of!VQS!

•  Variant!calling!programs!are!implimen?ng!these!

recalibra?ons!

o  GATK!–!VQSR!
o  Real!Time!Genomics!–!AVR!Score!

o  FreeBayes!



VQSR!
•  Considering!only!highGquality!sites!(HapMap3!
concordant)!build!a!mixture!model!considering!

various!coGvarying!parameters!

o  Allele!Balance!(ref/alt!in!hets)!
o  Homopolymer!run !!

o MAPQ!score!

o  Strand!Bias!
o  Depth!of!coverage!

•  Apply!that!model!to!all!variants!un?l!a!given!number!

of!known!sites!have!been!recovered.!



VQSR!

DePreisto et al, Nature Genetics 2011 



Evalua3ng'variant'call'sets!

•  Variant!counts!(~3.5G4M!WGS,!~50K!capture,!

~20K!coding,!~10K!missense)!

•  Ti/Tv!Ra?o!(~2.1G2.8)!
•  Concordance!with!known!sites!(HapMap3)!

•  NIST/GCAT!–!Tool!for!comparing!pipelines!

o hip://www.bioplanet.com/gcat!



10/16/13	



1	



Programming for Biology 
Protein Evolution / Similarity Searching"

1	



Bill Pearson"
wrp@virginia.edu"

What BLAST Does / Why BLAST works"

Protein Evolution/ Similarity Searching"

•    9:00 – Homology and Expectation value"
•  10:30 – Similarity searching workshop I"
•    1:30 – Practical Similarity Searching, improving 

sensititivty"
•    3:00 – Workshop II – Parsing search results"

2	





10/16/13	



2	



Effective Similarity Searching"

1.  Always search protein databases (possibly with 
translated DNA)"

2.  Use E()-values, not percent identity, to infer homology "
–  E() < 0.001 is significant in a single search"

3.  Search smaller (comprehensive) databases"
4.  Change the scoring matrix for:"

–  short sequences (exons, reads)"
–  short evolutionary distances (mammals, vertebrates,  a-

proteobacteria)"
–  high identity (>50% alignments) to reduce over-extension"

5.  All methods (pairwise, HMM, PSSM) miss homologs, 
and find homologs the other methods miss"

4	



Sequence Similarity - Conclusions"
•  Homologous sequences share a common ancestor, 

but most sequences are non-homologous"
•  Always compare Protein Sequences"
•  Sequence Homology can be reliably inferred from 

statistically significant similarity (non-homology cannot 
from non-similarity)"

•  Homologous proteins share common structures, but 
not necessarily common functions"

•  Sequence statistical significance estimates are 
accurate (verify this yourself)10-6 < E() < 10-3 is 
statistically significant"

•  Scoring matrices set evolutionary look back horizons - 
not every discovery is distant"

•  PSI-BLAST can be more sensitive, but with lower 
statistical accuracy"



10/16/13	



3	



Establishing homology from  
statistically significant similarity 

Why BLAST works"
•  For most proteins, homologs are easily found 

over long evolutionary distances (500 My – 2 
By) using standard approaches (BLAST, 
FASTA)"

•  Difficult for distant relationships or very short 
domains"

•  Most default search parameters are optimized 
for distant relationships and work well"

5	



6	



Protein Evolution and Sequence Similarity"

Similarity Searching I!
•  What is Homology and how do we recognize it?"
•  How do we measure sequence similarity – 

alignments and scoring matrices?"
•  DNA vs protein comparison"

Similarity Searching II!
•  More effective similarity searching"

–  Smaller databases"
–  Appropriate scoring matrices"
–  Using annotation/domain information"



10/16/13	



4	



Homologues share a common ancestor"

7	



chemical evolution"

prokaryotes/eukaryotes"

plants/animals"

vertebrates/"
arthopods"

self-replicating systems"

4,289"6,530"
18,000"

tim
e 

(b
ilio

ns
 o

f y
ea

rs
)"

hu
m

an
"

ho
rs

e"
fis

h"

in
se

ct
"

w
or

m
"

w
he

at
"

ye
as

t"

E.
 c

ol
i"

-0.1"

-1.0"

-2.0"

-3.0"

-4.0"

When do we infer homology?"

8	



Bovine trypsin (5ptp)"
Structure: "E()< 10-23;"

"RMSD 0.0 A "
Sequence: "E()< 10-84"

"100% 223/223"

S. griseus trypsin (1sgt)"
E()< 10-14  RMSD 1.6 A"
E()< 10-19  36%; 226/223"

S. griseus protease A (2sga)"
E()< 10-4;  RMSD 2.6 A"
E()< 2.6 25%; 199/181"

Homology <=> structural similarity"
                  ?  sequence similarity"



10/16/13	



5	



When can we infer non-homology?"

9	



Subtilisin (1sbt)"
E() >100"
E()<280;  25% 159/275"

Cytochrome c4 (1etp)"
E() > 100"
E()<5.5;  23% 171/190"

Non-homologous proteins have"
different structures"

Bovine trypsin (5ptp)"
Structure: "E()<10-23"

"RMSD 0.0 A "
Sequence: "E()<10-84"

"100% 223/223"
"

Homology is confusing I: 
Homology defined Three(?) Ways"

•  Proteins/genes/DNA that share a common 
ancestor"

•  Specific positions/columns in a multiple sequence 
alignment that have a 1:1 relationship over 
evolutionary history"
–  sequences are 50% homologous ???"

•  Specific (morphological/functional) characters 
that share a recent divergence (clade)"
–  bird/bat/butterfly wings are/are not homologous"

10	





10/16/13	



6	



Single origin" Multiple origins"

present"

past"

Homology is confusing II: 
Are All Sequences Homologous?"

No Homology without excess similarity"

Homology from sequence similarity"

•  Sequences are inferred to share a common 
ancestor based on statistically significant excess 
similarity. Any evidence of excess similarity can be 
used to infer homology"

•  Lack of sequence evidence cannot be used to infer 
non-homology."
–  Proteins with different structures are non-

homologous"
•  There are always two alternative hypotheses: 

homology (common ancestry), or independence – 
one must weigh the evidence for each hypothesis  
(independence is the null hypothesis)."

12	





10/16/13	



7	



13	



+----------+------+------+---------------------------+---------------------------+------------+!
| expect   | %_id | alen | E coli descr              | Human descr               | sp_name    |!
+----------+------+------+---------------------------+---------------------------+------------+!
| 2.7e-206 | 53.8 |  944 | glycine decarboxylase, P  | Glycine dehydrogenase [de | GCSP_HUMAN |!
| 1.2e-176 | 59.5 |  706 | methylmalonyl-CoA mutase  | Methylmalonyl-CoA mutase, | MUTA_HUMAN |!
| 3.8e-176 | 50.6 |  803 | glycogen phosphorylase [E | Glycogen phosphorylase, l | PHS1_HUMAN |!
| 9.9e-173 | 55.6 | 1222 | B12-dependent homocystein | 5-methyltetrahydrofolate- | METH_HUMAN |!
| 1.8e-165 | 41.8 | 1031 | carbamoyl-phosphate synth | Carbamoyl-phosphate synth | CPSM_HUMAN |!
| 5.6e-159 | 65.7 |  542 | glucosephosphate isomeras | Glucose-6-phosphate isome | G6PI_HUMAN |!
| 8.1e-143 | 53.7 |  855 | aconitate hydrase 1 [Esch | Iron-responsive element b | IRE1_HUMAN |!
| 2.5e-134 | 73.0 |  459 | membrane-bound ATP syntha | ATP synthase beta chain,  | ATPB_HUMAN |!
| 3.3e-121 | 55.8 |  550 | succinate dehydrogenase,  | Succinate dehydrogenase [ | DHSA_HUMAN |!
| 1.5e-113 | 60.6 |  401 | putative aminotransferase | Cysteine desulfurase, mit | NFS1_HUMAN |!
| 4.4e-111 | 60.9 |  460 | fumarase C= fumarate hydr | Fumarate hydratase, mitoc | FUMH_HUMAN |!
| 1.5e-109 | 56.1 |  474 | succinate-semialdehyde de | Succinate semialdehyde de | SSDH_HUMAN |!
| 3.6e-106 | 44.7 |  789 | maltodextrin phosphorylas | Glycogen phosphorylase, m | PHS2_HUMAN |!
| 1.4e-102 | 53.1 |  484 | NAD+-dependent betaine al | Aldehyde dehydrogenase, E | DHAG_HUMAN |!
|  3.8e-98 | 53.0 |  449 | pyridine nucleotide trans | NAD(P) transhydrogenase,  | NNTM_HUMAN |!
|  5.8e-96 | 49.9 |  489 | glycerol kinase [Escheric | Glycerol kinase, testis s | GKP2_HUMAN |!
|  2.1e-95 | 66.8 |  328 | glyceraldehyde-3-phosphat | Glyceraldehyde 3-phosphat | G3P2_HUMAN |!
|  5.0e-91 | 62.5 |  368 | alcohol dehydrogenase cla | Alcohol dehydrogenase cla | ADHX_HUMAN |!
|  6.7e-91 | 56.5 |  393 | protein chain elongation  | Elongation factor Tu, mit | EFTU_HUMAN |!
|  9.5e-91 | 56.6 |  392 | protein chain elongation  | Elongation factor Tu, mit | EFTU_HUMAN |!
|  2.2e-89 | 59.1 |  369 | methionine adenosyltransf | S-adenosylmethionine synt | METK_HUMAN |!
|  6.5e-88 | 53.3 |  422 | enolase [Escherichia coli | Alpha enolase (2-phospho- | ENOA_HUMAN |!
|  9.2e-88 | 43.3 |  536 | NAD-linked malate dehydro | NADP-dependent malic enzy | MAOX_HUMAN |!
|  7.3e-86 | 55.5 |  389 | 2-amino-3-ketobutyrate Co | 2-amino-3-ketobutyrate co | KBL_HUMAN  |!
|  5.2e-83 | 44.4 |  543 | degrades sigma32, integra | AFG3-like protein 2 (Para | AF32_HUMAN |!
+----------+------+------+---------------------------+---------------------------+------------+!

E. coli proteins vs Human – Ancient Protein Domains	



14	



Orthologs and Paralogs –  
Inferring Function"

H
um

an
	



M
ou

se
	



H
or

se
	



C
ow
	



W
ha

le
	



Fr
og
	



Tu
rtl

e	


O

st
ric

h	


C

hi
ck

en
	



La
m

pr
ey
	



C
ar

p	

 Ea
rth

w
or

m
	



St
ar

fis
h	



H
on

ey
be

e	


Fr

ui
t fl

y	


Lo

cu
st
	



Ye
as

t (
Pi

ch
ia

)"
Ye

as
t (

Sa
cc

ha
r.)
	



Ye
as

t (
Sc

hi
zo

.)"
N

eu
ro

sp
or

a	



C
or

n	


R

ic
e	



Bo
x 

el
de

r	


W

he
at
	



Sp
in

ac
h	



Le
ek
	



G
in

ko
	



G
re

en
 a

lg
ae
	



c2
 - 

R
ho

do
ps

eu
do

m
on

as
 v

iri
di

s"
c2

 - 
R

ho
do

ps
eu

do
m

on
as

 a
ci

do
ph

ila
	



c2
 - 

R
ho

do
m

ic
ro

bi
um

 v
an

ni
el

ii	


C

2 
Ag

ro
ba

ct
er

iu
m

 tu
m

ef
ac

ie
ns
"

c5
50

 - 
N

itr
ob

ac
te

r w
in

og
ad

sk
yi
"

Orthologous sequences – "
the cytchrome ‘c’ family	



Paralogous genes – globins	





10/16/13	



8	



15	



Protein Evolution and Sequence Similarity"

•  What is Homology and how do we recognize it?"
•  How do we measure sequence similarity – 

alignments and scoring matrices?"
•  DNA vs protein comparison"

•  More effective similarity searching"
–  Smaller databases"
–  Appropriate scoring matrices"
–  Using annotation/domain information"

16	



 
 
z
-
s
c
 
o
b
s
 
 
 
E
(
)
!

<
 
2
0
 
 
 
 
 
9
 
 
 
 
 
0
:
=
!

 
 
2
2
 
 
 
 
 
1
 
 
 
 
 
0
:
=
 
 
 
 
 
 
 
 
 
 
o
n
e
 
=
 
r
e
p
r
e
s
e
n
t
s
 
2
3
 
l
i
b
r
a
r
y
 
s
e
q
u
e
n
c
e
s
!

 
 
2
4
 
 
 
 
 
2
 
 
 
 
 
0
:
=
!

 
 
2
6
 
 
 
 
 
1
 
 
 
 
 
0
:
=
!

 
 
2
8
 
 
 
 
 
3
 
 
 
 
 
3
:
*
!

 
 
3
0
 
 
 
 
 
8
 
 
 
 
1
8
:
*
!

 
 
3
2
 
 
 
 
4
9
 
 
 
 
7
1
:
=
=
=
*
!

 
 
3
4
 
 
 
1
4
5
 
 
 
1
9
2
:
=
=
=
=
=
=
=
 
*
!

 
 
3
6
 
 
 
3
4
2
 
 
 
3
9
5
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
 
 
*
!

 
 
3
8
 
 
 
5
6
7
 
 
 
6
5
3
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
 
 
 
*
!

 
 
4
0
 
 
 
8
8
2
 
 
 
9
1
1
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
!

 
 
4
2
 
 
1
1
2
0
 
 
1
1
1
4
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
!

 
 
4
4
 
 
1
2
7
4
 
 
1
2
2
9
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
!

 
 
4
6
 
 
1
3
6
7
 
 
1
2
5
1
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
=
=
=
!

 
 
4
8
 
 
1
2
9
9
 
 
1
1
9
8
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
=
=
!

 
 
5
0
 
 
1
1
4
0
 
 
1
0
9
3
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
!

 
 
5
2
 
 
1
0
4
9
 
 
 
9
6
1
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
=
=
!

 
 
5
4
 
 
 
8
6
9
 
 
 
8
2
1
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
!

 
 
5
6
 
 
 
6
0
7
 
 
 
6
8
6
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
 
 
*
!

 
 
5
8
 
 
 
4
7
1
 
 
 
5
6
3
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
 
 
 
*
!

 
 
6
0
 
 
 
4
1
9
 
 
 
4
5
6
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
!

 
 
6
2
 
 
 
3
3
6
 
 
 
3
6
6
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
!

 
 
6
4
 
 
 
2
6
3
 
 
 
2
9
1
:
=
=
=
=
=
=
=
=
=
=
=
=
*
!

 
 
6
6
 
 
 
2
1
4
 
 
 
2
3
0
:
=
=
=
=
=
=
=
=
=
*
!

 
 
6
8
 
 
 
1
7
7
 
 
 
1
8
1
:
=
=
=
=
=
=
=
*
!

 
 
7
0
 
 
 
1
4
3
 
 
 
1
4
2
:
=
=
=
=
=
=
*
!

 
 
7
2
 
 
 
1
2
4
 
 
 
1
1
1
:
=
=
=
=
*
=
!

 
 
7
4
 
 
 
 
8
5
 
 
 
 
8
6
:
=
=
=
*
!

 
 
7
6
 
 
 
 
6
3
 
 
 
 
6
7
:
=
=
*
!

 
 
7
8
 
 
 
 
4
7
 
 
 
 
5
2
:
=
=
*
!

 
 
8
0
 
 
 
 
4
5
 
 
 
 
4
1
:
=
*
!

 
 
8
2
 
 
 
 
3
3
 
 
 
 
3
1
:
=
*
!

 
 
8
4
 
 
 
 
2
9
 
 
 
 
2
5
:
=
*
!

 
 
8
6
 
 
 
 
2
0
 
 
 
 
1
9
:
*
!

 
 
8
8
 
 
 
 
1
9
 
 
 
 
1
5
:
*
 
 
 
 
 
 
 
 
 
 
i
n
s
e
t
 
=
 
r
e
p
r
e
s
e
n
t
s
 
1
 
l
i
b
r
a
r
y
 
s
e
q
u
e
n
c
e
s
!

 
 
9
0
 
 
 
 
1
6
 
 
 
 
1
1
:
*
!

 
 
9
2
 
 
 
 
1
8
 
 
 
 
 
9
:
*
 
 
 
 
 
 
 
 
 
:
=
=
=
=
=
=
=
=
*
=
=
=
=
=
=
=
=
=
!

 
 
9
4
 
 
 
 
 
9
 
 
 
 
 
7
:
*
 
 
 
 
 
 
 
 
 
:
=
=
=
=
=
=
*
=
=
!

 
 
9
6
 
 
 
 
 
7
 
 
 
 
 
5
:
*
 
 
 
 
 
 
 
 
 
:
=
=
=
=
*
=
=
!

 
 
9
8
 
 
 
 
 
4
 
 
 
 
 
4
:
*
 
 
 
 
 
 
 
 
 
:
=
=
=
*
!

 
1
0
0
 
 
 
 
1
3
 
 
 
 
 
3
:
*
 
 
 
 
 
 
 
 
 
:
=
=
*
=
=
=
=
=
=
=
=
=
=
!

 
1
0
2
 
 
 
 
 
5
 
 
 
 
 
2
:
*
 
 
 
 
 
 
 
 
 
:
=
*
=
=
=
!

 
1
0
4
 
 
 
 
 
2
 
 
 
 
 
2
:
*
 
 
 
 
 
 
 
 
 
:
=
*
!

 
1
0
6
 
 
 
 
 
5
 
 
 
 
 
1
:
*
 
 
 
 
 
 
 
 
 
:
*
=
=
=
=
!

 
1
0
8
 
 
 
 
 
4
 
 
 
 
 
1
:
*
 
 
 
 
 
 
 
 
 
:
*
=
=
=
!

 
1
1
0
 
 
 
 
 
2
 
 
 
 
 
1
:
*
 
 
 
 
 
 
 
 
 
:
*
=
!

 
1
1
2
 
 
 
 
 
5
 
 
 
 
 
1
:
*
 
 
 
 
 
 
 
 
 
:
*
=
=
=
=
!

 
1
1
4
 
 
 
 
 
6
 
 
 
 
 
1
:
*
 
 
 
 
 
 
 
 
 
:
*
=
=
=
=
=
!

 
1
1
6
 
 
 
 
 
2
 
 
 
 
 
0
:
=
 
 
 
 
 
 
 
 
 
*
=
=
!

 
1
1
8
 
 
 
 
 
1
 
 
 
 
 
0
:
=
 
 
 
 
 
 
 
 
 
*
=
!

>
1
2
0
 
 
 
 
3
0
 
 
 
 
 
0
:
=
=
 
 
 
 
 
 
 
 
*
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
!

Query: atp6_human.aa ATP synthase a chain - 226 aa  
Library: PIR1 Annotated (rel. 66)  
    5190103 residues in 13351 sequences!



10/16/13	



9	



17	



Inferring Homology from Statistical 
Significance"

•  Real UNRELATED sequences have similarity 
scores that are indistinguishable from 
RANDOM sequences"

•  If a similarity is NOT RANDOM, then it must 
be NOT UNRELATED"

•  Therefore, NOT RANDOM (statistically 
significant) similarity must reflect RELATED 
sequences"

18	



The best scores are:                          ( len)  s-w bits E(13351) %_id  %_sim  alen!
sp|P00846|ATP6_HUMAN ATP synthase a chain (AT ( 226) 1400 325.8 5.8e-90 1.000 1.000  226!
sp|P00847|ATP6_BOVIN ATP synthase a chain (AT ( 226) 1157 270.5 2.5e-73 0.779 0.951  226!
sp|P00848|ATP6_MOUSE ATP synthase a chain (AT ( 226) 1118 261.7 1.2e-70 0.757 0.916  226!
sp|P00849|ATP6_XENLA ATP synthase a chain (AT ( 226)  745 176.8 4.0e-45 0.533 0.847  229!
sp|P00851|ATP6_DROYA ATP synthase a chain (AT ( 224)  473 115.0 1.7e-26 0.378 0.721  222!
sp|P00854|ATP6_YEAST ATP synthase a chain pre ( 259)  428 104.7 2.3e-23 0.353 0.694  232!
sp|P00852|ATP6_EMENI ATP synthase a chain pre ( 256)  365  90.4 4.8e-19 0.304 0.691  230!
sp|P14862|ATP6_COCHE ATP synthase a chain (AT ( 257)  353  87.7 3.2e-18 0.313 0.650  214!
sp|P68526|ATP6_TRITI ATP synthase a chain (AT ( 386)  309  77.6 5.1e-15 0.289 0.651  235!
sp|P05499|ATP6_TOBAC ATP synthase a chain (AT ( 395)  309  77.6 5.2e-15 0.283 0.635  233!
sp|P07925|ATP6_MAIZE ATP synthase a chain (AT ( 291)  283  71.7 2.3e-13 0.311 0.667  180!
sp|P0AB98|ATP6_ECOLI ATP synthase a chain (AT ( 271)  178  47.9 3.2e-06 0.233 0.585  236!
sp|P0C2Y5|ATPI_ORYSA Chloroplast ATP synth (A ( 247)  144  40.1 0.00062 0.242 0.580  231!
sp|P06452|ATPI_PEA Chloroplast ATP synthase a ( 247)  143  39.9 0.00072 0.250 0.586  232!
sp|P27178|ATP6_SYNY3 ATP synthase a chain (AT ( 276)  142  39.7 0.00095 0.265 0.571  170!
sp|P06451|ATPI_SPIOL Chloroplast ATP synthase ( 247)  138  38.8  0.0016 0.242 0.580  231!
sp|P08444|ATP6_SYNP6 ATP synthase a chain (AT ( 261)  127  36.3  0.0095 0.263 0.557  167!
sp|P69371|ATPI_ATRBE Chloroplast ATP synthase ( 247)  126  36.0  0.01   0.221 0.571  231!
sp|P06289|ATPI_MARPO Chloroplast ATP synthase ( 248)  126  36.0  0.011  0.240 0.575  167!
sp|P30391|ATPI_EUGGR Chloroplast ATP synthase ( 251)  123  35.4  0.017  0.257 0.579  214!
!
sp|P19568|TLCA_RICPR ADP,ATP carrier protein  ( 498)  122  35.0  0.043  0.243 0.579  152!
sp|P24966|CYB_TAYTA Cytochrome b              ( 379)  113  33.0  0.13   0.234 0.532  158!
sp|P03892|NU2M_BOVIN NADH-ubiquinone oxidored ( 347)  107  31.7  0.31   0.261 0.479  211!
sp|P68092|CYB_STEAT Cytochrome b              ( 379)  104  31.0  0.54   0.277 0.547  137!
sp|P03891|NU2M_HUMAN NADH-ubiquinone oxidored ( 347)  103  30.8  0.58   0.201 0.537  149!
sp|P00156|CYB_HUMAN Cytochrome b              ( 380)  102  30.5  0.74   0.268 0.585  205!
sp|P15993|AROP_ECOLI Aromatic amino acid tr   ( 457)  103  30.7  0.78   0.234 0.622  111!
sp|P24965|CYB_TRANA Cytochrome b              ( 379)  101  30.3  0.87   0.234 0.563  158!
sp|P29631|CYB_POMTE Cytochrome b              ( 308)   99  29.9  0.95   0.274 0.584  113!
sp|P24953|CYB_CAPHI Cytochrome b              ( 379)   99  29.8  1.2    0.236 0.564  140!

Query: atp6_human.aa ATP synthase a chain - 226 aa  
Library: 5190103 residues in 13351 sequences!



10/16/13	



10	



Alberts is wrong about sequence similarity 
(three times in three claims)"

“With such a large number of proteins in the database, the search 
programs find many nonsignificant matches, resulting in a 
background noise level that makes it very difficult to pick out all but 
the closest relatives.  Generally speaking, one requires a 30% 
identity in sequence to consider that two proteins match.  However, 
we know the function of many short signature sequences 
("fingerprints"), and these are widely used to find more distant 
relationships.”"

"– Alberts, Molecular Biology of the Cell (5th ed) p. 139"

19	



•  Sequences producing statistically significant alignments 
ALWAYS share a common structure"

•  Many significant alignments share < 30% identity (<25% 
identity is routine, and <20% identity can be significant)"

•  In the absence of significant similarity, “fingerprints” should 
never be trusted."

20	



>>sp|P0AB98|ATP6_ECOLI ATP synthase a chain (ATPase protein 6) g  (271 aa)!
 s-w opt: 178  Z-score: 218.2  bits: 47.9 E(): 3.2e-06!
Smith-Waterman score: 178; 23.3% identity (58.5% similar) in 236 aa overlap (8-222:45-264)!
!
                                                10        20        30        40       !
human                                   MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQ!
                                               :..  ..:::   ....::  .   ...  . ... :. .!
E coli NMTPQDYIGHHLNNLQLDLRTFSLVDPQNPPATFWTINIDSMFFSVVLGL---LFLVLFRSVAKKATSG-VPGKFQTAIE!
           10        20        30        40        50           60        70         80!
!
        50        60        70        80                 90              100       110 !
human  WLIKLTSKQMMTMHNTKGRTWSLMLVSLIIFIATTNLLGLLP---------HSF-------TPTTQLSMNLAMAIPLWAG!
        .: ... ..  :.. :..  . . .......   ::. :::         : .       .:.......:.::. ..  !
E coli LVIGFVNGSVKDMYHGKSKLIAPLALTIFVWVFLMNLMDLLPIDLLPYIAEHVLGLPALRVVPSADVNVTLSMALGVF--!
               90       100       110       120       130       140       150          !
!
             120       130            140       150       160       170       180      !
human  TVIMGFRSKIKNALAHFLPQGTPTPL-----IPMLVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINL!
        ... : :   .... :  . :  :.     ::. .:.: .::: .:..:..:: .:. ::.:.. ::..     :   :!
E coli -ILILFYSIKMKGIGGFTKELTLQPFNHWAFIPVNLILEGVSLLSKPVSLGLRLFGNMYAGELIFILIAGLLPWWSQWIL!
       160       170       180       190       200       210       220       230       !
!
        190       200       210       220         !
human  PSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT   !
            :: :::.          .::..: .:. .::       !
E coli NVPWAIFHILIIT---------LQAFIFMVLTIVYLSMASEEH!
       240       250                260       270 !



10/16/13	



11	



21	



The PAM250 matrix"
Cys  12!
Ser   0  2!
Thr  -2  1  3!
Pro  -1  1  0  6!
Ala  -2  1  1  1  2!
Gly  -3  1  0 -1  1  5!
Asn  -4  1  0 -1  0  0  2!
Asp  -5  0  0 -1  0  1  2  4!
Glu  -5  0  0 -1  0  0  1  3  4!
Gln  -5 -1 -1  0  0 -1  1  2  2  4!
His  -3 -1 -1  0 -1 -2  2  1  1  3  6!
Arg  -4  0 -1  0 -2 -3  0 -1 -1  1  2  6!
Lys  -5  0  0 -1 -1 -2  1  0  0  1  0  3  5!
Met  -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2  0  0  6!
Ile  -2 -1  0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2  2  5!
Leu  -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3  4  2  6!
Val  -2 -1  0 -1  0 -1 -2 -2 -2 -2 -2 -2 -2  2  4  2  4!
Phe  -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5  0  1  2 -1  9!
Tyr   0 -3 -3 -5 -3 -5 -2 -4 -4 -4  0 -4 -4 -2 -1 -1 -2  7 10!
Trp  -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3  2 -3 -4 -5 -2 -6  0  0 17!
      C  S  T  P  A  G  N  D  E  Q  H  R  K  M  I  L  V  F  Y  W!

λS = log
qij
pi pj

!

"
##

$

%
&&

frequency of replace-"
ment in homologs"

frequency of align-"
ment by chance"

22	



>>sp|P30391|ATPI_EUGGR Chloroplast ATP synthase a chain precursor   (251 aa)!
 s-w opt: 123  Z-score: 151.3  bits: 35.4 E(): 0.017!
Smith-Waterman score: 123; 25.7% identity (57.9% similar) in 214 aa overlap (21-222:50-243)!
!
                                    10        20        30        40        50        60!
human                       MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTM!
                                               .::: :  : : :.: :  . . ...: .:.:... .  .!
Euglena VNMFISGIFQIANVEVGQHFYWSILGFQIHGQVLINSWIVILIIGF--LSIYTTKNL--TLVPANKQIFIELVTEFITDI!
       10        20        30        40        50          60          70        80     !
!
                     70        80         90            100       110       120         !
human   HNTK-GRT----WSLMLVSLIIFIATTNLLG-LLPHSFT--PTTQL---SMNLAMAIPLWAGTVIMGFRSKI-KNALAHF!
         .:. :.     :  .. ....:: ..:  : :.: ..   :. .:   . ..  .  :   : .  : . . :..:..:!
Euglena SKTQIGEKEYSKWVPYIGTMFLFIFVSNWSGALIPWKIIELPNGELGAPTNDINTTAGLAILTSLAYFYAGLNKKGLTYF!
           90       100       110       120       130       140       150       160     !
!
       130       140       150       160       170       180       190       200        !
Human   LPQGTPTPLIPMLVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVAL!
             :::..  . :.: ..   .:..:. :: .:: : .:.. .. :         .:  ::. . ::.: ..   .. !
Euglena KKYVQPTPILLPINILEDFT---KPLSLSFRLFGNILADELVVAVLVSL--------VP--LIVPVPLIFLGLF---TSG!
          170       180          190       200       210                 220            !
!
       210       220          !
human   IQAYVFTLLVSLYLHDNT    !
        ::: .:. : . :.        !
Euglena IQALIFATLSGSYIGEAMEGHH!
      230       240       250 !
!



10/16/13	



12	



23	



The best scores are:                          ( len)  s-w bits E(13351) %_id  %_sim  alen!
sp|P00846|ATP6_HUMAN ATP synthase a chain (AT ( 226) 1400 325.8 5.8e-90 1.000 1.000  226!
sp|P00847|ATP6_BOVIN ATP synthase a chain (AT ( 226) 1157 270.5 2.5e-73 0.779 0.951  226!
sp|P00848|ATP6_MOUSE ATP synthase a chain (AT ( 226) 1118 261.7 1.2e-70 0.757 0.916  226!
sp|P00849|ATP6_XENLA ATP synthase a chain (AT ( 226)  745 176.8 4.0e-45 0.533 0.847  229!
sp|P00851|ATP6_DROYA ATP synthase a chain (AT ( 224)  473 115.0 1.7e-26 0.378 0.721  222!
sp|P00854|ATP6_YEAST ATP synthase a chain pre ( 259)  428 104.7 2.3e-23 0.353 0.694  232!
sp|P00852|ATP6_EMENI ATP synthase a chain pre ( 256)  365  90.4 4.8e-19 0.304 0.691  230!
sp|P14862|ATP6_COCHE ATP synthase a chain (AT ( 257)  353  87.7 3.2e-18 0.313 0.650  214!
sp|P68526|ATP6_TRITI ATP synthase a chain (AT ( 386)  309  77.6 5.1e-15 0.289 0.651  235!
sp|P05499|ATP6_TOBAC ATP synthase a chain (AT ( 395)  309  77.6 5.2e-15 0.283 0.635  233!
sp|P07925|ATP6_MAIZE ATP synthase a chain (AT ( 291)  283  71.7 2.3e-13 0.311 0.667  180!
sp|P0AB98|ATP6_ECOLI ATP synthase a chain (AT ( 271)  178  47.9 3.2e-06 0.233 0.585  236!
sp|P0C2Y5|ATPI_ORYSA Chloroplast ATP synth (A ( 247)  144  40.1 0.00062 0.242 0.580  231!
sp|P06452|ATPI_PEA Chloroplast ATP synthase a ( 247)  143  39.9 0.00072 0.250 0.586  232!
sp|P27178|ATP6_SYNY3 ATP synthase a chain (AT ( 276)  142  39.7 0.00095 0.265 0.571  170!
sp|P06451|ATPI_SPIOL Chloroplast ATP synthase ( 247)  138  38.8  0.0016 0.242 0.580  231!
sp|P08444|ATP6_SYNP6 ATP synthase a chain (AT ( 261)  127  36.3  0.0095 0.263 0.557  167!
sp|P69371|ATPI_ATRBE Chloroplast ATP synthase ( 247)  126  36.0  0.01   0.221 0.571  231!
sp|P06289|ATPI_MARPO Chloroplast ATP synthase ( 248)  126  36.0  0.011  0.240 0.575  167!
sp|P30391|ATPI_EUGGR Chloroplast ATP synthase ( 251)  123  35.4  0.017  0.257 0.579  214!
!
sp|P19568|TLCA_RICPR ADP,ATP carrier protein  ( 498)  122  35.0  0.043  0.243 0.579  152!
sp|P24966|CYB_TAYTA Cytochrome b              ( 379)  113  33.0  0.13   0.234 0.532  158!
sp|P03892|NU2M_BOVIN NADH-ubiquinone oxidored ( 347)  107  31.7  0.31   0.261 0.479  211!
sp|P68092|CYB_STEAT Cytochrome b              ( 379)  104  31.0  0.54   0.277 0.547  137!
sp|P03891|NU2M_HUMAN NADH-ubiquinone oxidored ( 347)  103  30.8  0.58   0.201 0.537  149!
sp|P00156|CYB_HUMAN Cytochrome b              ( 380)  102  30.5  0.74   0.268 0.585  205!
sp|P15993|AROP_ECOLI Aromatic amino acid tr   ( 457)  103  30.7  0.78   0.234 0.622  111!
sp|P24965|CYB_TRANA Cytochrome b              ( 379)  101  30.3  0.87   0.234 0.563  158!
sp|P29631|CYB_POMTE Cytochrome b              ( 308)   99  29.9  0.95   0.274 0.584  113!
sp|P24953|CYB_CAPHI Cytochrome b              ( 379)   99  29.8  1.2    0.236 0.564  140!

Query: atp6_human.aa ATP synthase a chain - 226 aa  
Library: 5190103 residues in 13351 sequences!

24	



The best scores are:                          ( len)  s-w bits E(13351) %_id  %_sim  alen!
sp|P0AB98|ATP6_ECOLI ATP synthase a chain (AT ( 271) 1774 416.8 3.e-117 1.000 1.000  271!
sp|P06451|ATPI_SPIOL Chloroplast ATP synthase ( 247)  274  70.4 5.8e-13 0.270 0.616  211!
sp|P69371|ATPI_ATRBE Chloroplast ATP synthase ( 247)  271  69.7 9.3e-13 0.270 0.607  211!
sp|P08444|ATP6_SYNP6 ATP synthase a chain (AT ( 261)  271  69.7 9.9e-13 0.267 0.600  240!
sp|P06452|ATPI_PEA Chloroplast ATP synthase a ( 247)  266  68.5 2.1e-12 0.274 0.614  223!
sp|P30391|ATPI_EUGGR Chloroplast ATP synthase ( 251)  265  68.3 2.5e-12 0.298 0.596  225!
sp|P0C2Y5|ATPI_ORYSA Chloroplast ATP synthase ( 247)  260  67.2 5.4e-12 0.259 0.603  239!
sp|P27178|ATP6_SYNY3 ATP synthase a chain (AT ( 276)  260  67.1 6.1e-12 0.264 0.578  258!
sp|P06289|ATPI_MARPO Chloroplast ATP synthase ( 248)  250  64.8 2.7e-11 0.261 0.621  211!
sp|P07925|ATP6_MAIZE ATP synthase a chain (AT ( 291)  215  56.7 8.7e-09 0.259 0.578  232!
sp|P68526|ATP6_TRITI ATP synthase a chain (AT ( 386)  209  55.3 3.1e-08 0.259 0.603  239!
sp|P00854|ATP6_YEAST ATP synthase a chain pre ( 259)  204  54.2 4.5e-08 0.235 0.578  277!
sp|P05499|ATP6_TOBAC ATP synthase a chain (AT ( 395)  189  50.7 7.8e-07 0.220 0.582  268!
sp|P00846|ATP6_HUMAN ATP synthase a chain (AT ( 226)  178  48.2 2.5e-06 0.237 0.589  236!
sp|P00852|ATP6_EMENI ATP synthase a chain pre ( 256)  178  48.2 2.8e-06 0.209 0.590  244!
sp|P00849|ATP6_XENLA ATP synthase a chain (AT ( 226)  173  47.1 5.5e-06 0.261 0.630  165!
sp|P00847|ATP6_BOVIN ATP synthase a chain (AT ( 226)  172  46.8 6.5e-06 0.233 0.581  236!
sp|P14862|ATP6_COCHE ATP synthase a chain (AT ( 257)  171  46.6 8.7e-06 0.204 0.608  265!
sp|P00848|ATP6_MOUSE ATP synthase a chain (AT ( 226)  166  45.5 1.7e-05 0.259 0.617  193!
sp|P00851|ATP6_DROYA ATP synthase a chain (AT ( 224)  139  39.2  0.0013 0.225 0.549  253!
!
sp|P24962|CYB_STELO Cytochrome b              ( 379)  125  35.9  0.021  0.223 0.575  193!
sp|P09716|US17_HCMVA Hypothetical protein HVL ( 293)  109  32.3  0.21   0.260 0.565  131!
sp|P68092|CYB_STEAT Cytochrome b              ( 379)  109  32.2  0.27   0.211 0.562  194!
sp|P24960|CYB_ODOHE Cytochrome b              ( 379)  104  31.1  0.61   0.210 0.555  200!
sp|P03887|NU1M_BOVIN NADH-ubiquinone oxidored ( 318)   98  29.7  1.3    0.287 0.545  167!
sp|P24992|CYB_ANTAM Cytochrome b              ( 379)   99  29.9  1.4    0.192 0.565  193!

Query: atp6_ecoli.aa ATP synthase a - 271 aa  
 Library: 5190103 residues in 13351 sequences!



10/16/13	



13	



Homology is 
Transitive  

(on domains)"

25"

Human mito"

E. coli"

Euglena chloro."
Synechocystis"
Cyanobacteria"
March. chloro."

Spinach chloro."
Tobacco chloro." 0.007 : 10-13"

0.001 : 10-13"
0.0007 : 10-12"
0.007 : 10-11"
0.006 : 10-13"
0.001 : 10-13"

0.02 : 10-12"
10-6 : 10-117"

Pea chloro."

10-90 : 10-6"
Bovine mito"
Mouse mito"

Frog mito"
Dros. mito"

10-23 : 10-8"

10-18 : 10-5"

0.0006 : 10-12"

10-1 : /10-6"

10-13 : 10-9"

10-15 : 10-8"

Rice chloro."

10-70 : 10-5"
10-73 : 10-6"

10-45 : 10-6"

10-26 : 0.0013"

Yeast mito."

Cochliobolus mito."
Aspergillus mito."

Corn  mito."
Wheat mito."

vs human : E. coli"

vs human : E. coli"

The best scores are:                                s-w bits E(454402) %_id  %_sim  alen!
KAT2B_HUMAN Histone acetyltransferase KAT2B ( 832) 3820 1456.       0 1.000 1.000  832!
KAT2A_HUMAN Histone acetyltransferase KAT2A ( 837) 2747 1049.       0 0.721 0.870  813!
GCN5_SCHPO Histone acetyltransferase gcn5   ( 454)  867 334.7   3e-90 0.483 0.768  354!

GCN5_YEAST Histone acetyltransferase GCN5   ( 439)  792 306.2 1.1e-81 0.469 0.760  354!
GCN5_ORYSJ Histone acetyltransferase GCN5   ( 511)  760 294.0 5.9e-78 0.436 0.755  376!
GCN5_ARATH Histone acetyltransferase GCN5;  ( 568)  719 278.4 3.3e-73 0.434 0.740  369!

BPTF_HUMAN Nucleosome-remodeling factor sub (3046)  286 113.6 7.6e-23 0.495 0.804   97!
NU301_DROME Nucleosome-remodeling factor su (2669)  276 109.8 9.1e-22 0.511 0.819   94!
CECR2_HUMAN Cat eye syndrome critical regio (1484)  232  93.2   5e-17 0.371 0.790  105!
BRD4_HUMAN Bromodomain-containing protein 4 (1362)  214  86.4 5.2e-15 0.379 0.698  116!

BRD4_MOUSE Bromodomain-containing protein 4 (1400)  214  86.4 5.3e-15 0.379 0.698  116!
BAZ2A_HUMAN Bromodomain adjacent to zinc fi (1905)  211  85.2 1.7e-14 0.382 0.683  123!
BAZ2A_XENLA Bromodomain adjacent to zinc fi (1698)  206  83.3 5.5e-14 0.350 0.684  117!

FSH_DROME Homeotic protein female sterile;  (2038)  205  82.9 8.8e-14 0.341 0.667  129!
BAZ2A_MOUSE Bromodomain adjacent to zinc fi (1889)  204  82.5   1e-13 0.368 0.680  125!
BRDT_MACFA Bromodomain testis-specific prot ( 947)  197  80.0   3e-13 0.367 0.697  109!
BRD3_HUMAN Bromodomain-containing protein 3 ( 726)  194  78.9 4.9e-13 0.362 0.664  116!

Homology and Domains –  
Histone acetyltransferase KAT2B"

26	





10/16/13	



14	



Homology and Domains –  
Histone deacetylase KAT2B"

27	



200 400 600 800

200 400 600 800

GNAT_dom Bromodomai

200 400 600 800

200 400 600 800

GNAT_dom Bromodomai

200 400 600 800

200 400

GNAT_dom Bromodomai

1000 2000 3000

200 400 600 800

200 400

GNAT_dom Bromodomain

KAT2B_HUMAN Histone acetyltransferase KAT2B  E()< 0  832!

KAT2A_HUMAN Histone acetyltransferase KAT2B  E()< 0  813!

GCN5_YEAST Histone acetyltransferase GCN5  1.1e-81  354!

GCN5_ARATH Histone acetyltransferase GCN5  3.3e-73  369!

BPTF_HUMAN Nucleosome-remodeling factor    7.6e-23   97!

LALIGN – Identifying mobile domains: 
mobile (duplicated) domains in local alignments"

20 40 60 80 100 120 140
sp|P62158.2|CALM_HUMAN Calmodulin;  CaM - 149 aa

20

40

60

80

100

120

140

s
p
|
P
6
2
1
5
8
.
2
|
C
A
L
M
_
H
U
M
A
N
 
C
a
l
m
o
d
u
l
i
n
;
 
 
C
a
M

E():  <0.0001
<0.01

<1
<1e+02

>1e+02

E
F
-
h
a
n
d

E
F
-
h
a
n
d

E
F
-
h
a
n
d

E
F
-
h
a
n
d

EF-hand

EF-hand

EF-hand

EF-hand

50 100 150

50 100 150

EF-handEF-hand

EF-hand EF-hand EF-hand EF-hand

EF-hand EF-hand EF-hand EF-hand

50 100 150

50 100 150

EF-handEF-hand EF-hand

EF-hand EF-hand EF-hand EF-hand

EF-hand EF-hand EF-hand EF-hand

50 100 150

50 100 150

EF-handEF-hand EF-hand

EF-hand EF-hand EF-hand EF-hand

EF-hand EF-hand EF-hand EF-hand

EF-hand

score: 168;  51.8 bits; E(1) <  5.8e-12

score: 132;  41.8 bits; E(1) <  5.9e-09

score: 48;  18.5 bits; E(1) <  0.058



10/16/13	



15	



29	



Protein Evolution and Sequence Similarity"

•  What is Homology and how do we recognize it?"
•  How do we measure sequence similarity – 

alignments and scoring matrices?"
•  DNA vs protein comparison"
•  More effective similarity searching"

–  Smaller databases"
–  Appropriate scoring matrices"
–  Using annotation/domain information"

30	



The best scores are: 	

 	

DNA 	

tfastx3  prot. 	

	


   E(188,018) 	

E(187,524) 	

E(331,956)	



DMGST !D.melanogaster GST1-1 	

1.3e-164 	

4.1e-109 	

1.0e-109 	

	


MDGST1 !M.domestica GST-1 gene 	

2e-77 	

3.0e-95 	

1.9e-76 	

	


LUCGLTR !Lucilia cuprina GST 	

1.5e-72 	

5.2e-91 	

3.3e-73 	

	


MDGST2A !M.domesticus GST-2 mRNA 	

9.3e-53 	

1.4e-77 	

1.6e-62 	

	


MDNF1 !M.domestica nf1 gene. 10 	

4.6e-51 	

2.8e-77 	

2.2e-62 	

	


MDNF6 !M.domestica nf6 gene. 10 	

2.8e-51 	

4.2e-77 	

3.1e-62 	

	


MDNF7 !M.domestica nf7 gene. 10 	

6.1e-47 	

9.2e-77 	

6.7e-62 	

	


AGGST15 !A.gambiae GST mRNA 	

3.1e-58 	

4.2e-76 	

4.3e-61 	

	


CVU87958 !Culicoides GST 	

1.8e-41 	

4.0e-73 	

3.6e-58 	

	


AGG3GST11 !A.gambiae GST1-1 mRNA 	

1.5e-46 	

2.8e-55 	

1.1e-43 	

	


BMO6502 !Bombyx mori GST mRNA 	

1.1e-23 	

8.8e-50 	

5.7e-40 	

	


AGSUGST12 !A.gambiae GST1-1 gene 	

2.3e-16 	

4.5e-46 	

5.1e-37 	

	


MOTGLUSTRA Manduca sexta GST 	

5.7e-07 	

2.5e-30 	

8.0e-25 	

	


RLGSTARGN !R.legominosarum gstA  0.0029 	

3.2e-13 	

1.4e-10 	

	


HUMGSTT2A !H. sapiens GSTT2 	

0.32 	

3.3e-10 	

2.0e-09 	

	


HSGSTT1 !H.sapiens GSTT1 mRNA 	

7.2 	

8.4e-13 	

3.6e-10 	

	


ECAE000319 E. coli hypothet. prot. 	

— 	

4.7e-10 	

1.1e-09 	

	


MYMDCMA !Methyl. dichlorometh. DH 	

—  1.1e-09 	

6.9e-07 	

	


BCU19883 !Burkholderia maleylacetate red.— 	

1.2e-09 	

1.1e-08 	

	


NFU43126 !Naegleria fowleri GST 	

— 	

3.2e-07 	

0.0056 	

	


SP505GST !Sphingomonas paucim 	

— 	

1.8e-06 	

0.0002 	

	


EN1838 !H. sapiens maleylaceto. iso. 	

— 	

2.1e-06 	

5.9e-06 	

	


HSU86529 !Human GSTZ1  	

— 	

3.0e-06 	

8.0e-06 	

	


SYCCPNC !Synechocystis GST 	

— 	

1.2e-05 	

9.5e-06 	

	


HSEF1GMR !H.sapiens EF1g mRNA 	

— 	

9.0e-05 	

0.00065	



DNA vs protein sequence comparison"



10/16/13	



16	



Improving search strategies 
(windshield splatter metagenomics)"

•  always use protein/translated DNA comparisons"
•  smaller databases are more sensitive"

mbla
st/

nr bla
stn

/

nr bla
stx

/

micr
ob

ial
bla

stx
/

tot
al fas

tx/

m_s
am

p
fas

tx/

micr
ob

ial fas
tx/

tot
al

0

2000

4000

6000

8000

10000

0
30000
60000

600000

900000

1200000

1500000

nu
m

be
r o

f q
ue

rie
s

nu
m

be
r o

f h
om

ol
og

s 
(d

is
tin

ct
)

program / database

queries with homologs

homologs

Effective Similarity Searching"

1.  Always search protein databases (possibly with 
translated DNA)"

2.  Use E()-values, not percent identity, to infer homology "
–  E() < 0.001 is significant in a single search (proteins)"

3.  Search smaller (comprehensive) databases"
4.  Change the scoring matrix for:"

–  short sequences (exons, reads)"
–  short evolutionary distances (mammals, vertebrates,  a-

proteobacteria)"
–  high identity (>50% alignments) to reduce over-extension"

5.  All methods (pairwise, HMM, PSSM) miss homologs, 
and find homologs the other methods miss"



10/16/13	



17	



Computer lab: 
fasta.bioch.virginia.edu/mol_evol"

•  Significant hits are homologous"
•  Non-significant hits?  Homologous or not?"
•  Are all aligned residues homologous"
•  Are unaligned residues non-homologous"
•  Are domains really missing?"
"

33	





10/16/13	



1	



Programming for Biology 
Similarity Searching II –"

1	



Bill Pearson"
wrp@virginia.edu"

Practical search strategies"

2	



Protein Evolution and Sequence Similarity"

Similarity Searching I!
•  What is Homology and how do we recognize it?"
•  How do we measure sequence similarity – 

alignments and scoring matrices?"
•  DNA vs protein comparison"

Similarity Searching II!
•  More effective similarity searching"

–  Smaller databases"
–  Appropriate scoring matrices"
–  Using annotation/domain information"



10/16/13	



2	



Similarity Searching II"

1.  What question to ask?"
2.  What program to use?"
3.  What database to search?"
4.  How to avoid mistakes (what to look out for)"
5.  When to do something different"
6.  More sensitive methods (PSI-BLAST, 

HMMER)"

3	



1. What question to ask?"
•  Is there an homologous protein (a protein with a 

similar structure)?"
•  Does that homologous protein have a similar 

function?"
•  Does XXX genome have YYY (kinase, GPCR, …)?"
"

4	



Questions not to ask:"
•  Does this DNA sequence have a similar 

regulatory element (too short – never 
significant)?"

•  Does (non-significant) protein have a similar 
function/modification/antigenic site?"



10/16/13	



3	



2. What program to run?"
•  What is your query sequence?"

–  protein – BLAST (NCBI), SSEARCH (EBI)"
–  protein coding DNA (EST) –"

"BLASTX (NCBI), FASTX (EBI)"
–  DNA (structural RNA, repeat family) –"

"BLASTN (NCBI), FASTA (EBI)"
•  Does XXX genome have YYY (protein)?"

–  TBLASTN YYY vs XXX genome"
–  TFASTX YYY vs XXX genome"

•  Does my protein contain repeated domains?"
–  LALIGN (UVa http://fasta.bioch.virginia.edu)"

5	



NCBI 
BLAST 
Server"

6	



blast.ncbi.nlm.nih.gov"



10/16/13	



4	



NCBI BLAST Server"

7	



blast.ncbi.nlm.nih.gov"

What is wrong with this picture?"
Always compare protein sequences"

NCBI 
BLAST 
Server"

8	





10/16/13	



5	



Searching at the EBI 
www.ebi.ac.uk/Tools/sss/"

9	



Searching at the EBI – ssearch"

10	





10/16/13	



6	



3. What database to search?"
•  Search the smallest comprehensive 

database likely to contain your protein"
–  vertebrates – human proteins (40,000)"
–  fungi – S. cerevisiae (6,000)"
–  bacteria – E. coli, gram positive, etc. (<100,000)"

•  Search a richly annotated protein set 
(SwissProt, 450,000)"

•  Always search NR (> 12 million) LAST"
•  Never Search “GenBank” (DNA)"

11	



12	



Why smaller databases are better – statistics"

S’ = λSraw - ln K m n"
Sbit = (λSraw - ln K)/ln(2)"
 P(S’>x) = 1 - exp(-e-x)"

P(Sbit > x) = 1 -exp(-mn2-x)"
E(S’>x |D) = P D"

P(B bits) = m n 2-B"
P(40 bits)= 1.5x10-7"

E(40 | D=4000) = 6x10-4"

E(40 | D=12E6) = 1.8"

-"2" 0" 2" 4" 6"

-"2" 0" 2" 4" 6" 8" 1"0"

0"

1"5" 2"0" 2"5" 3"0"

10000"

8000"

2000"

6000"

4000"

Z(σ)"
λS"

bit"

nu
m

be
r o

f s
eq

ue
nc

es
"

normalized score"



10/16/13	



7	



What is a “bit” score?"
•  Scoring matrices (PAM250, BLOSUM62, VTML40) contain “log-odds” scores:"

"si,j (bits) = log2(qi,j/pipj)  (qi,j  freq. in homologs/ pipj freq. by chance)"
"si,j (bits) = 2 -> a residue is 22=4-times more likely to occur by homology 
compared with chance (at one residue)"
"si,j (bits) = -1 -> a residue is 2-1 = 1/2 as likely to occur by homology compared 
with chance (at one residue)"

•  An alignment score is the maximum sum of si,j bit scores across the aligned 
residues. A 40-bit score is 240 more likely to occur by homology than by chance."

•  How often should a score occur by chance? In a 400 * 400 alignment, there are 
~160,000 places where the alignment could start by chance, so we expect a 
score of 40 bits would occur:  P(Sbit > x) = 1 -exp(-mn2-x) ~ mn2-x"

"400 x 400 x 2-40 = 1.6 x 105 / 240 (1013.3) = 1.5 x 10-7 times"
Thus, the probability of a 40 bit score in ONE alignment is ~ 10-7"

•  But we did not ONE alignment, we did 4,000, 40,000, 400,000, or 16 million 
alignments when we searched the database:"
" "E(Sbit | D) = p(40 bits) x database size"
" "E(40 | 4,000) = 10-7 x 4,000 = 4 x 10-4 " "(significant)"
" "E(40 | 40,000) = 10-7 x 4 x 104 = 4 x 10-3" "(not significant) "
" "E(40 | 400,000) = 10-7 x  4 x 105 = 4 x 10-2 "(not significant)"
" "E(40 | 16 million) = 10-7 x  1.6 x 107 = 1.6 "(not significant) "

"
13	



How many “bits” do I need?"
E(p | D) = p(40 bits) x database size"

" "E(40 | 4,000) = 10-8 x 4,000 = 4 x 10-5 " "(significant)"
" "E(40 | 40,000) = 10-8 x 4 x 104 = 4 x 10-4 " "(significant) "
" "E(40 | 400,000) = 10-8 x  4 x 105 = 4 x 10-3 "(not significant) "

To get E() ~ 10-3 :"
 genome (10,000)  p ~ 10-3/104 = 10-7/160,000 = 40 bits"
 SwissProt (500,000)  p ~ 10-3/106 = 10-9/160,000 = 47 bits 

 Uniprot/NR (107)  p ~ 10-3/107 = 10-10/160,000 = 50 bits 

 

14	



very significant 10-50"

significant 10-3"

not significant"

significant 10-6"



10/16/13	



8	



E()-values when??"

•  E()-values (BLAST expect) provide accurate 
statistical estimates of similarity by chance"
–  non-random -> not unrelated (homologous)"
–  E()-values are accurate (0.001 happens 1/1000 by 

chance)"
–  E()-values factor in (and depend on) sequence lengths 

and database size"
•  E()-values are NOT a good proxy for evolutionary 

distance"
–  doubling the length/score SQUARES the E()-value"
–  percent identity (corrected) reflects distance (given 

homology)"

15	



NCBI – selecting sequences with Entrez"

16	





10/16/13	



9	



Effective Similarity Searching"

1.  Always search protein databases (possibly with 
translated DNA)"

2.  Use E()-values, not percent identity, to infer homology "
–  E() < 0.001 is significant in a single search"

3.  Search smaller (comprehensive) databases"
4.  Change the scoring matrix for:"

–  short sequences (exons, reads)"
–  short evolutionary distances (mammals, vertebrates,  a-

proteobacteria)"
–  high identity (>50% alignments) to reduce over-extension"

5.  All methods (pairwise, HMM, PSSM) miss homologs, 
and find homologs the other methods miss"

Scoring matrices"

•  Scoring matrices can set the evolutionary look-
back time for a search"
–  Lower PAM (PAM10/VT10 … PAM/VT40) for closer 

(10% … 50% identity)"
–  Higher BLOSUM for higher conservation (BLOSUM50 

distant, BLOSUM80 conserved)"
•  Shallow scoring matrices for short domains/short 

queries (metagenomics)"
–  Matrices have “bits/position” (score/position), 40 aa at 

0.45 bits/position (BLOSUM62) means 18 bit ave. 
score (50 bits significant)"

•  Deep scoring matrices allow alignments to 
continue, possibly outside the homologous region "

18	





10/16/13	



10	



19"

   A   R   N   D   E   I   L!
A  8!
R -9  12!
N -4  -7  11!
D -4 -13   3  11!
E -3 -11  -2   4  11!
I -6  -7  -7 -10  -7  12!
L -8 -11  -9 -16 -12  -1  10!

Pam40"
   A   R   N   D   E   I   L!
A  2!
R -2   6!
N  0   0   2!
D  0  -1   2   4!
E  0  -1   1   3   4!
I -1  -2  -2  -2  -2   5!
L -2  -3  -3  -4  -3   2   6!

Pam250"

Where do scoring matrices come from?"

qij : replacement frequency at PAM40, 250"
qR:N (  40) = 0.000435 " "pR = 0.051    
qR:N (250) = 0.002193 " "pN = 0.043 "
l2 Sij = lg2 (qij/pipj)   le Sij = ln(qij/pipj) "pRpN = 0.002193"
l2 SR:N(  40) = lg2 (0.000435/0.00219)= -2.333"
l2 = 1/3; SR:N(  40) = -2.333/l2 = -7"
l SR:N(250) = lg2 (0.002193/0.002193)=  0"

λSi, j = logb(
qi, j
pi pj

)

Scoring matrices set look back time: 
Glutathione Transferases (gstm1_human)"

20	





10/16/13	



11	



21	



              BLOSUM50-10/-2  BLOSUM62-11/-1     VT40 -21/-4    VT10 -23/-4!
              E(320363) f_id  E(320363) f_id  E(320363) f_id  E(320363) f_id!
!
GSTM1_HUMAN   1.3e-101 1.00  5.1e-132 1.000         0 1.000        0 1.000!
GSTM4_HUMAN   1.9e-89 0.867  1.1e-115 0.867  2.2e-188 0.867  1.9e-193 0.867!
GSTM2_MOUSE   3.0e-87 0.839  3.6e-113 0.839  1.4e-184 0.847  2.5e-187 0.847!
GSTM5_HUMAN   4.9e-87 0.876  6.9e-114 0.876  4.7e-187 0.876  7.2e-195 0.912!
GSTM2_HUMAN   8.2e-87 0.844  8.2e-113 0.844  2.6e-182 0.844  1.3e-184 0.844!
GSTM1_MOUSE   7.0e-83 0.780  2.5e-107 0.780  4.7e-169 0.780  1.5e-162 0.780!
GSTM6_MOUSE   1.9e-82 0.775  1.0e-106 0.775  5.1e-168 0.779  1.3e-161 0.779!
GSTM4_MOUSE   8.7e-82 0.769  4.7e-105 0.769  7.7e-166 0.769  2.1e-158 0.769!
GSTM5_MOUSE   6.9e-73 0.727  3.5e-94  0.727  1.3e-142 0.727  3.7e-128 0.727!
GSTM3_HUMAN   8.2e-73 0.731  6.7e-95  0.731  3.4e-143 0.731  8.2e-129 0.731!
!
GSTM2_CHICK   9.8e-65 0.656  4.7e-84  0.656  3.0e-117 0.656  1.4e-93  0.675 !
GST26_FASHE   2.9e-44 0.495  1.3e-56  0.491  2.7e-59  0.502  3.2e-18  0.510!
GSTM1_DERPT   5.2e-42 0.467  1.6e-53  0.487  5.1e-57  0.505  2.4e-29 0.651!
GST27_SCHMA   2.4e-37 0.467  9.5e-49  0.458  4.7e-42  0.470  5.1e-20 0.607!
!
GSTP1_PIG     2.9e-20 0.327  1.2e-25  0.327  0.00034  0.409!
GSTP1_XENLA   5.2e-19 0.333  6.0e-24  0.330  0.12     0.464!
GSTP2_MOUSE   8.0e-17 0.294  1.3e-20  0.294  1.1      0.395!
GSTP1_CAEEL   1.1e-16 0.324  4.3e-21  0.319  1.1      0.706!
GSTP1_HUMAN   3.0e-16 0.284  2.2e-20  0.284  0.29     0.467!
GSTP1_BUFBU   1.2e-14 0.285  7.2e-18  0.272  9.7      0.588!
GSTPA_CAEEL   1.1e-13 0.298  2.8e-17  0.284  0.002    0.400!
!
PTGD2_MOUSE   4.8e-12 0.302  2.6e-14  0.293!
PTGD2_RAT     4.8e-12 0.302  1.5e-14  0.293!
PTGD2_HUMAN   1.1e-11 0.292  4.0e-13  0.281!
PTGD2_CHICK   9.8e-11 0.304  6.9e-13  0.302!
GSTP2_BUFBU   2.0e-10 0.288  2.2e-12  0.307!
GST_MUSDO     5.8e-09 0.257  2.3e-11  0.251!
GST1_DROME    1.0e-08 0.255  2.9e-10  0.237!
!
GSTA1_MOUSE   1.5e-08 0.279  4.9e-11  0.264!
GSTA2_HUMAN   6.6e-08 0.286  1.2e-08  0.273!
GSTA5_HUMAN   7.8e-08 0.275  1.2e-08  0.259!
GSTA2_MOUSE   1.1e-07 0.269  9.9e-10  0.255!
GSTA3_MOUSE   1.3e-07 0.278  8.9e-09  0.258!
GSTA1_HUMAN   3.0e-07 0.272  8.0e-08  0.259!
GST36_CAEEL   3.3e-07 0.256  1.1e-08  0.264!
GSTA2_CHICK   4.2e-07 0.279  8.0e-08  0.266!
!

Class-mu"

Class-pi"

Class-"
alpha"

22	



PAM matrices and alignment length"

BL
O

SU
M

80
"

BL
O

SU
M

62
"

BL
O

SU
M

50
"

Short domains require “shallow” scoring matrices"
"

Altschul (1991) "Amino acid substitution matrices from an information 
theoretic perspective" J. Mol. Biol. 219:555-565"



10/16/13	



12	



Empirical matrix performance  
(median results from random alignments)"

Matrix! target % ident! bits/position! aln len (50 bits)!
VT160 -12/-2" 23.8" 0.26" 192"
BLOSUM50 -10/-2" 25.3" 0.23" 217"
BLOSUM62* -11/-1" 28.9" 0.45" 111"
VT120 -11/-1" 27.4" 1.03" 48"
VT80 -11/-1" 51.9" 1.55" 32"
PAM70* -10/-1" 33.8" 0.64" 78"
PAM30* -9/-1" 45.5" 1.06" 47"
VT40 -12/-1" 72.7" 2.76" 18"
VT20 -15/-2" 84.6" 3.62" 13"
VT10 /16/-2" 90.9" 4.32" 12"

23	



HMMs can be very "deep""

Scoring matrices affect alignment boundaries 
(homologous over-extension)"

BLOSUM62 -11/-1" VTML80 -10/-1"

100 200 300 400 500
sp|Q14247.2|SRC8_HUMAN Src substrate cortactin; Am

50

100

150

200

250

300

350

400

450

500

550

sp
|Q
14
24
7.
2|
SR
C8
_H
UM
AN
 S
rc
 s
ub
st
ra
te
 c
or
t

E():  <0.0001
<0.01

<1
<1e+02

>1e+02

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

SH
3_
do
ma
in

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

SH3_domain

100 200 300 400 500
sp|Q14247.2|SRC8_HUMAN Src substrate cortactin; Am

50

100

150

200

250

300

350

400

450

500

550

sp
|Q
14
24
7.
2|
SR
C8
_H
UM
AN
 S
rc
 s
ub
st
ra
te
 c
or
t

E():  <0.0001
<0.01

<1
<1e+02

>1e+02

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

Hs
1_
Co
rt
ac
ti

SH
3_
do
ma
in

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

SH3_domain



10/16/13	



13	



25	



Scoring Matrices - Summary"

•  PAM and BLOSUM matrices greatly improve the 
sensitivity of protein sequence comparison – low 
identity with significant similarity"

•  PAM matrices have an evolutionary model - lower 
number, less divergence – lower=closer; 
higher=more distant"

•  BLOSUM matrices are sampled from conserved 
regions at different average identity – higher=more 
conservation"

•  Shallow matrices set maximum look-back time"
•  Short alignments (domains, exons, reads) require 

shallow (higher information content) matrices"

Effective Similarity Searching Using Annotations"

•  Modern sequence similarity searching is highly efficient, 
sensitive, and reliable – homologs are homologs"
–  similarity statistics are accurate"
–  databases are large"
–  most queries will find a significant match"

•  Improving similarity searches"
–  smaller databases"
–  appropriate scoring matrices for short reads/assemblies"
–  appropriate alignment boundaries"

•  Extracting more information from annotations"
–  homologous over extension"
–  scoring sub-alignments to identify homologous domains"

•  All methods (pairwise, HMM, PSSM) miss homologs"
–  all methods find genuine homologs the other methods miss"



10/16/13	



14	



Overextension into random sequence"

> pf26|15978520|E6SGT6|E6SGT6_THEM7 Heavy metal translocating P-type

ATPase EC=3.6.3.4

Length=888

 Score =  299 bits (766),  Expect = 1e-90, Method: Compositional matrix adjust.

 Identities = 170/341 (50%), Positives = 224/341 (66%), Gaps = 19/341 (6%)

Query  84   FLFVNVFAALFNYWPTEGKILMFGKLEKVLITLILLGKTLEAVAKGRTSEAIKKLMGLKA  143

            +L+  V  A    +P+     +F  +  V++ L+ LG  LE  A+GRTSEAIKKL+GL+A

Sbjct  312  WLYSTVAVAFPQIFPSMALAEVFYDVTAVVVALVNLGLALELRARGRTSEAIKKLIGLQA  371

Query  144  KRARVIRGGRELDIPVEAVLAGDLVVVRPGEKIPVDGVVEEGASAVDESMLTGESLPVDK  203

            + ARV+R G E+DIPVE VL GD+VVVRPGEKIPVDGVV EG S+VDESM+TGES+PV+

Sbjct  372  RTARVVRDGTEVDIPVEEVLVGDIVVVRPGEKIPVDGVVIEGTSSVDESMITGESIPVEM  431

Query  204  QPGDTVIGATLNKQGSFKFRATKVGRDTALAQIISVVEEAQGSKAPIQRLADTISGYFVP  263

            +PGD VIGAT+N+ GSF+FRATKVG+DTAL+QII +V++AQGSKAPIQR+ D +S YFVP

Sbjct  432  KPGDEVIGATINQTGSFRFRATKVGKDTALSQIIRLVQDAQGSKAPIQRIVDRVSHYFVP  491

Query  264  VVVSLAVITFFVWYFAVAPENFTRALLNFTAVLVIACPCALGLATPTSIMVGTGKGAEKG  323

             V+ LA++   VWY       +  AL+ F   L+IACPCALGLATPTS+ VG GKGAE+G

Sbjct  492  AVLILAIVAAVVWYVFGPEPAYIYALIVFVTTLIIACPCALGLATPTSLTVGIGKGAEQG  551

Query  324  ILFKGGEHLENAG---------GGAHTEGAENKAELLKTRATGISILVTLGLTAKGRDRS  374

            IL + G+ L+ A           G  T+G     +++   ATG    + L LTA

Sbjct  552  ILIRSGDALQMASRLDVIVLDKTGTITKGKPELTDVVA--ATGFDEDLILRLTA------  603

Query  375  TVAFQKNTGFKLKIPIGQAQLQREVAASESIVISAYPIVGV  415

              A ++ +   L   I +  L R +A  E+   +A P  GV

Sbjct  604  --AIERKSEHPLATAIVEGALARGLALPEADGFAAIPGHGV  642

PF00122

PF00122

113 335

340 562

566 783

113

340

335

562 566

Scoring matrices affect alignment boundaries 
(homologous over-extension)"

BLOSUM62 -11/-1" BLOSUM62 -11/-1"

100 200 300 400 500
sp|Q14247.2|SRC8_HUMAN Src substrate cortactin; Am

50

100

150

200

250

300

350

400

450

500

550

s
p
|
Q
1
4
2
4
7
.
2
|
S
R
C
8
_
H
U
M
A
N
 
S
r
c
 
s
u
b
s
t
r
a
t
e
 
c
o
r
t

E():  <0.0001
<0.01

<1
<1e+02

>1e+02

H
s
1
_
C
o
r
t
a
c
t
i

H
s
1
_
C
o
r
t
a
c
t
i

H
s
1
_
C
o
r
t
a
c
t
i

H
s
1
_
C
o
r
t
a
c
t
i

H
s
1
_
C
o
r
t
a
c
t
i

H
s
1
_
C
o
r
t
a
c
t
i

H
s
1
_
C
o
r
t
a
c
t
i

S
H
3
_
d
o
m
a
i
n

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

Hs1_Cortacti

SH3_domain

 32- 42: 69- 79 : Id=0.455; Q= 0.0 : NODOM :0!
 43- 79: 80-116 : Id=0.158; Q= 0.0 : Hs1_Cortactin!
 80-116:117-153 : Id=0.622; Q=37.4 : Hs1_Cortactin!
117-153:154-190 : Id=0.757; Q=50.2 : Hs1_Cortactin!
154-190:191-227 : Id=0.811; Q=61.0 : Hs1_Cortactin!
191-227:228-264 : Id=0.568; Q=35.3 : Hs1_Cortactin!
228-264:265-301 : Id=0.649; Q=41.5 : Hs1_Cortactin!
265-287:302-324 : Id=0.565; Q= 8.9 : Hs1_Cortactin!
288-458:325-491 : Id=0.165; Q= 0.0 : NODOM!
459-473:492-506 : Id=0.200; Q= 0.0 : SH3!

VTML80 -10/-1"

 82-116:119-153 : Id=0.657; Q=102.2 : Hs1_Cortactin!
117-153:154-190 : Id=0.757; Q=138.0 : Hs1_Cortactin!
154-190:191-227 : Id=0.811; Q=164.6 : Hs1_Cortactin!
191-227:228-264 : Id=0.568; Q= 91.9 : Hs1_Cortactin!

228-264:265-301 : Id=0.649; Q=112.4 : Hs1_Cortactin!
265-287:302-324 : Id=0.565; Q= 36.7 : Hs1_Cortactin!



10/16/13	



15	



Scoring domains highlights over extension"
>>sp|SRC8_HUMAN Src substrate cortactin; (550 aa)!
>>sp|SRC8_CHICK Src substrate p85;  Cort (563 aa)!
84.7% id (1-550:11-563) E(454402): 1.2e-159!
!
  1- 79: 11- 88 Id=0.873; Q=281.4 : NODOM!
 80-116: 89-125 Id=1.000; Q=133.2 : Hs1_Cortactin!
117-153:126-162 Id=0.946; Q=121.0 : Hs1_Cortactin!
154-190:163-199 Id=0.973; Q=127.1 : Hs1_Cortactin!
191-227:200-236 Id=0.973; Q=128.3 : Hs1_Cortactin!
228-264:237-273 Id=0.973; Q=137.5 : Hs1_Cortactin!
265-301:274-310 Id=0.892; Q=117.3 : Hs1_Cortactin!
302-324:311-333 Id=0.957; Q= 69.6 : Hs1_Cortactin!
325-491:334-504 Id=0.632; Q=386.6 : NODOM!
492-550:505-563 Id=0.966; Q=226.3 : SH3!
!

>>sp|SRC8_HUMAN Src substrate cortactin (550 aa)!
>>sp|HCLS1_MOUSE Hematopoiet ln cell-sp (486 aa)!
44.1% id (1-548:1-485)  E(454402): 4.1e-61!
!
  1- 79:  1- 78 Id=0.671; Q=213.0 : NODOM!
 80-116: 79-115 Id=0.757; Q= 97.9 : Hs1_Cortactin!
117-153:116-152 Id=0.703; Q= 94.8 : Hs1_Cortactin!
154-190:153-189 Id=0.703; Q= 97.3 : Hs1_Cortactin!
191-213:190-212 Id=0.826; Q= 60.5 : Hs1_Cortactin!
!
!
!
214-491:213-428 Id=0.179; Q=  0.0 : NODOM :0!
492-548:429-485 Id=0.719; Q=173.2 : SH3!

Q	
  	
  =	
  -­‐10	
  log(p)	
  
Q>30.0	
  -­‐>	
  	
  p	
  <	
  0.001	
  

>>sp|VAV_HUMAN Proto-oncogene vav  (845 aa)!
>>sp|Q5ZLR6.1|ARHG6_CHICK RhoGEF   (764 aa)!
!
24.9% id (6-433:6-472) E(454402): 1.1e-12!
!
  6-119:  6-110 :Id=0.325; Q=97.8 : CH!
120-155:111-151 :Id=0.195; Q= 0.0 : NODOM!
155-180:152-211 :Id=0.169; Q= 0.0 : SH3!
181-195:212-232 :Id=0.190; Q= 0.0 : NODOM!
196-373:233-413 :Id=0.265; Q=74.1 : DH!
374-395:414-434 :Id=0.174; Q= 0.0 : NODOM!
396-433:435-472 :Id=0.211; Q= 0.0 : Pleckstrin!

>>sp|VAV_HUMAN Proto-oncogene vav  (845 aa)!
>>sp|VAV2_HUMAN Guanine nt EF VAV  (878 aa)!
!
49.3% id (1-840:1-875) E(454402): 4.1e-210!
!
  1-119:  1-119 :Id=0.689; Q=432.7 : CH!
120-193:120-197 :Id=0.444; Q=117.5 : NODOM!
194-373:198-376 :Id=0.494; Q=466.0 : DH!
374-401:377-404 :Id=0.607; Q= 48.7 : NODOM!
402-504:405-512 :Id=0.509; Q=275.7 : Pleckstrin!
505-514:513-522 :Id=0.600; Q=  0.0 : NODOM!
515-564:523-572 :Id=0.640; Q=175.6 : PE/DAG-bd!
579-591:573-585 :Id=0.154; Q=  0.0 : NODOM!
592-659:586-652 :Id=0.420; Q=101.4 : SH3!
659-670:653-672 :Id=0.158; Q=  0.0 : NODOM!
671-765:673-767 :Id=0.516; Q=241.2 : SH2!
766-784:768-815 :Id=0.125; Q=  0.0 : NODOM!
784-840:816-875 :Id=0.593; Q=162.7 : SH3!

Over extension or distant homologs?"



10/16/13	



16	



Homology, non-homology, and over-extension"
•  Sequences that share statistically significant sequence 

similarity are homologous (simplest explanation)"
•  But not all regions of the alignment contribute uniformly to 

the score"
–  lower identity/Q-value because of non-homology (over-

extension) ?"
–  lower identity/Q-value because more distant 

relationship (domains have different ages) ?"
•  Test by searching with isolated region"

–  can the distant domain (?) find closer (significant) 
homologs?"

•  Similar (homology) or distinct (non-homology) structure is 
the gold standard"

•  Multiple sequence alignment can obscure over-extension"
–  if the alignment is over-extended, part of the alignment 

is NOT homologous"
31	



Effective Similarity Searching"

1.  Always search protein databases (possibly with 
translated DNA)"

2.  Use E()-values, not percent identity, to infer homology "
–  E() < 0.001 is significant in a single search"

3.  Search smaller (comprehensive) databases"
4.  Change the scoring matrix for:"

–  short sequences (exons, reads)"
–  short evolutionary distances (mammals, vertebrates,  a-

proteobacteria)"
–  high identity (>50% alignments) to reduce over-extension"

5.  All methods (pairwise, HMM, PSSM) miss homologs, 
and find homologs the other methods miss"



10/16/13	



17	



Effective Similarity Searching Using Annotations"

•  Use protein/translated DNA comparisons"
•  Modern sequence similarity searching is highly efficient, 

sensitive, and reliable – homologs are homologs"
–  similarity statistics are accurate"
–  databases are large"
–  most queries will find a significant match"

•  Improving similarity searches"
–  smaller databases"
–  shallow scoring matrices for short reads/assemblies"
–  shallow matrices for high identity alignments"

•  Extracting more information from annotations"
–  homologous over extension"
–  scoring sub-alignments to identify homologous domains"

•  All methods (pairwise, HMM, PSSM) miss homologs"
–  all methods find genuine homologs the other methods miss"

Effective Similarity Searching"

1.  Always search protein databases (possibly with 
translated DNA)"

2.  Use E()-values, not percent identity, to infer homology "
–  E() < 0.001 is significant in a single search"

3.  Search smaller (comprehensive) databases"
4.  Change the scoring matrix for:"

–  short sequences (exons, reads)"
–  short evolutionary distances (mammals, vertebrates,  a-

proteobacteria)"
–  high identity (>50% alignments) to reduce over-extension"

5.  All methods (pairwise, HMM, PSSM) miss homologs, 
and find homologs the other methods miss"



Gene function annotation 

Paul D. Thomas, Ph.D. 
University of Southern California 

October 2014 



What is function annotation? 

•  The formal answer to the question: what 
does this gene do? 

•  The association between: a description of 
biological function, in electronic form, 
with a biological sequence (gene or gene 
product e.g. protein or functional RNA) 



In this lecture 
•  Introduction to databases of gene function 
•  Methods and online information sources for 

function annotation 
–  Understand what you are getting from each 

source so you can use it wisely 
–  Gene Ontology 
–  Pathway databases 

•  Emphasis on understanding “computationally 
predicted” function annotations (homology) 
–  These make up the bulk of available annotations 



Ontologies 

•  A formal structuring of knowledge 
•  Consists of concepts and relations 
•  Concept (entity, class, term): a class of 

things in the real world 
–  Continuant (thing that exists) 
–  Occurrent (process) 

•  Relation: a type of relationship between 
concepts 
–  E.g. is_a, part_of 



Entrez Gene: INSR 



Gene function annotation sources 

•  Gene Ontology (GO) 

•  Pathway databases 
–  Reactome 
–  PANTHER 
–  BioCyc 
–  KEGG (kind of) 

Thomas PD, Lewis SE, Mi H, Ontology annotation: 
mapping genomic regions to biological function, Curr. 
Opin. Biol. Chem.11:1-8 (2007) 



Gene Ontology 

•  Formal representation of biology knowledge 
domain, as it relates to genes and gene products 
(mostly proteins) 

•  Three knowledge domains: 
–  Molecular function: what a gene product does with its 

direct physical interaction partners, e.g. protein kinase 
–  Cellular component: where the protein is located when 

the function is carried out, e.g. plasma membrane 
–  Biological process: “system” function carried out by 

multiple molecular functions working together in a 
regulated manner, e.g. pathways, cellular processes, organ 
functions, organism behavior 

•  Concepts are joined together by directional 
Relations: is_a, part_of, regulates 



Entrez Gene: INSR 

is_a 
relations 
from the 
GO are 
NOT 
shown by 
Entrez 



Pathway representations 

•  Point of view from the molecular reaction 
–  Generalized to include covalent and noncovalent (e.g. 

binding) reactions 
•  Concepts are reaction, molecule classes 
•  Relations are between molecule classes and 

reactions 
–  Catalyst 
–  Reactant 
–  Product 

•  Top level structure provided by SBML, BioPAX 
–  Systems modeling community vs. Genomics community 



Notch signaling pathway in GO 
Relations to  
more general classes 

Relations to  
more specific classes 



Notch signaling in Reactome 



Notch signaling in KEGG 



GO vs. pathway representations 

•  GO is a simpler representation of molecular 
events, but has more biological context 

•  Pathway representations are more detailed 
at the molecular level, and can capture 
dependencies and temporal series 



GO annotations 
know what you’re getting 

•  Annotation is an association between 
–  A gene/gene product 
–  A Gene Ontology term 

•  But there is more information 
–  Qualifier 
–  Evidence code and evidence 

Annotation 1: INSR performs_function ‘receptor activity’ 
Annotation 2: INSR located_in ‘plasma membrane’ 
Annotation 3: INSR involved_in ‘insulin receptor signaling pathway’ 



Common qualifiers 

•  NOT 
–  This is really important, it means that the gene 

product does NOT have a particular function 
•  contributes_to 

–  This is usually used when a gene product is part 
of a complex that has a particular molecular 
function, but it is not the active subunit 



Evidence 
•  GO annotations are based on evidence, 

which is given a type (evidence code) and a 
reference (usually a PubMed identifier) 

•  Evidence types 
–  Curated from the primary literature 

•  EXP, IDA, IEP, IGI IMP, IPI 
–  Curated from “secondary sources” 

•  TAS, NAS, IC 
–  Curated from homology inference 

•  ISS, IBA 
–  Uncurated 

•  IEA, RCA 



GO evidence codes 

All codes 

Experimental, curated “Electronic” 
(computational inferences) 

IDA  IPI  IGI  IMP  IEP 

More direct 

IBA  IEA  ISS  ISO  RCA 

More highly curated 

Curated secondary 

TAS  IC  NAS 

More traceable 



IDA tends to be more “direct” than 
IMP, which can be a downstream causal 

effect 



Experimental evidence codes 

•  Expert biologist reads a paper, and selects 
GO terms that best describe functions 
that are experimentally demonstrated in 
the paper 

•  GO database currently includes annotations 
from over 100,000 scientific papers 

•  Reference field links to paper and allows 
you to verify the annotation 



Direct, literature-based annotation 

•  Function annotation inference based on direct 
evidence in the scientific literature 
–  Experiment performed on that gene product itself 

•  Text mining and management (Textpresso) 
–  Very active area of research 

•  Curator reads abstract or article and manually 
enters annotation 

•  GO annotation is performed at 12 different 
“model organism databases” and UniProt 

•  Two types: 
–  Primary source: experimental paper (Evidence codes: 

IMP, IGI, IDA, IEP, IPI) 
–  Secondary source: review article, introduction to another 

article, curator inference (TAS, NAS, IC) 



GO experimental annotations cover 
a few major “model organisms”  



Experimental evidence types 

•  “Experimental” evidence codes 
–  IDA: inferred from direct assay 
–  IGI: inferred from genetic interaction 
–  IPI: inferred from protein interaction 
–  IMP: inferred from mutant phenotype 
–  IEP: inferred from expression pattern 
–  EXP: inferred from experimental evidence 

•  Important distinctions 
–  IDA, IGI, IPI: usually the most direct 
–  IMP, IEP: can be indirect, downstream effects 
–  IEP is used very cautiously by curators 



“Secondary” source annotations 
from literature 

•  TAS: traceable author statement 
–  The author referenced another paper; these 

are being traced and replaced by primary 
annotations 

•  NAS: nontraceable author statement 
–  The author did not reference another paper; 

these are no longer commonly used as evidence 
•  IC: inferred by curator 

–  For example, a paper demonstrates 
transcription factor activity in a human cell; 
curator infers that it must function in the 
nucleus 



“Electronic” evidence 
•  Important distinction: degree of manual 

review 
–  RCA: no systematic review, mostly “guilt by 

association” methods 
–  ISO: no review, but conservative rules for 

function inference for some 1:1 orthologs 
–  ISS: review of pairwise homology and function, 

but no consistent rules 
–  IEA: review of large lists of homologous proteins 

and selection of which terms to infer 
–  IBA: review of ALL experimental annotations for 

each gene family and selection of which terms to 
infer by constructing explicit evolutionary model 



Most GO annotations are based on 
homology (except for some yeasts) 

 



Homology is still the most 
informative predictor of function 

•  Many “guilt by association” methods, e.g. 
protein interaction network analysis, gene 
co-expression, etc. 

•  In recent function prediction experiment 
(CAFA), homology still found to be major 
component of informative predictions 
–  See BMC Bioinformatics 14:suppl 3 (2013), e.g. 

Hamp et al., Gillis et al. 



Homology-based annotation 
•  “traditional” pairwise view 

–  If two sequences are similar, they are likely to share 
some functions in common 

–  So if I know the function of one gene, I can make 
inferences about the function of another gene 

•  “transitive annotation” (ISS evidence code in GO) 
–  Very commonly applied, in database search algorithms 

like BLAST, FASTA (e.g. Blast2GO) 
–  This success has led to overinterpretation of its meaning 

by many casual users 
•  A class of database search has become a metaphor, implying that 
“genes have similar functions because they have similar 
sequences” 



ISS is based on pairwise sequence comparison:  
example BLAST results for human MTHFR vs. SwissProt database 

Significant hit to a 
yeast protein with 
a literature-based 
annotation. 
 
This ID is in the 
evidence field 



Understanding what homology 
inference really is  

•  Two sequences are similar because they are homologous (at least 
for relatively long, non-repetitive sequences, i.e. almost all genes) 

•  More properly, transitive annotation of function is inheritance! 
–  “related genes have a common function because their common ancestor 

had that function, which was inherited by its descendants” 
–  not just an inference about one gene.  It is also making inferences about 

•  The most recent common ancestor (MRCA) 
•  Continuous inheritance since the MRCA 
•  Potential inheritance by other descendants of the MRCA 

Gene in 
Yeast 

Gene in 
Mouse 

Function X 

Gene in 
Opisthokont 
MRCA 

Function X 

Function X 

Gene in 
Zebrafish 

Function X 

Function X 

Gene in 
Human 

Function X 
Function X 



Fundamental challenge in using sequence 
similarity to annotate function (1): 
SEQUENCES of different genes 

(proteins) evolve at different rates  

•  Sequence divergence (e.g. BLAST score or E-
value) cannot be simply converted to an 
evolutionary relationship 
–  Score depends on time, selective constraints, 

length of gene/protein sequence, sequence 
composition 

•  Problem can be addressed using phylogenetic 
trees 



Fundamental challenge in using sequence 
similarity to annotate function (2): 

Different GO functions in same protein 
family evolve at different rates 

•  Enzyme mechanism (1-3) 
evolves more slowly than 
substrate specificity (4) 

•  In general, no pairwise 
similarity threshold to 
reliably predict all 
different functions! 

•  Problem can be addressed 
by treating different 
functions independently 



Using trees to get relationships 
between genes 

•  ISO: inferred from sequence orthology 
–  From Ensembl Compara 
–  Function annotations are NOT REVIEWED 

•  For vertebrates: infers that all experimental 
annotations in any vertebrate are true of all 
vertebrates IF there is one-to-one gene orthology 

•  For plants: infers that all experimental annotations in 
any plant are true of all plants IF orthology AND 
sequence identity > 60%. 



Understanding ISO:  
Concept of orthologs 

•  The term “orthologs” is often used to denote “the 
same gene” in different organisms but this is not 
techically correct, and can lead to confusion 

•  Defined by J. Fitch (Syst Zool 19:99, 1970) 
•  Orthologs share a MRCA immediately preceding a 

speciation event 
–  i.e. they can be traced to a single gene in the most recent 

common ancestor population/species 
•  Paralogs share a MRCA immediately preceding a 

gene duplication event 
–  i.e. they can be traced to a gene duplication event in the most 

recent common ancestor population/species, and can be traced 
to distinct ancestral genes in that species 



Why orthology is confusing 
•  It is a statement about an evolutionary 

relationship and not about gene function 
–  Orthologs may be doing different things in their 

respective species 
•  It is a pairwise definition, yet “ortholog group” or 

“ortholog cluster” are common terms 
–  Orthology is NOT TRANSITIVE 

•  An ortholog cluster may contain pairs that are 
paralogs! 

•  Proposed solutions are also complicated 
–  One solution is to ignore any cases except “one-to-one 

orthologs” where no gene duplication occurs, but this 
misses many functionally similar genes 

•  All current ISO annotations are from one-to-one orthology 
–  Another solution is to allow “close paralogs” (“in-

paralogs”, Sonnhammer) into the cluster. 



Orthology 
only defined for PAIRS of genes 

E.c. 
A.t. MTHFR1 
A.t. MTHFR2 
D.d. 

S.p. 
S.c. MET13 

D.m. 
A.g. 

S.p. 
S.c. MET12 
C.e. 

D.r. 
G.g. 

H.s. MTHFR 
R.n. 
M.m. 

 
 
 
 
 

LCA is a speciation event 
So these are orthologs 

Two genes are orthologs if their LCA was a speciation event 



Paralogy 
only defined for PAIRS of genes 

E.c. 
A.t. MTHFR1 
A.t. MTHFR2 
D.d. 

S.p. 
S.c. MET13 

D.m. 
A.g. 

S.p. 
S.c. MET12 
C.e. 

D.r. 
G.g. 

H.s. MTHFR 
R.n. 
M.m. 

 
 
 
 
 

LCA is a duplication event 
So these are paralogs 

Two genes are paralogs if their LCA was a duplication event 



Orthology is simple when there are 
no duplications following speciation 

E.c. 
A.t. MTHFR1 
A.t. MTHFR2 
D.d. 

S.p. 
S.c. MET13 

D.m. 
A.g. 

S.p. 
S.c. MET12 
C.e. 

D.r. 
G.g. 

H.s. MTHFR 
R.n. 
M.m. 

 
 
 
 
 

LCA speciation event 



Orthology gets more complicated 
when there are duplications 

following speciation 
E.c. 

A.t. MTHFR1 
A.t. MTHFR2 
D.d. 

S.p. 
S.c. MET13 

D.m. 
A.g. 

S.p. 
S.c. MET12 
C.e. 

D.r. 
G.g. 

H.s. MTHFR 
R.n. 
M.m. 

 
 
 
 
 

H.s. MTHFR has two orthologs in yeast 
And these two orthologs are paralogs of each other 

LCA speciation event 



These genes are “in paralogs” with 
respect to each other  

when comparing to animal genomes 
E.c. 

A.t. MTHFR1 
A.t. MTHFR2 
D.d. 

S.p. 
S.c. MET13 

D.m. 
A.g. 

S.p. 
S.c. MET12 
C.e. 

D.r. 
G.g. 

H.s. MTHFR 
R.n. 
M.m. 

 
 
 
 
 

H.s. MTHFR has two orthologs in yeast 
And these two orthologs are paralogs of each other 

LCA speciation event 



But these same genes are “out 
paralogs” with respect to each other 

when comparing fungal genomes  
 E.c. 

A.t. MTHFR1 
A.t. MTHFR2 
D.d. 

S.p. 
S.c. MET13 

D.m. 
A.g. 

S.p. 
S.c. MET12 
C.e. 

D.r. 
G.g. 

H.s. MTHFR 
R.n. 
M.m. 

 
 
 
 
 

H.s. MTHFR has two orthologs in yeast 
And these two orthologs are paralogs of each other 

LCA speciation event 



Clusters from different “orthology” 
methods 

•  OrthoMCL in red; PhiGs in blue; InParanoid in green 
•  An “ortholog cluster” is made by one or more “slices” through the protein family tree 

E.c. 
A.t. MTHFR1 
A.t. MTHFR2 
D.d. 

S.p. 
S.c. MET13 

D.m. 
A.g. 

S.p. 
S.c. MET12 
C.e. 

D.r. 
G.g. 

H.s. MTHFR 
R.n. 
M.m. 

 
 
 
 
 



IEA annotations have multiple 
sources 

•  IEA annotations far outnumber any other 
type 

•  Two major sources 
–  Swiss-Prot keywords, mapped to GO terms 

•  Assigned manually, or by unreviewed sequence 
similarity 

•  No evidence trail 
–  InterPro models, mapped to GO terms manually 

•  Assigned manually to families of related sequences, 
not to individual sequences 



IEA annotations: InterPro 
•  InterproScan is among most highly-used automatic method 
•  Combines most popular web resources into one package 
•  Most of these are homology-based, searching a library of 

Hidden Markov Models (HMMs) 
•  Two distinct types of model 

–  Domain-based (e.g. Pfam, SMART, Superfamily) 
•  Model divergent groups usually with relatively ancient common 

ancestor 
•  Domain shuffling has often occurred since this ancestor 
•  Useful for seeing modular architecture 
•  Will often predict only very general function, conserved since 

MRCA of module 
–  Subfamily-based (e.g. PANTHER, TIGRFAMs, PRINTS) 

•  Model groups that are more closely related (relatively recent 
ancestor or less divergent phylogenetic groups) 

•  Domain shuffling has generally not occurred since this ancestor  
•  Can predict much more specific functions 



HMM: “generative model”, first-order, 
learn “hidden” states and probabilities 

Mammalian tyrosinases excerpted from 
an alignment spanning vertebrates 



Profile-based annotation 

•  Define a group of homologous sequences 
–  Family/domain (e.g. Pfam) 
–  Subfamily (e.g. PANTHER) 

•  For most methods, build an HMM to recognize 
members of the homologous group 

•  Annotate the group with functions/processes all 
known members have in common 



Profile-based annotation 

•  Driven by sequence relationships first, function 
later 
–  Generally works well for molecular function 

•  Sometimes loses specificity, depending on the approach 
–  Loses specificity especially for biological process 

largely because of 
•  co-option into new processes during evolution 
•  Domain shuffling 



IEA: keywords are more reliable 
than InterPro 



IEAs have become more specific 
and more reliable 



IEA is more reliable than ISS+IC 



IBA: inferred annotations using 
manually annotated ancestral genes 

 
•  New effort within GO Consortium 

–  Currently covers ~10% of genes in 85 genomes, growing daily 
•  Review ALL experimental annotations for ALL genes in 

a gene family 
•  Build explicit models of function evolution 

–  Use “evolutionary reasoning”: descendants generally share a 
character because they inherited it from a common ancestor 

•  Infer the function of an ancestor from knowledge about its 
descendants 

•  Infer the function of uncharacterized descendants from inference 
about its ancestor 

–  Create a model of evolution of function for every gene 
family 

•  Gains of function 
•  Losses of function 



“Phylogenomic” function annotation 

51 

•  View known data 
in the context of 
phylogenetic tree 

•  Infer subfamilies 
that share 
function 



Gaudet P et al. Brief Bioinform 2011;12:449-462 

IBA: Use multiple pieces of 
evidence in a phylogenetic tree 

Integration of experimental GO 
annotations from different models 
(curated) 

Inheritance of inferred ancestral 
annotations to annotate extant genes 
(automatic) 



Example annotation: 
maintenance of DNA repeat elements 



IBA: software-assisted manual 
annotation 

•  Need to view tree, annotations and 
additional relevant information 

•  Need to annotate trees with function gain 
and loss events 

PAINT 
Phylogenetic Annotation and 

Inference Tool 



Integration of multiple types of 
biological knowledge 

•  GO annotations (from literature) 
•  Sequence feature annotations 

–  Domains 
–  Active sites 
–  Modification sites 

•  Tree branch lengths 





Evidence from specific protein sites 

§  phosphoglucomutase activity LOSS phosphoglucomutase 
activity (PGM5 subfamily) 
 

PGM5 subfamily  

PGM1 
subfamily  

Curated 
active site 
information 
from CDD 
(cd03085) 



IBA: Loss of function can be annotated 

 MF: SOD activity 

LOSS: SOD activity 
GAIN copper chaperone activity 



59 



‘’ 

MutS2 

MutS3 

MutS1 

MSH1 

MSH2 

MSH3 

MSH6 

MSH4 

MSH5 

GAIN: MF:  mispaired DNA binding 
                    single-base insertion binding 
                    dinucleotide insertion binding 
                   DNA-dependent ATPase activity 
                   protein homodimerization activity 
           BP: DNA mismatch repair 

GAIN: MF: A/C mismatch binding 

LOSS: MF: mispaired DNA binding 
                  single-base insertion binding 
                  dinucleotide insertion binding 
                  protein homodimerization activity 
           BP: DNA mismatch repair 
GAIN: CC: synaptonemal complex 
            BP: synapsis 
                  chiasma assembly 
                  homologous chromosome segregation 
                  reciprocal meiotic recombination 

GAIN: MF: G/T mismatch binding 

GAIN: CC: mutSalpha complex 
           MF: 4-way junction binding 
                   oxidized purine binding 
LOSS: dinucleotide insertion binding 

GAIN: CC: mutSbeta complex 
           MF: DNA loop binding 
                   single-stranded DNA binding 
                   ss/ds DNA junction binding 
                   Y-form DNA binding 
            BP: maintenance of DNA repeats 
LOSS: mispaired DNA binding 

LOSS: protein homodimerization activity 

GAIN: BP: apoptosis 

GAIN: BP: removal of 
     nonhomol. ends 
            BP: mitotic 
     recombination 

GAIN: BP: somatic 
          recombination 

GAIN: BP: somatic hypermutation 
            isotype switching 

 MF: double-stranded DNA binding 



IBA vs ISO for SOD family 
Only most informative annotations are propagated 

Inferences can be made from non-vertebrate homologs 



IBA vs IEA (InterPro) for SOD family 
Higher specificity 

 



IBA vs IEA (InterPro) for PGM family 
Higher specificity 

Fewer false positive predictions 
 



Bottom line 
•  Experimental evidence codes remain the 

“gold standard” 
–  BUT only available for a small subset of well-

studied organisms 
–  NOTE: be aware of indirect effects annotated 

from IMP and IEP, you may want to filter these 
for some applications 

•  The next most reliable and specific tier is 
IBA, followed by IEA, then followed by 
ISS and IC 

•  If you want a more concise “summary” list 
of GO annotations, use IBA 



Where to get the data 

•  GO annotations 
–  Gene Ontology website 

•  Pathway data in SBML format 
–  Pathway Commons website 

•  For any analysis, make sure you note the 
version number and download date, as 
these resources are always being updated 
and analysis results may change from 
version to version 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Introduction to  
NGS Visualization with the 

Integrative Genomics Viewer (IGV) 
 

Programming for Biology 2014 
Cold Spring Harbor 

Jim Robinson 
 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Agenda 

•  Introduction 

•  Using IGV: The Basics 

•  Data Tracks and File Formats 

•  NGS Alignments 

•  SNPs 

•  Structural Events 

•  RNA-seq 

•  igvtools 

•  Exercises 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

A desktop application for integrated visualization of multiple data 

types and annotations in the context of the genome. 

What is IGV 

Microarrays	
  
Epigenomics	
  

RNA-­‐Seq	
  
NGS	
  alignments	
  

Compara:ve	
  genomics	
  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Installing IGV 
http://www.broadinstitute.org/igv 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Installing IGV 

For email use  
igv-team@broadinstitue.org 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Launch IGV 

Download the Mac 
App bundle and  
double-click to unzip it. 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Using IGV: The Basics 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

•  Launch IGV 
•  Select a reference genome 
•  Load data 
•  Navigate through the data 

Using IGV: the basics 
Hands-on exercise 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Select the reference genome 

Select genome from 
the drop-down menu 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Select the reference genome 

Today, we will use both 
Human hg18 and hg19  

If Human hg19 is not in the menu, 
then click on More…  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Select the reference genome 

Select Human hg19 
from the list of genomes, 
and click OK 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Select the reference genome 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Select the reference genome 

Select Human hg18 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Load data 

Select File > Load from Server…  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Load data 

Open the  
Tutorials menu 

Select  
UI Basics (Encode) 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Screen layout 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Screen layout 

Click the Home button 
for whole-genome view 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Screen layout 

tracks 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

toolbar 
menus 

genome 
ruler 

data 
panel 

genome 
features 

Screen layout 

tracks 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 

Click on the 1 in the 
genome ruler to 
view chromosome 1 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 

Click and drag  
from 40 mb to 60 mb 
on the genomic ruler 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 

Double-click to 
zoom in for closer 
view of peak 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 

Click anywhere 
in the data panel 
and drag tracks 
left and right 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 

Type gene name or other RefSeq 
annotation into the Search Box 
and click Go 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 

Type gene name or other RefSeq 
annotation into the Search Box 
and click Go 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 

Click on the last tick on the 
“railroad track” to zoom in 
to maximum resolution 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Navigate 

Maximum zoom. 
We’ve moved from 
whole genome to 
base pair resolution Reference 

sequence 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing multiple regions 

•  Search box 
Enter multiple loci or features in the search box 

 
 

•  Regions > Gene Lists… 
Select from a number of pre-defined gene lists, or 
Create your own persistent list 

 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing multiple regions 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing multiple regions 
To go back to the standard, single-region view: 

•  double-click on a region label  – or – 
•  right-click and select “Switch to standard view” 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

File formats and track types 
•  The file format defines the track type. 
•  The track type determines the display options 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

File formats and track types 
•  The file format defines the track type. 
•  The track type determines the display options 

•  IGV supports many different file formats.  

 

•  For current list see: www.broadinstitute.org/igv/FileFormats 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Genome annotation track 

3’ UTR 5’ UTR Exons Intron 

UCSC style gene representation 

Zoomed in views 

Zoomed out views 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Annotation display mode 

1. Features are drawn in a single row, by default   

2. Expand the track using the popup menu 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Annotation display mode 

3. For a compact view of all variants use “Squished” 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Reference sequence 

By default the sequence for the forward strand is shown. 

Click anywhere on the sequence to see a 3 frame translation. 

Click the arrow on the left to reverse the strand. 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing NGS Data 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing alignments 
Whole chromosome view 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Zoom in to view alignments 

Viewing alignments 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing alignments 
Coverage track now has more detail 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing alignments 

Bases that do not match the 
reference sequence are 

highlighted by color 

Zoom in to see more detail 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing alignments 
Zoom in to see more detail 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing alignments 

Low-quality base 
calls are faint, 

semi-transparent. 

Zoom in to see more detail 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing alignments 

How far do you need to        
zoom in to see the alignments? 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing alignments 

How far do you need to        
zoom in to see the alignments? 

30 kb or set a different threshold 
in preferences 

 
•  Higher value (larger region) è requires more memory  
•  Low coverage files è ok to use higher value    
•  Very deep coverage files è use lower value 
    



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Downsampling: 
•  limits displayed read depth 
•  uses less memory 

Viewing alignments 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

•  Load alignments from whole genome sequencing 
•  View sites where SNPs were called 
•  Sort and color to highlight patterns 

Viewing SNPs 
Hands-on exercise 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Before we start: 
Select File > New Session 
to clear IGV window 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Select File > Load from Server…  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Open the  
Tutorials menu 

Select  
SNP Validation 

Select File > Load from Server…  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Type “snp1” in the Search Box 
and click Go 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

If necessary, click and drag 
the window divider for a 
larger data panel 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Click on yellow balloon icon 
in the toolbar to modify the 
information popup behavior 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Click & drag to 
position mismatched 
bases between the 
center guidelines 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Right-click on alignments and select 
Sort alignments by > base 

On Mac: Right-click = ⌘-click 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Mouse over red & blue bar in coverage track. 
Note allele counts and frequencies.  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Type “snp2” in the Search Box 
and click Go 

Note: 
Large % of low quality base calls,  
and scatter of “C” mismatches 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Click & drag to 
position locus with 
5 blue C’s between 
center guidelines 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Right-click on alignments and select 
Shade base by quality 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Right-click on alignments and select 
Sort alignments by > read strand 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 

Right-click on alignments and select 
Color alignments by > read strand 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing SNPs 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Viewing Structural Events 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Structural events 
 
 

•  Paired reads can yield evidence for genomic “structural 
events”, such as deletions, translocations, and inversions.  

•  Alignment coloring options help highlight these events 
based on: 

 
•  Inferred insert size (template length) 

•  Pair orientation (relative strand of pair) 

 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Paired-end sequencing 
 
 

Read from 
each end 

Fragment 

DNA or 
cDNA 

insert size 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Paired-end sequencing 
 
 

inferred insert size 

Align to 
Reference 

Read from 
each end 

Fragment 

DNA or 
cDNA 

insert size 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Interpreting Insert Size 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Interpreting inferred insert size 

The “inferred insert size” can be used to detect 
structural variants, including: 
 

•  Deletions 

•  Insertions 

•  Inter-chromosomal rearrangements: (Undefined 
insert size)  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
 
 

What is the effect of a deletion 
on inferred insert size? 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
 
 

Reference 
Genome 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
 
 

Reference 
Genome 

Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
 
 

Reference 
Genome 

Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
 
 

Reference 
Genome 

Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
 
 

Reference 
Genome 

Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
 
 

Reference 
Genome 

Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
 
 

Reference 
Genome 

Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
 
 

Reference 
Genome 

Subject 

inferred insert size 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
 
 

Reference 
Genome 

Subject 

inferred insert size 

expected insert size 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 

Inferred insert size is > expected value 
Reference 
Genome 

Subject 

expected insert size 

inferred insert size 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
Pairs with larger than 
expected insert size 
are colored red. 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Deletion 
Note drop in coverage   



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Insert size color scheme 

 
•  Smaller than expected insert size: 

•  Larger than expected insert size: 

•  Pairs on different chromosomes 
 
     Each end colored by chromosome of its mate 
 
  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Rearrangement 

TUMOR 

NORMAL 

CHR 1 CHR 6 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Rearrangement 

TUMOR 

NORMAL 

Color indicates mate is 
on chromosome 6 

CHR 1 CHR 6 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Interpreting Pair Orientations 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Interpreting pair orientations 

Orientation of paired reads can 
reveal structural events, including: 

•  inversions 
•  duplications 
•  translocations 

Orientation is defined in terms of  
•  read strand, left vs right, and  
•  read order, first vs second 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
genome 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
genome 

A B 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
Genome A B 

B A 
Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
Genome A B 

B A 
Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
Genome A B 

B A 
Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
Genome A B 

B A 
Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
Genome A B 

B A 
Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
Genome A B 

B A 
Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
Genome A B 

B A 
Subject 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
Genome A B 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
Genome A B 

Anomaly –  
Expected pair orientation is 
inward facing (                 )  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
Genome A B 

“Left” side pair 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Reference 
Genome A B 

“Right” side pair 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Color by pair orientation 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Inversion 
 
 

Note drop in coverage 
at breakpoints   



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-Seq 
 
 

•  Examine tissue-specific alternative splicing. 

•  Data:  Illumina BodyMap 2.0  
 
      http://www.illumina.com/science/data_library.ilmn 

Hands-on exercise 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Before we start: 
Select File > New Session 
to clear IGV window 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

•  Step 1:  Tune settings for RNA. 
 

RNA-Seq Setup 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Select View > Preferences…  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Click Alignments tab 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Select Show junction track 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Click OK to save changes 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 Select Human hg19 

from genome menu 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 

 
 

Select: 
File > Load from Server…  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 

 
 

Open the  
Tutorials menu Select  

RNA-Seq (Body Map) 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 Type SLC25A3 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 Click Go 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

If reads are still blue & red from 
the settings for the last exercise, 
then right-click and select  
Color alignments by > no color 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Heart 

Liver 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Coverage 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Junction Coverage 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Alignments 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Right-click over 
RefSeq Genes 
track 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Select Squished 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Isoforms now 
displayed 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Click & drag on 
ruler to zoom in 
on first 2 exons 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Evidence of 
alternative 
splicing 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Sashimi plot 
 
 Viewing RNA splicing with Sashimi Plots 
 
Reference: Katz Y, Wang ET, Silterra J, Schwartz S, 
Wong B, Mesirov JP, Airoldi EM, Burge, CB. 
Sashimi plots: Quantitative visualization of RNA 
sequencing read alignments.  arXiv:1306.3466 [q-
bio.GN], 2013 
 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Right-click over 
alignments 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Select  
Sashimi Plot 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Select  
RefSeq Genes 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Select both 
Heart and Liver 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

A little busy.  
Let’s filter out 
low-count events 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Right-click anywhere 
over plot 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Select  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Enter 20 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

RNA-seq alignments 
 
 

Un-Check Show junction 
track 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

igvtools 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

igvtools 

toTDF 
•  Converts sorted data file to a binary tiled data file (TDF).  
•  Supported file formats: .wig, .cn, .snp, .igv, .gct 

count 
•  Computes average alignment or feature density over a 

specified window size across the genome.  
•  Supported file formats: .sam, .bam, .aligned, .sorted.txt, .bed 

sort 
•  Sorts file by genomic start position.   
•  Supported file formats: .cn, .igv, .sam, .aligned, .bed. 

index 
•  Creates an index file for alignment or feature file.  
•  Supported file formats: .sam, .aligned, .sorted.txt, .bed 

A set of utilities for preparing files for efficient display.  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

igvtools 

•  Can be launched from 
the IGV user interface 
File > Run igvtools… 

•  Or run from the 
command line 

 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

igvtools toTDF   

The toTDF utility converts large ASCII data files into 
tiled data format (.tdf) files.   
 
TDF files have the following advantages: 

•  Data is indexed for efficient retrieval. 

•  Data is preprocessed for zoomed out views. 

•  TDF files are web friendly – large data files can be 
shared over the web. Only small slices of the file 
are actually transferred as needed. 

 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

igvtools count 
The count command is used to transform alignment files 
to read density TDF files, e.g. for ChIP-Seq, RNA-Seq, and 
similar alignment counting experiments. 
 
 
 
 
 
 

igvtools 

Alignments Read Density 

TDF format, indexed and 
optimized for fast retrieval at 
multiple resolution scales 

Alignments in bam/sam,  
.aligned, or bed format 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

igvtools sort   

•  Sorts IGV-supported genomic formats by start position.   
•  The index command requires sorted files.  
 
Example:   
igvtools sort  -m 1000000 –t ~/myTmpDir inputFile.sam 
outputFile.sorted.sam 
 
•  Uses combination of memory and disk to handle large files.   
 

-m = maximum # of lines to hold in memory.  When this 
number is exceeded a temporary file is created. 
 
-t = directory used to create temporary files during sorting. 
 

 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

igvtools index   

Creates an index file for viewing large files in bed, gff, or vcf formats.   
An index is optional for bed or gff files, but required for vcf files. 
 
An alternative indexing tool is “tabix”.  Tabix both compresses and 
indexes genomic files.  IGV can read either type of index (igvtools or 
tabix).   
 
 
Example:   igvtools index myFeatures.bed    
 
  
 
The index file must remain in the same directory as the input file 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
•  Compute alignment coverage from a BAM file 

using igvtools count command. 
 
 
Data source 
Illumina BodyMap 
 
 
 

Hands-on exercise 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

 
 
 Download data files required for this exercise from: 

ftp://ftp.broadinstitute.org/pub/igv/CSH_2013/files.zip 
 
Files included in the zip: 

heart.bodyMap.bam 
heart.bodyMap.bam.bai 
sacCer3.fa (used in next exercise) 

 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
 
 

Select Tools > Run igvtools… 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
 
 Select Count command 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
 
 

Select input file heart.bodyMap.bam   
Output filename will be filled in 
automatically.  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
 
 

Click Run 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
 
 

Wait for “Done” message 
(should be fast). 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
 
 

Click Close 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
 
 

Select  
File > Load from File… 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
 
 Select heartBodyMap.bam.tdf 

(output from igvtools) 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
 
 

See coverage blip at whole-genome view. 
The BAM file only has data around a single 
gene on chr 12. 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
 
 

Enter SLC25A3 in the 
search box and click Go 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Computing coverage: igvtools 

 
 
 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

•  Computing total and strand specific coverage 
with igvtools 

•  IGV batch scripting 

•  Controlling igv from a web page 

Exercises 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

Acknowledgments 

IGV Team 
Jim Robinson, Helga Thorvaldsdóttir, Jill Mesirov (PI) 
 
 
Funding 
IGV development has been made possible with funding from: 
•  National Cancer Institute (NCI) http://cancer.gov/ 
•  Starr Cancer Consortium http://www.starrcancer.org/ 
•  National Institute of General Medical Sciences (NIGMS) of the 

National Institutes of Health http://www.nigms.nih.gov/ 
•  IGV participates in GenomeSpace http://genomespace.org/, 

which is funded by the the National Human Genome Research 
Institute (NHGRI) http://www.genome.gov/ 

 



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

For further information and help: 
http://www.broadinstitute.org/igv 

http://groups.google.com/group/igv-help  

Cite: 
Robinson et al.            
Integrative Genomics Viewer.                         
Nature Biotechnology 29, 24–26 (2011). 

Thorvaldsdóttir, Robinson, and Mesirov.  
Integrative Genomics Viewer (IGV):  
high-performance genomics data 
visualization and exploration.                    
Briefings in Bioinformatics (2012). 

  

 

 



JBrowse
Programming for Biology 2014

CSHL

Scott Cain
GMOD Coordinator
scott@scottcain.net

What is GMOD?

• A set of interoperable open-source 
software components for visualizing, 
annotating, and managing biological 
data.

• An active community of developers 
and users asking diverse questions, and 
facing common challenges, with their 
biological data.



Who uses GMOD?

Plus hundreds more organizations.

What are Genome Browsers good for?

• Visualizing dense data from a multitude of 
sources (genes from a GFF file, RNASeq 
data from a BAM file, variation data from a 
VCF file)

• Homology and gene expression support for 
gene models



Genome Browsers
(there’s more than just UCSC)

• Many “specialty” browsers (eg, Biodalliance, 
Savant)

Ensembl

GBrowse

Why Install Your Own?

• You have data no one else has

• You want to be able to share it with your 
group, community, the world (potentially 
with “less savvy” users)

• You want to have control over how it looks



Why JBrowse?

• (Fairly) Easy install

• Good user experience (getting close to a 
browser-desktop hybrid)

• Good community support (mailing lists, 
tutorials, software updates)

Installation

• Only requires:

• Web server (apache, lighttpd, nginx, etc)

• Conveniently, Mac OS X ships with one 
installed.

• Perl/make/standard unix-y tools



JBrowse Attributes

• Do everything possible on the client side, in 
JavaScript.

• Fast, smooth navigation.

• Supports GFF3, BED, Bio::DB::*, Chado, WIG, 
BAM, BigWig,  VCF, and UCSC import (intron/exon 
structure, name lookups, quantitative plots).

• Is stably funded by NHGRI.

• Is open source, of course.

• Did I mention it's fast?

 The JBrowse Project

• free and open source (license: LGPL / Artistic)

• a GMOD project

• http://gmod.org

• developed using git, hosted on GitHub

• http://github.com/GMOD/jbrowse

• PIs most involved: Ian Holmes, Lincoln Stein, Suzi 
Lewis



Feature Tracks
• HTMLFeatures: Rectangles (<div>s) with various 

fills and heights to represent the feature spans

• CanvasFeatures: Much prettier, more configurable 
glyphs

• Super-configurable left clicking and right-click 
menus.

Feature Density Plots
Zoomed out

Zoomed in



Wiggle/BigWig Tracks

• Reads small chunks directly from BigWig file.

• Needs only a not-super-old (< 5 yrs) browser, 

except for Internet Explorer.

• IE requires version 10.

BAM Alignment Tracks

• Reads small 
chunks directly 
from BAM file.

• Coverage and 
mismatches.



VCF Tracks

• Reads directly from 
VCF files compressed 
and indexed with bgzip 
and tabix.

• Shows all VCF data: 
alleles, genotypes, 
quality, etc.

Particular Strengths

• Web-based, but fast and smooth easy to set up

• Compressed NGS data: direct-to-browser BAM, 
BigWig, and VCF

• Optional faceted track selector – efficiently search 
thousands of tracks

• Open local files directly on client, no data transfer 
required

• Highly customizable, embeddable, 
integratable, programmable



WebApollo
http://gmod.org/wiki/WebApollo

• Based on JBrowse, using plugin system

• Next generation of the popular Apollo 
annotation editor

• Online annotation editing and curation!

WebApollo

• Clients receive updates in real time (like Google 
Docs)

• Saves edits to a central Chado database

• Client side is a JBrowse plugin

• Extensive server-side Java

• Maybe a live demo (later)

• http://genomearchitect.org/WebApolloDemo/



JBrowse Plugins
• Extend JBrowse with your own JavaScript code

• Can do pretty much anything

• Add your own track visualizations

• Add your own data backends

• Add menu items

• Subscribe to event notifications (pub/sub system)

• Reach deep into the guts of JBrowse and (carefully!) 

• change anything at all!

• WebApollo client is a JBrowse plugin

Coming in 2.X

• MORE: data types, sorting options, speed

• Graphical configuration

• Multiple views, linked or independent

• Logins, uploading, track sharing

• Circular genomes



Big Thanks

Suzi Lewis (LBNL)
Gregg Helt
Ed Lee
Justin Reese (UofMo)
Colin Diesh (UofMo)

Ian Holms (UC Berkeley)
Rob Buels
Mitch Skinner
Amelia Ireland

Lincoln Stein (OICR)
Julien Smith-Roberge
Erik Derohanian
Julie Moon
Natalie Fox
Adam Wright

NHGRI
Cold, hard cash

The End
(on to the workshop)

http://jbrowse.org/

GMOD: http://gmod.org/wiki/JBrowse

Github: http://github.com/GMOD/jbrowse



Good Practices for Writing Perl Pipelines

Using perl as bioinformatics glue

Simon Prochnik
with code from Scott Cain

1Sunday, October 21, 12

Built-in perldoc <perl topic> to get help

% perldoc perlref

PERLREF(1)            User Contributed Perl Documentation           PERLREF(1)

NAME
       perlref - Perl references and nested data structures

NOTE
       This is complete documentation about all aspects of references.  For a
       shorter, tutorial introduction to just the essential features, see
       perlreftut.

DESCRIPTION
       Before release 5 of Perl it was difficult to represent complex data
       structures, because all references had to be symbolic--and even then it
       was difficult to refer to a variable instead of a symbol table entry.
       Perl now not only makes it easier to use symbolic references to
       ...

Also available online at http://perldoc.perl.org/index-tutorials.html

2Sunday, October 21, 12



Built-in perldoc -f <command> to get help

% perldoc -f split

       split /PATTERN/,EXPR,LIMIT
       split /PATTERN/,EXPR
       split /PATTERN/
       split   Splits the string EXPR into a list of strings and returns that
               list.  By default, empty leading fields are preserved, and
               empty trailing ones are deleted.  (If all fields are empty,
               they are considered to be trailing.)

3Sunday, October 21, 12

Get online help from perldoc.perl.org

http://perldoc.perl.org/functions/split.html

4Sunday, October 21, 12



Running your script in the perl debugger

> perl -d myScript.pl
Loading DB routines from perl5db.pl version 1.28
Editor support available.
Enter h or `h h' for help, or `man perldebug' for more help.
main::(myScript.pl:3):	print "hello world\n";
  DB<1> 

h                help
q                quit
n or s           next line or step through next line
<return>         repeat last n or s
!                repeat last command
c 45             continue to line 45
b 45             break at line 45
b 45 $a == 0     break at line 45 if $a equals 0
p $a             print the value of $a
x $a             unpack or extract the data structure  in $a
R                restart the script

5Sunday, October 21, 12

The interactive perl debugger

> perl -de 4 
Loading DB routines from perl5db.pl version 1.28
Editor support available.

Enter h or `h h' for help, or `man perldebug' for more help.

main::(-e:1):	4
  DB<1> $a = {foo => [1,2] , boo => [2,3] , moo => [6,7]}
  DB<2> x $a
0  HASH(0x8cd314)
   'boo' => ARRAY(0x8c3298)
      0  2
      1  3
   'foo' => ARRAY(0x8d10d4)
      0  1
      1  2
   'moo' => ARRAY(0x815a88)
      0  6
      1  7

6Sunday, October 21, 12



More perl tricks: one line perl

> perl -e <COMMAND>

> perl -e '@a = (1,2,3,4);print join("\t",@a),"\n"'
1     2	   3	   4

#print IDs from fasta file
> perl -ne 'if (/^>(\S+)/) {print "$1\n"}' volvox_AP2EREBP.fa
vca4886446_93762
vca4887371_120236
vca4887497_89954

• see Chapter 19, p. 
492-502 Perl book 3rd ed.

>vca4886446_93762
MSPPPTHSTTESRMAPPSQSSTPSGDVDGS
>vca4887371_120236
MAGLHSVPKLSARRPDWELPELHGDLQLAP
>vca4887497_89954
MAYKLFGTAAVLNYDLPAERRAELDAMSME
>vca4888938_93984
MLHTDLQPPRCRTSGPRPDPLRMETRARER

Contents of fasta file volvox_AP2EREBP.fa

7Sunday, October 21, 12

Is a module installled?

% perl -e 'use Bio::AlignIO::clustalw'

The module in the next example hasn’t been installed 
(it doesn’t actually exist)
% perl -e 'use Bio::AlignIO::myformat'
Can't locate Bio/AlignIO/myformat.pm in 
@INC (@INC contains: /sw/lib/perl5 /sw/
lib/perl5/darwin /Users/simonp/lib /
Users/simonp/Library/Perl/5.8.1/darwin-
thread-multi-2level /Users/simonp/
Library/Perl/5.8.1 /Users/simonp/
com_lib /Users/simonp/cvs/bdgp/software/
perl-modules ...

To install a module
% sudo cpan
install Bio::AlignIO::clustalw
 

all ok: no errors

perl can’t find the module in any of 
the paths in the PERL5LIB list (which 
is in the perl variable @INC)
You can add directories with 
use lib ‘/Users/yourname/lib’; 
after the use strict; at the beginning 
of your script

one-line perl program with ‘-e’ 

this is the program in quotes

8Sunday, October 21, 12



Toy example: Finding out how to run a small task

• Let’s assume we have a multiple fasta file and we want to use perl to 
run the program clustalw to make a multiple sequence alignment and 
read in the results.

• Here are some sequences in fasta format

>vca4886446_93762
MSPPPTHSTTESRMAPPSQSSTPSGDVDGS
>vca4887371_120236
MAGLHSVPKLSARRPDWELPELHGDLQLAP
>vca4887497_89954
MAYKLFGTAAVLNYDLPAERRAELDAMSME
>vca4888938_93984
MLHTDLQPPRCRTSGPRPDPLRMETRARERHere is the pipeline: 

get fasta seq filename, 
construct output filename, 
generate command line that will align sequences with clustalw, 
read in/parse output file, 
(do something with the data)

9Sunday, October 21, 12

How do we start on this? -- Looking for help

• Google 

• <program name> documentation  / docs / command line 

• eg google ‘clustal command line’ 

USE OF OPTIONS 

!  All parameters of Clustalw can be used as options 
with a "-" That permits to use Clustalw in a script or 
in batch. 

! $ clustalw -options 

!  CLUSTAL W (1.7) Multiple Sequence Alignments 

! clustalw option list:- 

!          -help 

                -options 

                -infile=filename 

                -outfile=filename 

                -type=protein OR dna 

                -output=gcg OR gde OR pir OR phylip 

10Sunday, October 21, 12



Build a command line from the options you need and test it out

USE OF OPTIONS 

!  All parameters of Clustalw can be used as options 
with a "-" That permits to use Clustalw in a script or 
in batch. 

! $ clustalw -options 

!  CLUSTAL W (1.7) Multiple Sequence Alignments 

! clustalw option list:- 

!          -help 

                -options 

                -infile=filename 

                -outfile=filename 

                -type=protein OR dna 

                -output=gcg OR gde OR pir OR phylip 

Command line would be:
% clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna
Did it do exactly what you want/expect when you tested it?

11Sunday, October 21, 12

Running a command line from perl

Command line 
clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna 

Script
#!/usr/bin/perl 
use strict; use warnings;

my $file = ‘ExDNA.fasta’; 
my $clustFile = ‘ExDNA.aln’; 
# build command line
my $cmd = “clustalw -infile=$file -outfile=$clustFile -type=dna”;                
print “Call to clustalw $cmd\n”;       # show command
my $oops = system $cmd;      # system call and save return 
                             # value in $oops
die “FAILED $!” if $oops;     # $oops true if failed

12Sunday, October 21, 12



Util.pm package for nice reusable utility functions

package Util;
use strict;
our @EXPORT = qw(do_or_die);    # allow do_or_die() to be exported
! ! ! ! ! ! ! ! ! # without specifying 
     !! ! ! ! ! ! ! ! # Util::do_or_die()
use Exporter;
use base 'Exporter';

# --------------------------------------------------------------
sub do_or_die {
  my $cmd = shift;
  print "CMD: $cmd\n";
  my $oops = system $cmd;
  die "Failed" if $oops;
}
# --------------------------------------------------------------

1;

13Sunday, October 21, 12

Util.pm in a script

#!/usr/bin/perl 
use strict; use warnings;
use lib ‘lib’; # you might need to tell perl where to find 
Util.pm
               # or with something like this
               # use lib ‘/Users/simonp/lib’;
use Util;

my $file = ‘ExDNA.fasta’; 
my $clustFile = ‘ExDNA.aln’; 
my $cmd = “clustalw -infile=$file -outfile=$clustFile 
 -type=dna”;                # build command line
#print “Call to clustalw $cmd\n”;       # don’t need this 
#  anymore because do_or_die shows the command

do_or_die($cmd);! ! # I use this all the time

14Sunday, October 21, 12



Next step: How do we find out how to parse the clustalw 
alignment file (without even knowing what the file format is)?

The output is a clustalw multiple sequence alignment in the 
file ExDNA.aln
Look in bioperl documentation for help. 
See HOWTOs
http://www.bioperl.org/wiki/HOWTOs

...

15Sunday, October 21, 12

Help on AlignIO from bioperl

16Sunday, October 21, 12



More help on AlignIO from bioperl

Here’s a more useful synopsis

Let’s add this to our script

17Sunday, October 21, 12

Use bioperl to parse the clustalw alignment

Command line 
clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna 

Script
#!/usr/bin/perl 
use strict; use warnings;
use Util;
use Bio::AlignIO; 
my $file = ‘ExDNA.fasta’; 
my $clustFile = ‘ExDNA.aln’; 
my $cmd = “clustalw -infile=$file -outfile=$clustFile 
 -type=dna”;                # build command line
do_or_die($cmd);
my $in  = Bio::AlignIO->new(-file   => $clustFile, 
                         -format => 'clustalw'); 
while ( my $aln = $in->next_aln() ) { 
       ... 
    } 

18Sunday, October 21, 12



We just wrote a script to parse in a clustalw alignment 
without having to worry about the file format

CLUSTAL W (1.74) multiple sequence alignment

 seq1 -----------------------KSKERYKDENGGNYFQLREDWWDANRETVWKAITCNA
 seq2 ---------------YEGLTTANGXKEYYQDKNGGNFFKLREDWWTANRETVWKAITCGA
 seq3 ----KRIYKKIFKEIHSGLSTKNGVKDRYQN-DGDNYFQLREDWWTANRSTVWKALTCSD
 seq4 ------------------------SQRHYKD-DGGNYFQLREDWWTANRHTVWEAITCSA
 seq5 --------------------NVAALKTRYEK-DGQNFYQLREDWWTANRATIWEAITCSA
 seq6 ------FSKNIX--QIEELQDEWLLEARYKD--TDNYYELREHWWTENRHTVWEALTCEA
 seq7 -------------------------------------------------KELWEALTCSR
 
 seq1 --GGGKYFRNTCDG--GQNPTETQNNCRCIG----------ATVPTYFDYVPQYLRWSDE
 seq2 P-GDASYFHATCDSGDGRGGAQAPHKCRCDG---------ANVVPTYFDYVPQFLRWPEE
 seq3 KLSNASYFRATC--SDGQSGAQANNYCRCNGDKPDDDKP-NTDPPTYFDYVPQYLRWSEE
 seq4 DKGNA-YFRRTCNSADGKSQSQARNQCRC---KDENGKN-ADQVPTYFDYVPQYLRWSEE
 seq5 DKGNA-YFRATCNSADGKSQSQARNQCRC---KDENGXN-ADQVPTYFDYVPQYLRWSEE
 seq6 P-GNAQYFRNACS----EGKTATKGKCRCISGDP----------PTYFDYVPQYLRWSEE
 seq7 P-KGANYFVYKLD-----RPKFSSDRCGHNYNGDP---------LTNLDYVPQYLRWSDE

• That’s the point of bioperl and object-oriented programming.

• You don’t need to know the details of the file format to be able to 
work with it or how the alignment is stored in memory.

• Here’s a sample file in case you are curious

19Sunday, October 21, 12

bioperl-run can run clustalw and many other programs

• The Run package (bioperl-run) provides wrappers for executing some 60 
common bioinformatics applications (bioperl-run in the repository system 
Git, see link below)

• Bio::Tools::Run::Alignment::clustalw 

• There are several pieces to bioperl these are all listed here 

• http://www.bioperl.org/wiki/Using_Git

• bioperl-live    Core modules including parsers and main objects

• bioperl-run    Wrapper modules around key applications

• bioperl-ext    Ext package has C extensions including alignment routines and link to 
staden IO library for sequence trace reads.

• bioperl-pedigree   

• bioperl-microarray    

• bioperl-gui    

• bioperl-db

20Sunday, October 21, 12



Smart Essential coding practices

• use strict; use warnings;

• Put all the hard stuff in subroutines so you can write clean 
subroutine calls. 

• If you want to re-use a subroutine several times, put it in a 
module and re-use the module eg Util.pm

• #comments      (ESC-; makes a comment in EMACS)

• comment what a subroutine expects and returns

• comment anything new to you or unusual

• Use the correct amount of indentation for loops, logic, 
subroutines

21Sunday, October 21, 12

Coding strategy

• coding time = thinking/design (10%) + code writing (30%) + testing and 
debugging (60%) 

• Re-use and modify existing code as much as possible

• Write your code in small pieces and test each piece as you go.

• Get some simple code running first. 

• Use more complicated tools/code only if you need to

• Think about the big picture:

• total time = coding time + run time + analysis time + writing up results

• will speeding up your code take longer than waiting for it to complete? Your time is 
valuable

• Check your input data and your output data

• are there unexpected characters, line returns (\r or \n ? ), whitespace at the end of lines, 
spaces instead of tabs. You can use

• % od -c mydatafile | more

• are there missing pieces, duplicated IDs?

• use a small piece of (real or fake) data to test your code

• Is the output exactly what you expect?

22Sunday, October 21, 12



gene_pred_pipe.pl (by Scott Cain) part I

#!/usr/bin/perl -w 

use strict; 

use Bio::DB::GenBank; 
use Bio::Tools::Run::RepeatMasker; 
use Bio::Tools::Run::Genscan; 
use Bio::Tools::GFF; 

my $acc = $ARGV[0]; # read argument from command line

# main functions in simple subroutines
my $seq_obj = acc_to_seq_obj($acc); 
my $masked_seq = repeat_mask($seq_obj); 
my @predictions = run_genscan($masked_seq); 
predictions_to_gff(@predictions); 
warn "Done!\n"; 
exit(0); 
#-------------------------------------- 

23Sunday, October 21, 12

gene_pred_pipe.pl (by Scott Cain) part II

sub acc_to_seq_obj { 
    #takes a genbank accession, fetches the seq from 
    #genbank and returns a Bio::Seq object 
    #parent script has to `use Bio::DB::Genbank` 
    my $acc = shift; 
    my $db  = new Bio::DB::GenBank; 
    return $db->get_Seq_by_id($acc); 
} 
sub repeat_mask { 
    #takes a Bio::Seq object and runs RepeatMasker locally. 
    #Parent script must `use Bio::Tools::Run::RepeatMasker` 
    my $seq = shift; 
    #BTRRM->new() takes a hash for configuration parameters 
    #You'll have to set those up appropriately 
    my $factory = Bio::Tools::Run::RepeatMasker->new(); 
    return $factory->masked_seq($seq); 
} 

24Sunday, October 21, 12



gene_pred_pipe.pl (by Scott Cain) part III

sub run_genscan { 
    #takes a Bio::Seq object and runs Genscan locally and returns 
    #a list of Bio::SeqFeatureI objects 
    #Parent script must `use Bio::Tools::Run::Genscan` 
    my $seq = shift; 
    #BTRG->new() takes a hash for configuration parameters 
    #You'll have to set those up appropriately 
    my $factory = Bio::Tools::Run::Genscan->new(); 
    #produces a list of Bio::Tools::Prediction::Gene objects 
    #which inherit from Bio::SeqFeature::Gene::Transcript 
    #which is a Bio::SeqFeatureI with child features 
    my @genes   = $factory->run($seq); 
    my @features; 
    for my $gene (@genes) { 
        push @features, $gene->features; 
    } 
    return @features; 
} 
sub predictions_to_gff { 
    #takes a list of features and writes GFF2 to a file 
    #parent script must `use Bio::Tools::GFF` 
    my @features = @_; 
    my $gff_out = Bio::Tools::GFF->new(-gff_version => 2, 
                                       -file        => '>prediction.gff'); 
    $gff_out->write_feature($_) for (@features); 
    return; 
} 

25Sunday, October 21, 12

Getting arguments from the command line with Getopt::Long and 
GetOptions()

• order of arguments doesn’t matter 

• deals with flags, integers, decimals, strings, lists 

• complicated.pl -flag -c 4 --price 34.55 --name ‘expensive flowers’

use Getopt::Long; 
my ($flag, $count, $price, $string);
GetOptions( “flag” => \$flag,
            “c|count=i”,\$count,  # i means integer can use -c
                                  # or --count on command line
            “price=f”,\$price,  # f means floating point
                                # number 0.12,3e-49
            “name=s”,\$string,  # s means string
                               # NOTE: always use trailing ‘,’
# after last element so you can add more elements later
          );
# now $flag=1, $count=4, $price = 34.55, 
# and $name = ‘expensive flowers’

26Sunday, October 21, 12



genbank_to_blast.pl (by Scott Cain) part I 
#!/usr/bin/perl -w 
use strict; 
use lib "/home/scott/cvs_stuff/bioperl-live";   # this will change depending 
! ! ! ! ! ! ! ! ! ! !    #  on your machine
use Getopt::Long; 
use Bio::DB::GenBank; 
#use Bio::Tools::Run::RepeatMasker;   # running repeat masked first is a good
! ! ! ! ! ! ! ! ! # idea, but takes a while
use Bio::Tools::Run::RemoteBlast; 
use Bio::SearchIO; 
use Bio::SearchIO::Writer::GbrowseGFF; 
use Bio::SearchIO::Writer::HTMLResultWriter; 
use Data::Dumper;    # print out contents of objects etc
#take care of getting arguments 
my $usage = "$0 [--html] [--gff] --accession <GB accession number>"; 
my ($HTML,$GFF,$ACC); 
GetOptions ("html"        => \$HTML, 
            "gff"         => \$GFF, 
            "accession=s" => \$ACC); 
unless ($ACC) { 
    warn "$usage\n"; 
    exit(1); 
} 
#This will set GFF as the default if nothing is set but allowing both to be set 
$GFF ||=1 unless $HTML; 
#Now do real stuff ... 

27Sunday, October 21, 12

genbank_to_blast.pl (by Scott Cain) part II

# Now do real stuff 
# nice and neat subroutine calls
# easy to understand logic of code
my $seq_obj    = acc_to_seq_obj($ACC); 
my $masked_seq = repeat_mask($seq_obj); 
my $blast_res  = blast_seq($masked_seq); 
gff_out($blast_res, $ACC) if $GFF; 
html_out($blast_res, $ACC) if $HTML; 
#------------------------------------------ 

28Sunday, October 21, 12



genbank_to_blast.pl (by Scott Cain) part III

sub acc_to_seq_obj { 
    print STDERR "Getting record from GenBank\n"; 
    my $acc = shift; 
    my $db  = new Bio::DB::GenBank; 
    return $db->get_Seq_by_id($acc); 
} 
sub repeat_mask { 
    my $seq     = shift; 
    return $seq;   #short circuiting RM since we 
                   #don't have it installed, but this would be where
                   # you would run it
#    my $factory = Bio::Tools::Run::RepeatMasker- 
>new(); 
#    return $factory->masked_seq($seq); 
} 

29Sunday, October 21, 12

genbank_to_blast.pl (by Scott Cain) part IV
sub blast_seq { 
    my $seq   = shift; 
    my $prog  = 'blastn'; 
    my $e_val = '1e-10'; 
    my $db    = 'refseq_rna'; 
    my @params = ( 
        -prog   => $prog, 
        -expect => $e_val, 
        -readmethod => 'SearchIO', 
        -data       => $db 
    ); 
    my $factory = Bio::Tools::Run::RemoteBlast->new(@params); 
    $factory->submit_blast($seq); 
    my $v = 1; # message flag 
    print STDERR "waiting for BLAST..." if ( $v > 0 ); 
    while ( my @rids = $factory->each_rid ) { 
        foreach my $rid ( @rids ) { 
            my $rc = $factory->retrieve_blast($rid); 
            if( !ref($rc) ) { #waiting... 
                if( $rc < 0 ) { 
                    $factory->remove_rid($rid); 
                } 
                print STDERR "." if ( $v > 0 ); 
                sleep 25; 
            } 
            else { 
                print STDERR "\n"; 
                return $rc->next_result(); 
            } 
        } 
    } 
} 

30Sunday, October 21, 12



genbank_to_blast.pl (by Scott Cain) part V

sub gff_out { 
    my ($result, $acc) = @_; 
    my $gff_out = Bio::SearchIO->new( 
        -output_format  => 'GbrowseGFF', 
        -output_signif  => 1, 
        -file           => ">$acc.gff", 
        -reference      => 'query', 
        -hsp_tag        => 'match_part', 
    ); 
    $gff_out->write_result($result); 
} 
sub html_out { 
    my ($result, $acc) = @_; 
    my $writer   = Bio::SearchIO::Writer::HTMLResultWriter->new(); 
    my $html_out = Bio::SearchIO->new( 
        -writer => $writer, 
        -format => 'blast', 
        -file   => ">$acc.html" 
    ); 
    $html_out->write_result($result); 
} 

31Sunday, October 21, 12

32Sunday, October 21, 12



33Sunday, October 21, 12

How to approach perl pipelines

• use strict and warnings

• use (bio)perl as glue

• http://www.bioperl.org/wiki/Main_Page

• google.com

• test small pieces as you write them (debugger: perl -d)

• construct a command line and test it (catch failure ...or die...)

• convert into system call, check it worked with small sample dataset

• extend to more complex code only as needed

• if you use code more than once, put it into a subroutine in a module 
e.g. Util.pm

• get command line arguments with GetOptions()

34Sunday, October 21, 12



10/22/14 

1 

Genome Sequencing & Assembly 
Michael Schatz 
 
 
 
 
 
 
Oct 23, 2014 
Programming for Biology 

Outline 
1.  Assembly theory 

1.  Assembly by analogy 
2.  De Bruijn and Overlap graph 
3.  Coverage, read length, errors, and repeats 

2.  Whole Genome Alignment 
1.  Aligning & visualizing with MUMmer 

3.  Genome assemblers 
1.  ALLPATHS-LG: recommended for Illumina-only projects 
2.  Celera Assembler: recommended for long read projects 

4.  Summary & Recommendations 

Shredded Book Reconstruction 

•  Dickens accidentally shreds the first printing of A Tale of Two Cities 
–  Text printed on 5 long spools 

•  How can he reconstruct the text? 
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments 
–  The short fragments from every copy are mixed together 
–  Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



10/22/14 

2 

Greedy Reconstruction 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

of times, it was the 

times, it was the age 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

it was the worst of 

was the worst of times, 

worst of times, it was 

of times, it was the 

times, it was the age 

it was the age of 

was the age of wisdom, 

the age of wisdom, it 

age of wisdom, it was 

of wisdom, it was the 

wisdom, it was the age 

it was the age of 

was the age of foolishness, 

the worst of times, it 

 The repeated sequence make the correct 
reconstruction ambiguous 
•  It was the best of times, it was the [worst/age] 

 
Model the assembly problem as a graph problem 

de Bruijn Graph Construction 

•  Dk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 

de Bruijn Graph Assembly 

the age of foolishness 

It was the best  

best of times, it 

was the best of 

the best of times, 

of times, it was 

times, it was the 

it was the worst 

was the worst of 

worst of times, it 

the worst of times, 

it was the age 

was the age of 
the age of wisdom, 

age of wisdom, it 

of wisdom, it was 

wisdom, it was the 

After graph construction, 
try to simplify the graph as 

much as possible 



10/22/14 

3 

de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 
the age of wisdom, it was the After graph construction, 

try to simplify the graph as 
much as possible 

The full tale 
… it was the best of times it was the worst of times … 

… it was the age of wisdom it was the age of foolishness … 
… it was the epoch of belief it was the epoch of incredulity … 
… it was the season of light it was the season of darkness … 
… it was the spring of hope it was the winder of despair … 

it was the winter of despair 

worst 

best 

of times 

epoch of 
belief 

incredulity 

spring of hope 

foolishness 

wisdom 

light 

darkness 

age of 

season of 

Milestones in Genome Assembly 

2000. Myers et al. 
1st Large WGS Assembly. 

Celera Assembler. 116 Mbp 

1995. Fleischmann et al. 
1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2010. Li et al. 
1st Large SGS Assembly. 
SOAPdenovo 2.2 Gbp 

1977. Sanger et al. 
1st Complete Organism 

5375 bp 

2001. Venter et al., IHGSC 
Human Genome 

Celera Assembler/GigaAssembler. 2.9 Gbp 

1998. C.elegans SC 
1st Multicellular Organism 

BAC-by-BAC Phrap. 97Mbp 

Like Dickens, we must computationally reconstruct a genome from short fragments 



10/22/14 

4 

Assembly Applications 
•  Novel genomes 

 

•  Metagenomes 

•  Sequencing assays 
– Structural variations 
– Transcript assembly 
– … 

Ingredients for a good assembly 

Current challenges in de novo plant genome sequencing and assembly 
Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243 

Coverage 

High coverage is required 
–  Oversample the genome to ensure 

every base is sequenced with long 
overlaps between reads 

–  Biased coverage will also fragment 
assembly 

Lander Waterman Expected Contig Length vs Coverage

Read Coverage

E
xp

e
ct

e
d
 C

o
n
tig

 L
e
n
g
th

 (
b
p
)

0 5 10 15 20 25 30 35 40

1
0
0

1
k

1
0
k

1
0
0
k

1
M

+dog mean

+dog N50

+panda mean

+panda N50

1000 bp

710 bp

250 bp

100 bp

52 bp

30 bp

Read Coverage 

E
xp

ec
te

d 
C

on
ti

g 
Le

ng
th

 

Read Length 

Reads & mates must be longer 
than the repeats 
–  Short reads will have false overlaps 

forming hairball assembly graphs 
–  With long enough reads, assemble 

entire chromosomes into contigs 

Quality 

Errors obscure overlaps 
–  Reads are assembled by finding 

kmers shared in pair of reads 
–  High error rate requires very short 

seeds, increasing complexity and 
forming assembly hairballs 

Illumina Sequencing by Synthesis 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.youtube.com/watch?v=l99aKKHcxC4 

1. Prepare 

2. Attach 

3. Amplify 

4. Image 

5. Basecall 



10/22/14 

5 

Typical sequencing coverage 
 

1 
2 
3 
4 
5 
6 C

ov
er

ag
e 

Contig 

Reads 

Imagine raindrops on a sidewalk!

We want to cover the entire sidewalk but each drop costs $1!

1x sequencing 

2x sequencing 



10/22/14 

6 

4x sequencing 

8x sequencing 

Poisson Distribution 

The probability of a given number 
of events occurring in a fixed 
interval of time and/or space if 
these events occur with a known 
average rate and independently of 
the time since the last event. 
 
Formulation comes from the limit of 
the binomial equation 
 
Resembles a normal distribution, 
but over the positive values, and 
with only a single parameter.  
 
Key property:  
•  The standard deviation is the 

square root of the mean. 



10/22/14 

7 

Unitigging / Unipathing 

•  After simplification and correction, compress graph 
down to its non-branching initial contigs 
–  Aka “unitigs”, “unipaths”  
–  Unitigs end because of (1) lack of coverage, (2) errors, (3) 

heterozygosity, and (4) repeats 

Repetitive regions 

•  Over 50% of mammalian genomes are repetitive 
–  Large plant genomes tend to be even worse 
–  Wheat: 16 Gbp; Pine: 24 Gbp 

Repeat Type Definition / Example Prevalence 

Low-complexity DNA / Microsatellites (b1b2…bk)N where 1 < k < 6 
CACACACACACACACACACA 

2% 

SINEs (Short Interspersed Nuclear 
Elements) 

Alu sequence (~280 bp) 
Mariner elements (~80 bp) 

13% 

LINEs (Long Interspersed Nuclear 
Elements) 

~500 – 5,000 bp 21% 

LTR (long terminal repeat) 
retrotransposons 

Ty1-copia, Ty3-gypsy, Pao-BEL 
(~100 – 5,000 bp) 

8% 

Other DNA transposons 3% 

Gene families & segmental duplications 4% 

Repeats and Coverage Statistics A-stat 

•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 

! 

Pr(X " copy) =
n

k

# 

$ 
% 
& 

' 
( 
X)

G

# 

$ 
% 

& 

' 
( 

k
G " X)

G

# 

$ 
% 

& 

' 
( 

n"k

! 

A(",k) = ln
Pr(1# copy)

Pr(2# copy)

$ 

% 
& 

' 

( 
) = ln

("n /G)k

k!
e

#"n

G

(2"n /G)k

k!
e

#2"n

G

$ 

% 

& 
& 
& & 

' 

( 

) 
) 
) ) 

=
n"

G
# k ln2

A B C R
1 

R
2 

R
1 + 

R
2 

A B R1 R2 C R1 + R2 
 

A-stat 

•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 

! 

Pr(X " copy) =
n

k

# 

$ 
% 
& 

' 
( 
X)

G

# 

$ 
% 

& 

' 
( 

k
G " X)

G

# 

$ 
% 

& 

' 
( 

n"k

! 

A(",k) = ln
Pr(1# copy)

Pr(2# copy)

$ 

% 
& 

' 

( 
) = ln

("n /G)k

k!
e

#"n

G

(2"n /G)k

k!
e

#2"n

G

$ 

% 

& 
& 
& & 

' 

( 

) 
) 
) ) 

=
n"

G
# k ln2

A B C R
1 

R
2 

R
1 + 

R
2 

The fragment assembly string graph 
Myers, EW (2005) Bioinformatics. 21(suppl 2): ii79-85. 



10/22/14 

8 

Paired-end and Mate-pairs 
Paired-end sequencing 
•  Read one end of the molecule, flip, and read the other end 
•  Generate pair of reads separated by up to 500bp with inward orientation 

Mate-pair sequencing 
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence 
•  Mate failures create short paired-end reads 

10kbp 

10kbp 
circle 

300bp 

2x100 @ ~10kbp (outies) 

2x100 @ 300bp (innies) 

Scaffolding 
•  Initial contigs (aka unipaths, unitigs) 

terminate at 
–  Coverage gaps: especially extreme GC 
–  Conflicts: errors, repeat boundaries 

•  Use mate-pairs to resolve correct order 
through assembly graph 
–  Place sequence to satisfy the mate constraints 
–  Mates through repeat nodes are tangled 

•  Final scaffold may have internal gaps called  
sequencing gaps 
–  We know the order, orientation, and spacing, 

but just not the bases. Fill with Ns instead 

A 

C 

D 

R 

B 

A C D R B R R 

N50 size 
Def: 50% of the genome is in contigs as large as the N50 value 

Example:  1 Mbp genome 
 
 
 
 
 

 N50 size = 30 kbp  
  (300k+100k+45k+45k+30k = 520k >= 500kbp) 

 
A greater N50 is indicative of improvement in every dimension: 
•  Better resolution of genes and flanking regulatory regions 
•  Better resolution of transposons and other complex sequences 
•  Better resolution of chromosome organization 
•  Better sequence for all downstream analysis 

1000 

300 45 30 100 20 15 15 10 . . . . . 45 

50% 



10/22/14 

9 

Outline 
1.  Assembly theory 

1.  Assembly by analogy 
2.  De Bruijn and Overlap graph 
3.  Coverage, read length, errors, and repeats 

2.  Whole Genome Alignment 
1.  Aligning & visualizing with MUMmer 

3.  Genome assemblers 
1.  ALLPATHS-LG: recommended for Illumina-only projects 
2.  Celera Assembler: recommended for long read projects 

4.  Summary and Recommendations 

Whole Genome Alignment 
with MUMmer 

 

Slides Courtesy of Adam M. Phillippy 
University of Maryland 

 
 

Goal of WGA 
•  For two genomes, A and B, find a mapping from 

each position in A to its corresponding 
position in B 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 



10/22/14 

10 

Not so fast... 
•  Genome A may have insertions, deletions, 

translocations, inversions, duplications or SNPs 
with respect to B (sometimes all of the above) 

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGCTAGGCTATTAAAACCCCGGAGGAG....GGCTGAGCA 

WGA visualization 
•  How can we visualize whole genome alignments? 

•  With an alignment dot plot 
–  N x M matrix 

•  Let i = position in genome A 
•  Let j = position in genome B 
•  Fill cell (i,j) if Ai shows similarity to Bj 

–  A perfect alignment between A and B would completely fill 
the positive diagonal 

T 

G 

C 

A 

A C C T 

B 

A 

B 

A 

Translocation Inversion Insertion 



10/22/14 

11 

SV Types 

•  Different structural 
variation types / 
misassemblies will be 
apparent by their 
pattern of breakpoints 

•  Most breakpoints will 
be at or near repeats 

•  Things quickly get 
complicated in real 
genomes 

http://mummer.sf.net/manual/ 
AlignmentTypes.pdf 

Alignment of 2 strains of Y. pestis!
http://mummer.sourceforge.net/manual/!

Outline 

1.  Assembly theory 
1.  Assembly by analogy 
2.  De Bruijn and Overlap graph 
3.  Coverage, read length, errors, and repeats 

2.  Whole Genome Alignment 
1.  Aligning & visualizing with MUMmer 

3.  Genome assemblers 
1.  ALLPATHS-LG: recommended for Illumina-only projects 
2.  Celera Assembler: recommended for long read projects 

4.  Summary and Recommendations 



10/22/14 

12 

Genome assembly with ALLPATHS-LG 
 Iain MacCallum 

How ALLPATHS-LG works 

assembly 

reads 

unipaths 

corrected reads 

doubled reads 

localized data 

local graph assemblies 

global graph assembly 

ALLPATHS-LG sequencing model 

*See next slide. 
 
**For best results.  Normally not used for small genomes.   
   However essential to assemble long repeats or duplications. 
 
Cutting coverage in half still works, with some reduction in 
quality of results.   
 
All: protocols are either available, or in progress. 



10/22/14 

13 

Read doubling 

+ 
28 28 

More than one closure allowed (but rare). 

To close a read pair (red), we require the existence of another read pair (blue), 
overlapping perfectly like this:  

Localization 

reaches to other unipaths (CN = 1)  
directly and indirectly   

read pairs reach into repeats 

and are extended by other 
unipaths       

I. Find ‘seed’ unipaths, evenly spaced across genome 
(ideally long, of copy number CN = 1) 

seed unipath 
 

II. Form neighborhood around each seed 

19+ vertebrates 
assembled with 
ALLPATHS-LG 

scaffold N50 (Mb) 

co
nt

ig
 N

50
 (k

b)
 

B6 

129 

bushbaby 

tenrec 

ground squirrel 

N. brichardi 

NA12878 

coelacanth 

stickleback 

shrew 

A. burtoni 

P. nyererei 

M. zebra 

female ferret 

tilapia 

spotted gar 
    69 kk 

male ferret 
     67 kb 

squirrel monkey 
            19 Mb 

chinchilla 



10/22/14 

14 

Indica 
 

Total Span: 344.3 Mbp 
Contig N50: 22.2kbp 

 
 
 

Aus 
 

Total Span: 344.9Mbp 
Contig N50: 25.5kbp 

Whole genome de novo assemblies of three divergent strains of rice (O. sativa) 
documents novel gene space of aus and indica  
Schatz, MC, Maron, L, Stein, et al (2014) In press. 

Nipponbare 
 

Total Span: 354.9Mbp 
Contig N50: 21.9kbp 

Population structure of Oryza sativa 

Strain specific regions 

Conclusions 
•  Very high quality representation of the “gene-space” 

•  Overall identity ~99.9% 
•  Less than 1% of exonic bases missing 

•  Genome-specific genes enriched for disease resistance 
•  Reflects their geographic and environmental diversity 
•  Detailed analysis of agriculturally important loci 

•  Assemblies fragmented at (high copy) repeats 
•  Missing regions have mean k-mer coverage >10,000x 
•  Difficult to identify full length gene models and 

regulatory features 

Genome assembly with the  
Celera Assembler 



10/22/14 

15 

Assembly Complexity 

A" R"

B"

C"

A" R" B" R" C" R"

Assembly Complexity 

A" R" B" C"

A" R" B" R" C" R"

R" R"

A" R" B" R" C" R"

The advantages of SMRT sequencing 
Roberts, RJ, Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405 

Long Read Sequencing Technology 

Moleculo 

(Voskoboynik et al. 2013) 

PacBio RS II 

CSHL/PacBio 

0 10k 20k 30k 40k 

Oxford Nanopore 

CSHL/ONT 

0 10k 20k 30k 40l 



10/22/14 

16 

SMRT Sequencing Data 
TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG!
||||||||||||||||||||||||| ||||||| |||||||||||| |||!
TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG!
!
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG!
| |||||| ||||||||||||| |||| | |||||| |||||| ||||||!
A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG!
!
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG!
| |||||| |||| ||  ||||||||||||||||||||||||||||||||!
C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG!
!
TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA!
| ||||||| |||||||||||||| || ||    |||||||||| |||||!
T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA!
!
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA!
 ||||||   ||     |||||||| || |||||||||||||| || |||!
GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA!
!
ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT!
||| ||||||||| | ||||||||||||| ||| ||||||| |||| |||!
ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT!
!
TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA!
|| ||||||||| ||||||| ||| |||| |||||| ||||| |||||||!
TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA!
!
ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG!
||||||| |||||||||  |||||| ||||| ||||||||||||||||||!
ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG!
!

Sample of 100k reads aligned with BLASR requiring >100bp alignment 

Match 83.7% 

Insertions 11.5% 

Deletions 3.4% 

Mismatch 1.4% 

PacBio Assembly Algorithms 

PacBioToCA 
& ECTools 

Hybrid/PB-only Error 
Correction 

 
Koren, Schatz, et al (2012)  
Nature Biotechnology. 30:693–700 

HGAP & Quiver 

PB-only Correction & 
Polishing 

 
Chin et al (2013)  
Nature Methods. 10:563–569 

PBJelly 

Gap Filling  
and Assembly Upgrade 

 
English et al (2012)  
PLOS One. 7(11): e47768 

< 5x > 50x PacBio Coverage 

Consensus Accuracy and Coverage 

Coverage can overcome random errors 
•  Dashed: error model from binomial sampling 
•  Solid: observed accuracy  
 

●

●

●

●

●

●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

coverage

cn
s 

er
ro

r r
at

e

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

observed consensus error rate
expected consensus error rate (e=.20)
expected consensus error rate (e=.16)
expected consensus error rate (e=.10)

CNSError   = c
i

!

"
#

$

%
& e( )i 1− e( )n−i

i= c/2() *+

c

∑

coverage 

Koren, Schatz, et al (2012)  
Nature Biotechnology. 30:693–700 



10/22/14 

17 

S. pombe dg21 

103x over 10kbp 

7.6x over 20kb 

PacBio RS II sequencing at CSHL 

•  Size selection using an 7 Kb elution window on a BluePippin™ 
device from Sage Science 

Max: 35,415bp  

Mean: 5170 

Over 275x coverage in 5 
SMRTcells using P5-C3 

S. pombe dg21 
ASM294 Reference sequence 
•  12.6Mbp; 3 chromo + mitochondria; N50: 4.53Mbp 
 

PacBio assembly using HGAP + Celera Assembler 

•  12.7Mbp; 13 non-redundant contigs; N50: 3.83Mbp; >99.98% id 

Near perfect assembly: 
 
Chr1: 1 contig 
Chr2: 2 contigs 
Chr3: 2 contigs 
MT: 1 contig  

S. pombe dg21 
ASM294 Reference sequence 
•  12.6Mbp; 3 chromo + mitochondria; N50: 4.53Mbp 
 

PacBio assembly using HGAP + Celera Assembler 

•  12.7Mbp; 13 non-redundant contigs; N50: 3.83Mbp; >99.98% id 

Near perfect assembly: 
 
Chr1: 1 contig 
Chr2: 2 contigs 
Chr3: 2 contigs 
MT: 1 contig  



10/22/14 

18 

A. thaliana Ler-0 
http://blog.pacificbiosciences.com/2013/08/new-data-release-arabidopsis-assembly.html 

A. thaliana Ler-0 sequenced at PacBio 
 

•  Sequenced using the previous P4 
enzyme and C2 chemistry 

 

•  Size selection using an 8 Kb to 50 Kb 
elution window on a BluePippin™ 
device from Sage Science 

•  Total coverage >119x 
 

Genome size:   124.6 Mbp 
Chromosome N50:  23.0 Mbp 
Corrected coverage:  20x over 10kb 

Sum of Contig Lengths:  149.5Mb 
N50 Contig Length:   8.4 Mb 
Number of Contigs:   1788 

High quality assembly of chromosome arms 
Assembly Performance: 8.4Mbp/23Mbp = 36%  

MiSeq assembly: 63kbp/23Mbp = .2% 

Human CHM1 
http://blog.pacificbiosciences.com/2014/02/data-release-54x-long-read-coverage-for.html 

CHM1hert sequenced at PacBio 
 

•  Sequenced using the P5 enzyme and 
C3 chemistry 

 

•  Size selection using an 20kb elution 
window on a BluePippin™ device from 
Sage Science 

•  Total coverage: 54x 

Genome size:   3.0 Gb 
Chromosome N50:  90.5 Mbp 
Average read length:  7,680 bp 

Sum of Contig Lengths:  3.2 Gb 
N50 Contig Length:   4.38 Mbp 
Max Contig:     44 Mbp 

High quality draft assembly 
Assembly Performance: 4.38Mbp/90.5Mbp = 4.5%  
Sanger HuRef assembly: 107kbp / 90.5Mbp = .1% 

Current Collaborations 

Indica & Aus Rice 
McCombie/Ware/McCouch 

Asian Sea Bass 
Temasek Life Sciences Laboratory  

Pinapple 
UIUC 

P. hominis 
NYU 

M. ligano 
Hannon 



10/22/14 

19 

Oxford Nanopore MinION 
•  Thumb drive sized sequencer 

powered over USB 

•  Capacity for 512 reads at once 

•  Senses DNA by measuring 
changes to ion flow 

Nanopore Sequencing 



10/22/14 

20 

Nanopore Basecalling 

Basecalling currently performed at Amazon with frequent updates to algorithm 

Histogram of l

l

Fr
eq
ue
nc
y

0 5000 10000 15000 20000 25000 30000

0
50
00

10
00
0

15
00
0

Nanopore Readlengths 

Max: 146,992bp  
8x over 20kb 

41x over 10kbp 

Spike-in 

Mean: 5473bp  

noise 

 Oxford Nanopore Sequencing at CSHL 
30 runs, 267k reads, 122x total coverage 

Between 11 and 73k reads per run!  
Mean flow cell: 50 Mbp in 2 days 
Max flow cell: 446Mbp in 2 days 

 

Histogram of ll[[2]]

ll[[2]]

Fr
eq
ue
nc
y

0 5000 10000 15000 20000 25000 30000

0
50
0

10
00

15
00

Nanopore Alignments 

Max: 50,900bp  
1.8x over 20kb 

13.8x over 10kbp 

Mean: 6903bp  

Alignment Statistics (BLASTN) 
Mean read length at ~7kbp 

Shearing targeted 10kbp 
70k reads align (32%) 

40x coverage 
 



10/22/14 

21 

Nanopore Accuracy 

50 60 70 80 90

0
10
00

20
00

30
00

40
00

50
00

0

0

Alignment Quality (BLASTN) 
Of reads that align, average ~64% identity 
 

Nanopore Accuracy 

50 60 70 80 90

0
10
00

20
00

30
00

40
00

50
00

0

0

1D mean: 64%
2D mean: 70%

Alignment Quality (BLASTN) 
Of reads that align, average ~64% identity 
“2D base-calling” improves to ~70% identity 

NanoCorr: Nanopore-Illumina  
Hybrid Error Correction 

1.  BLAST Miseq reads to all raw Oxford 
Nanopore reads!

!
2.  Select non-repetitive alignments!

○  First pass scans to remove 
“contained” alignments!

○  Second pass uses Dynamic 
Programming (LIS) to select set of 
high-identity alignments with 
minimal overlaps!

!
3.  Compute consensus of each Oxford 

Nanopore read!
○  Currently using Pacbio’s pbdagcon !

https://github.com/jgurtowski/nanocorr 

85 90 95 100

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

0

0

Post-correction %ID 
Mean: ~97% 



10/22/14 

22 

Long Read Assembly 
S288C Reference sequence 
•  12.1Mbp; 16 chromo + mitochondria; N50: 924kbp 
 

Oxford Nanopore!
NanoCorr + Celera Assembler!
•  234 non-redundant contigs!
•  N50: 362kbp !>99.78% id!

Pacific Biosciences!
HGAP + Celera Assembler!
•  21 non-redundant contigs!
•  N50: 811kbp !>99.8% id!

What should we expect from an assembly? 
Analysis of dozens of genomes from across 
the tree of life with real and simulated data 

Summary & Recommendations 
< 100 Mbp:  HGAP/PacBio2CA @ 100x PB C3-P5 

   expect near perfect chromosome arms 
 

< 1GB:   HGAP/PacBio2CA @ 100x PB C3-P5 
   high quality assembly:  contig N50 over 1Mbp 

 

> 1GB:   hybrid/gap filling 
   expect contig N50 to be 100kbp – 1Mbp 

 

> 5GB:   Email mschatz@cshl.edu 
 

Error correction and assembly complexity of single molecule sequencing reads. 
Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz, MC 
http://www.biorxiv.org/content/early/2014/06/18/006395 



10/22/14 

23 

Assembly Summary 
Assembly quality depends on  
1.  Coverage: low coverage is mathematically hopeless 
2.  Repeat composition: high repeat content is challenging 
3.  Read length: longer reads help resolve repeats 
4.  Error rate: errors reduce coverage, obscure true overlaps 

•  Assembly is a hierarchical, starting from individual reads, build high 
confidence contigs/unitigs, incorporate the mates to build scaffolds  
–  Extensive error correction is the key to getting the best assembly possible 

from a given data set 

•  Watch out for collapsed repeats & other misassemblies 
–  Globally/Locally reassemble data from scratch with better parameters & 

stitch the 2 assemblies together 

Acknowledgements 
CSHL 
Hannon Lab 
Gingeras Lab 
Jackson Lab 
Hicks Lab 
Iossifov Lab 
Levy Lab 
Lippman Lab 
Lyon Lab 
Martienssen Lab 
McCombie Lab 
Tuveson Lab 
Ware Lab 
Wigler Lab 
 
Pacific Biosciences 
Oxford Nanopore 

Schatz Lab 
Rahul Amin 
Tyler Gavin 
James Gurtowski 
Han Fang 
Hayan Lee 
Maria Nattestad 
Aspyn Palatnick 
Srividya 
Ramakrishnan 
 
Eric Biggers 
Ke Jiang 
Shoshana Marcus 
Giuseppe Narzisi 
Rachel Sherman 
Greg Vurture 
Alejandro Wences 

Thank you 
http://schatzlab.cshl.edu 

@mike_schatz 
 

Biological Data Sciences 
Anne Carpenter, Michael Schatz, Matt Wood 

Nov 5 - 8, 2014 



Genome&Based+and+Genome&Free+Transcript+
Reconstruc5on+and+Analysis++

Using+RNA&Seq+Data+

Brian+Haas+

Broad+Ins5tute+

Workshop+Overview+

•  Genome&based+and+genome&free+transcript+
reconstruc5on+from+RNA&Seq++

•  Running+the+Tuxedo+and+Trinity+soJware+and+
visualizing+the+results.+

•  Principles+of+transcript+abundance+es5ma5on+

•  Principles+of+differen5al+expression+analysis+

•  Analysis+frameworks+included+in+Tuxedo+and+Trinity+
+



Overview+of+RNA&Seq+

From:+hPp://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html+

Common+Data+Formats+for+RNA&Seq+

>61DFRAAXX100204:1:100:10494:3070/1+
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT+

FASTA+format:+
+

FASTQ+format:+

@61DFRAAXX100204:1:100:10494:3070/1+
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT+
++
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCA+

AsciiEncodedQual+(‘C’)+=+64#

AsciiEncodedQual(x)+=+&10+*+log10(Pwrong(x))+++33+

So,+Pwrong(‘C’)+=++10^(+(64&33/+(&10)+)++=+10^&3.4+++=++0.0004#+++

Read+

Quality+values+



Paired&end+Sequences+

@61DFRAAXX100204:1:100:10494:3070/1+
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT+
++
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCA+

@61DFRAAXX100204:1:100:10494:3070/2+
CTCAAATGGTTAATTCTCAGGCTGCAAATATTCGTTCAGGATGGAAGAACA+
++
C<CCCCCCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCBCCCC+

Two+FastQ+files,+read+name+indicates+
leJ+(/1)+or+right+(/2)+read+of+paired&end+
+

Transcript#Reconstruc3on#from#RNA8Seq#Reads#

Nature+Biotech,+2010+



Transcript#Reconstruc3on#from#RNA8Seq#Reads#

TopHat+

Transcript#Reconstruc3on#from#RNA8Seq#Reads#

Cufflinks+

TopHat+



Transcript#Reconstruc3on#from#RNA8Seq#Reads#

Trinity+

GMAP+Cufflinks+

TopHat+ The#Tuxedo#Suite:#
End&to&end+Genome&based+

RNA&Seq+Analysis++
SoJware+Package+

Transcript#Reconstruc3on#from#RNA8Seq#Reads#

Trinity+

Cufflinks+

TopHat+



Transcript#Reconstruc3on#from#RNA8Seq#Reads#

Trinity+

GMAP+Cufflinks+

TopHat+

Transcript#Reconstruc3on#from#RNA8Seq#Reads#

+
!Trinity+

GMAP+

End&to&end+Transcriptome&based+
RNA&Seq+Analysis++
SoJware+Package+



Overview+of+the+Tuxedo+SoJware+Suite+

Bow5e+(fast+short&read+alignment)+

TopHat+(spliced+short&read+alignment)+

Cufflinks+(transcript+reconstruc5on+from+alignments)+

Cuffdiff+(differen5al+expression+analysis)+

CummeRbund+(visualiza5on+&+analysis)+

Slide+courtesy+of+Cole+Trapnell+



The+TopHat+Pipeline+

From+Trapnell,+Pachter,+&+Salzberg.+Bioinforma5cs.+2009+++

0       61G9EAAXX100520:5:100:10095:16477 
1       83 
2       chr1 
3       51986 
4       38 
5       46M 
6       = 
7       51789 
8       -264 
9       CCCAAACAAGCCGAACTAGCTGATTTGGCTCGTAAAGACCCGGAAA 
10      ###CB?=ADDBCBCDEEFFDEFFFDEFFGDBEFGEDGCFGFGGGGG 
11      MD:Z:67 
12      NH:i:1 
13      HI:i:1 
14      NM:i:0 
15      SM:i:38 
16      XQ:i:40 
17      X2:i:0 
 

Alignments+are+reported+in+a+compact+representa5on:+SAM+format+

SAM+format+specifica5on:++hPp://samtools.sourceforge.net/SAM1.pdf+



0       61G9EAAXX100520:5:100:10095:16477 
1       83 
2       chr1 
3       51986 
4       38 
5       46M 
6       = 
7       51789 
8       -264 
9       CCCAAACAAGCCGAACTAGCTGATTTGGCTCGTAAAGACCCGGAAA 
10      ###CB?=ADDBCBCDEEFFDEFFFDEFFGDBEFGEDGCFGFGGGGG 
11      MD:Z:67 
12      NH:i:1 
13      HI:i:1 
14      NM:i:0 
15      SM:i:38 
16      XQ:i:40 
17      X2:i:0 
 

Alignments+are+reported+in+a+compact+representa5on:+SAM+format+

(read+name)+
(FLAGS+stored+as+bit+fields;+83+=+00001010011+)+

(alignment+target)+
(posi5on+alignment+starts)+

(Compact+descrip5on+of+the+alignment+in+CIGAR+format)+

(Metadata)+

(read+sequence,+oriented+according+to+the+forward+alignment)+

(base+quality+values)+

SAM+format+specifica5on:++hPp://samtools.sourceforge.net/SAM1.pdf+

0       61G9EAAXX100520:5:100:10095:16477 
1       83 
2       chr1 
3       51986 
4       38 
5       46M 
6       = 
7       51789 
8       -264 
9       CCCAAACAAGCCGAACTAGCTGATTTGGCTCGTAAAGACCCGGAAA 
10      ###CB?=ADDBCBCDEEFFDEFFFDEFFGDBEFGEDGCFGFGGGGG 
11      MD:Z:67 
12      NH:i:1 
13      HI:i:1 
14      NM:i:0 
15      SM:i:38 
16      XQ:i:40 
17      X2:i:0 
 

Alignments+are+reported+in+a+compact+representa5on:+SAM+format+

(read+name)+
(FLAGS+stored+as+bit+fields;+83+=+00001010011+)+

(alignment+target)+
(posi5on+alignment+starts)+

(Compact+descrip5on+of+the+alignment+in+CIGAR+format)+

(Metadata)+

(read+sequence,+oriented+according+to+the+forward+alignment)+

(base+quality+values)+

S5ll+not+compact+enough…+++
Millions+to+billions+of+reads+takes+up+a+lot+of+space!!+

+
Convert+SAM+to+binary+–+BAM+format.+

SAM+format+specifica5on:++hPp://samtools.sourceforge.net/SAM1.pdf+



Samtools+
•  Tools+for++

–  conver5ng++SAM+<&>+BAM+

–  Viewing+BAM+files++(eg.++samtools+view+file.bam+|+less+)+

–  Sor5ng+BAM+files,+and+lots+more:+

Visualizing+Alignments++
of+RNA&Seq+reads+



Text&based+Alignment+Viewer+
%++samtools+tview++alignments.bam++target.fasta+

IGV+



IGV:+Viewing+Tophat+Alignments+

Transcript+Reconstruc5on+Using+Cufflinks+

From+Mar5n+&+Wang.+Nature+Reviews+in+Gene5cs.+2011+



Transcript+Reconstruc5on+Using+Cufflinks+

From+Mar5n+&+Wang.+Nature+Reviews+in+Gene5cs.+2011+

From+Mar5n+&+Wang.+Nature+Reviews+in+Gene5cs.+2011+

Transcript+Reconstruc5on+Using+Cufflinks+



Transcript+Structures+in+GTF+Format+
(tab&delimited+fields+per+line+shown+transposed+to+a+column+format+here)+

0+++++++7000000090838467+
1+++++++Cufflinks+
2+++++++transcript+
3+++++++101+
4+++++++5716+
5+++++++1000+
6+++++++++
7+++++++.+
8+++++++gene_id+"CUFF.1";+transcript_id+"CUFF.1.1";+FPKM+"378.0239937260“+
+
0+++++++7000000090838467+
1+++++++Cufflinks+
2+++++++exon+
3+++++++101+
4+++++++5716+
5+++++++1000+
6+++++++++
7+++++++.+
8+++++++gene_id+"CUFF.1";+transcript_id+"CUFF.1.1";+exon_number+"1";+FPKM+"378.0239937260“+
+

(genomic+con5g+iden5fier)+

(strand)+

(leJ+coordinate)+
(right+coordinate)+

(annota5ons)+

Demo:+Tuxedo+and+IGV+

•  Run+Tophat+to+align+reads+to+the+genome+
+

•  Reconstruct+transcripts+using+cufflinks+

•  View+genome&aligned+reads+and+
reconstructed+transcripts+using+IGV+



De!novo!transcriptome+assembly+

No+genome+required+

+

Empower+studies+of+non&model+organisms+
– expressed+gene+content+
–  transcript+abundance+
– differen5al+expression+

The+General+Approach+to++
De!novo!RNA&Seq+Assembly+
Using+De+Bruijn+Graphs+



Sequence+Assembly+via+De+Bruijn+Graphs+

From+Mar5n+&+Wang,+Nat.+Rev.+Genet.+2011+

From+Mar5n+&+Wang,+Nat.+Rev.+Genet.+2011+



From+Mar5n+&+Wang,+Nat.+Rev.+Genet.+2011+

Contras3ng#Genome#and#Transcriptome#Assembly#

Genome#Assembly# Transcriptome#Assembly#

•  Uniform+coverage+
•  Single+con5g+per+locus+
•  Double&stranded+

•  Exponen5ally+distributed+coverage+levels+
•  Mul5ple+con5gs+per+locus+(alt+splicing)+
•  Strand&specific+



Trinity+Aggregates+Isolated+Transcript+Graphs+

Genome#Assembly#
Single+Massive+Graph+

Trinity#Transcriptome#Assembly#
Many+Thousands+of+Small+Graphs+

Ideally,+one+graph+per+expressed+gene.+En5re+chromosomes+represented.+

RNA8Seq#
reads#

Linear#
con3gs#

de8Bruijn#
graphs#

Transcripts#
+#

Isoforms#

Trinity+–+How+it+works:+

Thousands+of+disjoint+graphs+



Inchworm+Algorithm+
Decompose+all+reads+into+overlapping+Kmers+(25&mers)+

Extend+kmer+at+3’+end,+guided+by+coverage.+
G+

A+

T+

C+

Iden5fy+seed+kmer+as+most+abundant+Kmer,+ignoring+low&complexity+kmers.+

GATTACA#
9+

Inchworm+Algorithm+

G+

A+

T+

C+

4+

GATTACA#
9+



Inchworm+Algorithm+

G+

A+

T+

C+

4+

1+
GATTACA#

9+

Inchworm+Algorithm+

G+

A+

T+

C+

4+

1+

0+

GATTACA#
9+



Inchworm+Algorithm+

G+

A+

T+

C+

4+

1+

0+

4+

GATTACA#
9+

GATTACA#

G#

A+

T+

C#

4+

1+

0+

4+

9+

Inchworm+Algorithm+



GATTACA#

G#

A+

T+

C#

G+ A+

T+

C+

G+

A+

T+C+

4+

1+

0+

4+

9+

1+

1+

1+
1+

5+

1+

0+

0+

Inchworm+Algorithm+

GATTACA#

G#

A#

4+

9+

5+

A+

T+

C#

G+

T+

C+

G+

A+

T+C+

1+

0+

4+
1+

1+

1+
1+

1+

0+

0+

Inchworm+Algorithm+



GATTACA#

G#

A#

4+

9+

5+

Inchworm+Algorithm+

GATTACA#

G#

A#

4+

9+

5+

G+

A+

T+

C+

6+

1+

0+

0+

Inchworm+Algorithm+



GATTACA#

G#

A#

4+

9+

5+

A#
6+

A#
7+

Inchworm+Algorithm+

Remove+assembled+kmers+from+catalog,+then+repeat+the+en5re+process.+

Report+con5g:++++++….AAGATTACAGA….##

Inchworm+Con5gs+from+Alt&Spliced+Transcripts+

Isoform+A+

Isoform+B+

Expressed+isoforms+



Inchworm+Con5gs+from+Alt&Spliced+Transcripts+

Isoform+A+

Isoform+B+

Graphical+
representa5on+

Expressed+isoforms+
(low)+
(high)+

Expression+

Inchworm+Con5gs+from+Alt&Spliced+Transcripts+



Inchworm+Con5gs+from+Alt&Spliced+Transcripts+

+# No+k&mers+
in+common+

Inchworm+Con5gs+from+Alt&Spliced+Transcripts+

+#



Chrysalis+Re&groups+Related+Inchworm+Con5gs+

+#

Chrysalis+uses+(k&1)+overlaps+and+read+
support+to+link+related+Inchworm+con5gs+

Chrysalis+

Integrate+isoforms+
via+k&1+overlaps+ Build+de+Bruijn+Graphs+

(ideally,+one+per+gene)+



Thousands+of+Chrysalis+Clusters+

(isoforms+and+paralogs)+



BuPerfly+Example+1:++
Reconstruc5on+of+Alterna5vely+Spliced+Transcripts+

BuPerfly’s+Compacted+
Sequence+Graph+

Reconstructed+Transcripts+

Aligned+to+Mouse+Genome+

Reconstruc5on+of+Alterna5vely+Spliced+Transcripts+

BuPerfly’s+Compacted+
Sequence+Graph+

Reconstructed+Transcripts+

Aligned+to+Mouse+Genome+



Reconstruc5on+of+Alterna5vely+Spliced+Transcripts+

BuPerfly’s+Compacted+
Sequence+Graph+

Reconstructed+Transcripts+

Aligned+to+Mouse+Genome+

Reconstruc5on+of+Alterna5vely+Spliced+Transcripts+

BuPerfly’s+Compacted+
Sequence+Graph+

Reconstructed+Transcripts+

Aligned+to+Mouse+Genome+

(Reference+structure)+



Teasing+Apart+Transcripts+of+Paralogous+Genes+

Ap2a1! Ap2a2!

BuPerfly+Example+2:+

Teasing+Apart+Transcripts+of+Paralogous+Genes+

Ap2a1! Ap2a2!



Trinity+output:+A+mul5&fasta+file+

Can#align#Trinity#transcripts#to#genome#scaffolds#to#examine#intron/exon#structures#
(Trinity+transcripts+aligned+using+GMAP)+



Trinity+Demo+

•  Assemble+RNA&Seq+using+Trinity+

•  Examine+Trinity+in+context+of+a+genome:+
– Align+Trinity+transcripts+to+the+genome+using+
GMAP+

– Align+rna&seq+reads+to+genome+using+Tophat+

– Visualize+all+alignments+using+IGV+

Improved+reconstruc5on+with+deeper+sequencing+depth+
and+

Genome&based+reconstruc5on+is++
more+sensi5ve+than+de+novo+methods+

0#

1000#

2000#

3000#

4000#

5000#

6000#

7000#

8000#

9000#

0# 10# 20# 30# 40# 50# 60#

Cufflinks/Gsnap#

Trinity#

Million+PE+reads+

#+Genes+w/+fully+
reconstructed+
transcripts+

Mouse+data+



Strand&specific+RNA&Seq+is+Preferred+
Computa5onally:+fewer+confounding+graph+structures+in+de+novo+assembly:+
++++++++++++++++ex.++Forward+!=+reverse+complement++

+++++++++++++++++++++(GGAA+!=+TTCC)+
Biologically:+separate+sense+vs.+an5sense+transcrip5on+
+

Overlapping#UTRs#from#Opposite#Strands#

Schizosacharomyces!pombe!
(fission+yeast)+



An5sense&dominated+Transcrip5on+

Summary+

•  Two+paradigms+for+transcript+reconstruc5on+
–  Rna&seq+alignment+assembly+

•  Tuxedo+(tophat,+cufflinks)+

–  genome&free+de+novo+read+assembly+
•  Trinity+

•  OJen+best+to+pursue+both+strategies+
– Maximize+sensi5vity+for+genome&based+transcript+
reconstruc5on+++capture+missing+or+ill&represented+
transcripts+via+de+novo+assembly.+



Abundance+Es5ma5on+
(Aka.+Compu5ng+Expression+Values)+

Slide+courtesy+of+Cole+Trapnell+

Ex
pr
es
si
on

+V
al
ue

+



Slide+courtesy+of+Cole+Trapnell+

Ex
pr
es
si
on

+V
al
ue

+

Normalized+Expression+Values+
+
•  Transcript&mapped+read+counts+are+
normalized+for+both+length+of+the+transcript+
and+total+depth+of+sequencing.+

•  Reported+as:+Number+of+RNA&Seq+Fragments++
++++Per+Kilobase+of+transcript+
++++++++++++per+total+Million+fragments+mapped+

FPKM#



Mul5ply&mapped+Reads+Confound+
Abundance+Es5ma5on+

Blue+=+mul5ply&mapped+reads+
Red,+Yellow+=+uniquely&mapped+reads+

Isoform#A#

Isoform#B#

+EM+++++

Mul5ply&mapped+Reads+Confound+
Abundance+Es5ma5on+

Blue+=+mul5ply&mapped+reads+
Red,+Yellow+=+uniquely&mapped+reads+

Isoform#A#

Isoform#B#

+EM+++++

Use+Expecta5on+Maximiza5on+(EM)+to+find+the+
most+likely+assignment+of+reads+to+transcripts.+
+
Performed+by:++
•  Cufflinks+and+Cuffdiff+(Tuxedo)+
•  RSEM+
•  eXpress+



Differen5al+Expression+Analysis+
Using+RNA&Seq+

Normaliza5on+Required+
Otherwise,+housekeeping+genes+look+diff+expressed++

due+to+sample+composi5on+differences+
Subset+of+genes+
highly+expressed+
in+liver+

Technical+
+replicates+

Liver+&+kidney+

Robinson+and+Oshlack,+Genome+Biology,+2010+



Diff.+Expression+Analysis+Involves+

•  Coun5ng+reads+
•  Sta5s5cal+significance+tes5ng+

Gene#A#

Sample_A# Sample_B#

Gene#B#

Fold_Change# Significant?#

1+ 2+ 2&fold+

100+ 200+ 2&fold+

No+

Yes+

Observed+RNA&Seq+Counts+Result+from+Random+
Sampling+of+the+Popula5on+of+Reads+

Technical+varia5on+in+RNA&Seq+counts+per+feature+is++
well+modeled+by+the+Poisson+distribu5on+

(observed+read+counts)+

Mean+#+fragments+

See:+hPp://en.wikipedia.org/wiki/Poisson_distribu5on+



Example:+One+gene*not*+differen5ally+expressed+
SampleA(gene)+=+SampleB(gene)+=+4+reads+

(k)+number+of+reads+observed+

de
ns
ity

+

Distribu3on#of#observed#counts#for#single#gene#
(under#Poisson#model)#

x+=+log2(SampleA/SampleB)+

de
ns
ity

+

same+

2&fold+diff+

4&fold+diff+

Dist.#of#log2(fold#change)#values#

SampleA(geneX)+
SampleB(geneX)+

Beware+of+concluding+fold+change+
from+small+numbers+of+counts+

From:+hPp://gkno2.tumblr.com/post/24629975632/thinking&about&rna&seq&experimental&design&for+

Poisson+distribu5ons+for+counts+based+on+28fold#expression+differences+

No+confidence+in+2&fold+
difference.+Likely+
observed+by+chance.+

High+confidence+in+2&fold+
difference.+Unlikely+
observed+by+chance.+



More+Counts+=+More+Sta5s5cal+Power+

SampleA#

Example:++5000+total+reads+per+sample.+

Sample#B#

geneA# 1+ 2+

Fisher’s#Exact#Test#
(P8value)#

geneB# 10+ 20+

1.00+

0.098+

100+ 200+ <+0.001+geneC#

Observed+2&fold+differences+in+read+counts.+

Tools+for+DE+analysis+with+RNA&Seq+

See:+hPp://www.biomedcentral.com/1471&2105/14/91+

ShrinkSeq+
NoiSeq+
baySeq+
Vsf+
Voom+
SAMseq+
TSPM+
DESeq+
EBSeq+
NBPSeq+
edgeR+

++other+(not&R)+
including+CuffDiff+



Visualiza5on+of+DE+results+
and+Expression+Profiling+

Volcano+plot+
(+fold+change+vs.+significance)+

MA+plot+
(abundance+vs.+fold+change)+

Significantly+differently+expressed+transcripts+have+FDR+<=+0.001+
(shown+in+red)+

PloÅng+Pairwise+Differen5al+Expression+Data+

Log2+Average+Expression+level+(M+of+MA)+Log2+(fold+change)+

Lo
g 2
+(f
ol
d+
ch
an
ge
)+(
A
+o
f+M

A
)+

Lo
g 1

0+(
Pv
al
ue

)+



Comparing+Mul5ple+Samples+

Heatmaps+provide+an+effec5ve+tool+
for+naviga5ng+differen5al+expression+across+
mul5ple+samples.+
+
Clustering+can+be+performed+across+both+axes:+

+&cluster+transcripts+with+similar+expression+
+paPers.+
+&cluster+samples+according+to+similar+
+expression+values+among+transcripts.+
++

Examining+PaPerns+of+Expression+Across+Samples+
Can+extract+clusters+of+transcripts+and+examine+them+separately.+



RNA&Seq+Analysis+Frameworks+

Tuxedo+Framework+for+Transcriptome+Analysis+

Derived+from:+Nat+Protoc.+2012+Mar+1;7(3):562&78.+doi:+10.1038/nprot.2012.016.+



Full+Tuxedo+Framework+Demo+

•  See:++Tuxedo_workshop_ac5vi5es.pdf+

Trinity+Framework+for+Transcriptome+Analysis+



Full+Trinity+Framework+Demo+

•  See+Trinity_workshop_ac5vi5es.pdf+

Summary+of+Key+Points+
•  RNA&Seq+is+a+versa5le+method+for+transcriptome+analysis+

enabling+quan5fica5on+and+novel+transcript+discovery.+

•  Genome&based+and+genome&free+methods+exist+for+transcript+
reconstruc5on+

•  Expression+quan5fica5on+is+based+on+sampling+and+coun5ng+
reads+derived+from+transcripts+

•  Fold+changes+based+on+few+read+counts+lack+sta5s5cal+
significance.+

•  Mul5ple+analysis+frameworks+are+available+–+alterna5ve+and+
oJen+complementary+approaches+to+support+biological+
inves5ga5ons.+

+



SoJware+Links+
•  Tuxedo+

–  Bow5e:+hPp://bow5e&bio.sourceforge.net/index.shtml+
–  Tophat:+hPp://tophat.cbcb.umd.edu/+
–  Cufflinks:+hPp://cufflinks.cbcb.umd.edu/+

•  Trinity+
hPp://trinityrnaseq.sourceforge.net/+

•  IGV+for+Visualiza5on+
hPp://www.broadins5tute.org/igv/+

•  GMAP+
hPp://research&pub.gene.com/gmap/+

•  Samtools+
hPp://samtools.sourceforge.net/+

Papers+of+Interest+

•  Next+genera5on+transcriptome+assembly+
–  hPp://www.nature.com/nrg/journal/v12/n10/full/nrg3068.html+

•  Tuxedo+protocol+
–  hPp://www.ncbi.nlm.nih.gov/pmc/ar5cles/PMC3334321/+

•  Trinity+
–  hPp://www.ncbi.nlm.nih.gov/pmc/ar5cles/PMC3571712/+

–  hPp://www.nature.com/nprot/journal/v8/n8/full/nprot.2013.084.html+


