UNIX - Command-Line Survival Guide

Files, directories, commands, text editors

Simon Prochnik & Lincoln Stein

Book Chapters

Learning Perl (6th ed.): Chap. 1 Unix & Perl to the Rescue (1st ed.): Chaps. 3 & 5

Lecture Notes

- <u>What is the Command Line?</u>
- Logging In
- <u>Amazon Web Services</u>
- The Desktop
- The Shell
- Home Sweet Home
- <u>Getting Around</u>
- Running Commands
- <u>Command Redirection</u>
- Pipes

What is the Command Line?

Underlying the pretty Mac OSX GUI is a powerful command-line operating system. The command line gives you access to the internals of the OS, and is also a convenient way to write custom software and scripts.

Many bioinformatics tools are written to run on the command line and have no graphical interface. In many cases, a command line tool is more versatile than a graphical tool, because you can easily combine command line tools into automated scripts that accomplish tasks without human intervention.

In this course, we will be writing Perl scripts that are completely command-line based.

Logging into Your Workstation

Your workstation is an iMac. To log into it, provide the following information:

Your username: the initial of your first name, followed by your full last name. For example, if your username is **srobb** for **s**ofia **robb** *Your password:* **pfb@forever**

Bringing up the Command Line

To bring up the command line, use the Finder to navigate to *Applications->Utilities* and double-click on the *Terminal* application. This will bring up a window like the following:

OSX Terminal

You can open several Terminal windows at once. This is often helpful.

You will be using this application a lot, so I suggest that you drag the Terminal icon into the shortcuts bar at the bottom of your screen.

Amazon Web Services cloud computing

The computers we will be using on the course are part of Amazon's cloud computing. Their system is called Amazon Web Services (AWS).

Everyone will have access to their own computer. Amazon refers to them as instances.

Different computers or instance types have different amounts of memory and CPUs. Here are the two types of instance we will be working on.

AWS instance type	CPUs (cores) and Memory	
Small	1 CPU 1.7Gb RAM	
Extra large	4 CPUs 15Gb	

Later in the course when we try to assemble genomes for example, we will require computers with more memory and more cores

You need to log into an instance by using the ssh command in the Terminal window. 'ssh' stands for secure shell. This is an encrypted connection to another computer. You'll learn more about the 'shell' part in the next section.

Here's how you log in to an instance.

ssh srobb@ec2-107-22-31-168.compute1.amazonaws.com

This is confusing, so we made you an easier way to log in. There is a webpage with everyone's user name and a link. The webpage is here.

http://ec2-54-205-98-165.compute-1.amazonaws.com/files/awslogins.html

The links act as an ssh command, so if you click on the link, you will get logged in to your instance.

This might take a little getting used to, because you are really just using the iMac as a Terminal (hence the name of the Application) into a server somewhere else. In our case, this is an AWS virtual computer in the cloud. This is a very common way to work with UNIX. In a day or so, you will be used to it.

OK. I've Logged in. What Now?

The terminal window is running a shell called "bash." The shell is a loop that:

- 1. Prints a prompt
- 2. Reads a line of input from the keyboard
- 3. Parses the line into one or more commands
- 4. Executes the commands (which usually print some output to the terminal)
- 5. Go back 1.

There are many different shells with bizarre names like **bash**, **sh**, **csh**, **tcsh**, **ksh**, and **zsh**. The "sh" part means shell. Each shell was designed for the purpose of confusing you and tripping you up. We have set up your accounts to use **bash**. Stay with **bash** and you'll get used to it, eventually.

Command-Line Prompt

Most of bioinformatics is done with command-line software, so you should take some time to learn to use the shell effectively.

This is a command line prompt:

bush202>

This is another:

(~) 51%

This is another:

srobb@bush202 1:12PM>

What you get depends on how the system administrator has customized your login. You can customize yourself when you know how.

The prompt tells you the shell is ready to accept a command. When a long-running command is going, the prompt will not reappear until the system is ready to deal with your next request.

Issuing Commands

Type in a command and press the <Enter> key. If the command has output, it will appear on the screen. Example:

(~) 53% ls -F		
GNUstep/	<pre>cool_elegans.movies.txt</pre>	man/
INBOX	docs/	mtv/
INBOX~	etc/	nsmail/
Mail@	games/	pcod/
News/	get_this_book.txt	projects/
axhome/	jcod/	public_html/
bin/	lib/	src/
build/	linux/	tmp/
ccod/		
(~) 54%		

The command here is *Is -F*, which produces a listing of files and directories in the current directory (more on which later). After its output, the command prompt appears agin.

Some programs will take a long time to run. After you issue their command name, you won't recover the shell prompt until they're done. You can either launch a new shell (from Terminal's File menu), or run the command in the background using the ampersand:

(~) 54% long_running_application&

(~) 55%

The command will now run in the background until it is finished. If it has any output, the output will be printed to the terminal window. You may wish to redirect the output as described later.

Command Line Editing

Most shells offer command line entering. Up until the comment you press <Enter>, you can go back over the command line and edit it using the keyboard. Here are the most useful keystrokes:

Backspace

Delete the previous character and back up one.

Left arrow, right arrow

Move the text insertion point (cursor) one character to the left or right.

control-a (^a)

Move the cursor to the beginning of the line. Mnemonic: A is first letter of alphabet control-e (^e)

Move the cursor to the end of the line. Mnemonic: <E> for the End (^Z was already taken for something else).

control-d (^d)

Delete the character currently under the cursor. D=Delete.

control-k (^k)

Delete the entire line from the cursor to the end. k=kill. The line isn't actually deleted, but put into a temporary holding place called the "kill buffer".

control-y (^y)

Paste the contents of the kill buffer onto the command line starting at the cursor. y=yank. Up arrow, down arrow

Move up and down in the command history. This lets you reissue previous commands, possibly after modifying them.

There are also some useful shell commands you can issue:

history

Show all the commands that you have issued recently, nicely numbered.

!<number>

Reissue an old command, based on its number (which you can get from history)

!!

Reissue the immediate previous command.

!<partial command string>

Reissue the previous command that began with the indicated letters. For example *!!* would reissue the *ls -F* command from the earlier example.

bash offers automatic command completion and spelling correction. If you type part of a command and then the tab key, it will prompt you with all the possible completions of the command. For example:

```
(~) 51% fd<tab>
(~) 51% fd
fd2ps fdesign fdformat fdlist fdmount fdmountd fdrawcmd fdumount
(~) 51%
```

If you hit tab after typing a command, but before pressing <Enter>, **bash** will prompt you with a list of file names. This is because many commands operate on files.

Wildcards

You can use wildcards when referring to files. "*" refers to zero or more characters. "?" refers to any single character. For example, to list all files with the extension ".txt", run **Is** with the pattern "*.txt":

```
(~) 56% ls -F *.txt
final_exam_questions.txt genomics_problem.txt
genebridge.txt mapping_run.txt
```

There are several more advanced types of wildcard patterns which you can read about in the **tcsh** manual page. For example, you can refer to files beginning with the characters "f" or "g" and ending with ".txt" this way:

(~) 57% ls -F [f-g]*.txt
final_exam_questions.txt genebridge.txt

genomics_problem.txt

Home Sweet Home

When you first log in, you'll be placed in a part of the system that is your personal domain, called the *home directory*. You are free to do with this area what you will: in particular you can create and delete files and other directories. In general, you cannot create files elsewhere in the system.

Your home directory lives somewhere way down deep in the bowels of the system. On our iMacs, it is a directory with the same name as your login name, located in **/Users**. The full directory path is therefore **/Users/username**. Since this is a pain to write, the shell allows you to abbreviate it as *~username* (where "username" is your user name), or simply as ~. The weird character (technically called the "tilde" or "twiddle") is usually hidden at the upper left corner of your keyboard.

To see what is in your home directory, issue the command Is -F:

(~) % **ls -F** INBOX Mail/ News/ nsmail/ public html/

This shows one file "INBOX" and four directories ("Mail", "News") and so on. (The "-F" in the command turns on fancy mode, which appends special characters to directory listings to tell you more about what you're seeing. "/" means directory.)

In addition to the files and directories shown with *Is -F*, there may be one or more hidden files. These are files and directories whose names start with a "." (technically called the "dot" character). To see these hidden files, add an "a" to the options sent to the *Is* command:

.cshrc	.login	Mail/
.fetchhost	.netscape/	News/
.fvwmrc	<pre>.xinitrc*</pre>	nsmail/
.history	.xsession@	public_html/
.less	<pre>.xsession-errors</pre>	
.lessrc	INBOX	
	.cshrc .fetchhost .fvwmrc .history .less .lessrc	<pre>.cshrc .login .fetchhost .netscape/ .fvwmrc .xinitrc* .history .xsession@ .less .xsession-errors .lessrc INBOX</pre>

Whoa! There's a lot of hidden stuff there. But don't go deleting dot files willy-nilly. Many of them are esential configuration files for commands and other programs. For example, the *.profile* file contains configuration information for the **bash** shell. You can peek into it and see all of **bash**'s many options. You can edit it (when you know what you're doing) in order to change things like the command prompt and command search path.

Getting Around

You can move around from directory to directory using the *cd* command. Give the name of the directory you want to move to, or give no name to move back to your home directory. Use the *pwd* command to see where you are (or rely on the prompt, if configured):

```
(~/docs/grad course/i) 56% cd
(~) 57% cd /
(/) 58% ls -F
bin/
             dosc/
                          qmon.out
                                        mnt/
                                                     sbin/
boot/
             etc/
                          home@
                                        net/
                                                     tmp/
             fastboot
                          lib/
cdrom/
                                        proc/
                                                     usr/
dev/
                          lost+found/ root/
            floppy/
                                                     var/
(/) 59% cd ~/docs/
(~/docs) 60% pwd
/usr/home/lstein/docs
(~/docs) 62% cd ../projects/
(~/projects) 63% ls
Ace-browser/
                            bass.patch
Ace-perl/
                            cgi/
                            cqi3/
Foo/
Interface/
                            computertalk/
Net-Interface-0.02/
                           crypt-cbc.patch
Net-Interface-0.02.tar.gz fixer/
                            fixer.tcsh
Pts/
Pts.bak/
                            introspect.pl*
                            introspection.pm
PubMed/
SNPdb/
                            rhmap/
Tie-DBI/
                            sbox/
ace/
                            sbox-1.00/
atir/
                            sbox-1.00.tqz
bass-1.30a/
                            zhmapper.tar.gz
bass-1.30a.tar.gz
(~/projects) 64%
```

Each directory contains two special hidden directories named "." and "..". "." refers always to the directory in which it is located. ".." refers always to the parent of the directory. This lets you move upward in the directory hierarchy like this:

(~/docs) 64% cd ..

and to do arbitrarily weird things like this:

(~/docs) 65% cd ../../docs

The latter command moves upward to levels, and then into a directory named "docs".

If you get lost, the *pwd* command prints out the full path to the current directory:

(~) 56% **pwd** /Users/lstein

Essential Unix Commands

With the exception of a few commands that are built directly into the shell, all Unix commands are standalone executable programs. When you type the name of a command, the shell will search through all the directories listed in the PATH environment variable for an executable of the same name. If found, the shell will execute the command. Otherwise, it will give a "command not found" error.

Most commands live in /bin, /usr/bin, Or /usr/local/bin.

Getting Information About Commands

The man command will give a brief synopsis of the command:

Finding Out What Commands are on Your Computer

The **apropos** command will search for commands matching a keyword or phrase:

```
(~) 100% apropos column
showtable (1) - Show data in nicely formatted columns
colrm (1) - remove columns from a file
column (1) - columnate lists
fix132x43 (1) - fix problems with certain (132 column) graphics
modes
```

Arguments and Command Switches

Many commands take arguments. Arguments are often (but not inevitably) the names of one or more files to operate on. Most commands also take command-line "switches" or "options" which fine-tune what the command does. Some commands recognize "short switches" that consist of a single character, while others recognize "long switches" consisting of whole words.

The **wc** (word count) program is an example of a command that recognizes both long and short options. You can pass it the **-c**, **-w** and/or **-I** options to count the characters, words and lines in a text file, respectively. Or you can use the longer but more readable, **--chars**, **--words** or **--lines** options. Both these examples count the number of characters and lines in the text file /var/log/messages:

```
(~) 102% wc -c -l /var/log/messages
    23 941 /var/log/messages
(~) 103% wc --chars --lines /var/log/messages
    23 941 /var/log/messages
```

You can cluster short switches by concatenating them together, as shown in this example:

(~) 104% wc -cl /var/log/messages
23 941 /var/log/messages

Many commands will give a brief usage summary when you call them with the **-h** or **--help** switch.

Spaces and Funny Characters

The shell uses whitespace (spaces, tabs and other nonprinting characters) to separate arguments. If you want to embed whitespace in an argument, put single quotes around it. For example:

mail -s 'An important message' 'Bob Ghost <bob@ghost.org>'

This will send an e-mail to the fictitious person Bob Ghost. The **-s** switch takes an argument, which is the subject line for the e-mail. Because the desired subject contains spaces, it has to have quotes around it. Likewise, my e-mail address, which contains embedded spaces, must also be quoted in this way.

Certain special non-printing characters have escape codes associated with them:

Escape Code	Description
\n	new line character
\t	tab character
\r	carriage return character
\a	bell character (ding! ding!)
\nnn	the character whose ASCII code in octal is nnn

Useful Commands

Here are some commands that are used extremely frequently. Use **man** to learn more about them. Some of these commands may be useful for solving the problem set ;-)

Manipulating Directories

ls

```
Directory listing. Most frequently used as Is -F (decorated listing) and Is -I (long listing).
```

mv

Rename or move a file or directory.

ср

Copy a file.

rm

Remove (delete) a file.

mkdir N

Make a directory

rmdir

Remove a directory

In

Create a symbolic or hard link.

chmod

Change the permissions of a file or directory.

Manipulating Files

cat

Concatenate program. Can be used to concatenate multiple files together into a single file, or, much more frequently, to send the contents of a file to the terminal for viewing.

more

Scroll through a file page by page. Very useful when viewing large files. Works even with files that are too big to be opened by a text editor.

less

A version of **more** with more features.

head

View the head (top) of a file. You can control how many lines to view.

tail

View the tail (bottom) of a file. You can control how many lines to view. You can also use **tail** to view a growing file.

wc

Count words, lines and/or characters in one or more files.

tr

Substitute one character for another. Also useful for deleting characters.

sort

Sort the lines in a file alphabetically or numerically.

uniq

Remove duplicated lines in a file.

cut

Remove sections from each line of a file or files.

fold

Wrap each input line to fit in a specified width.

grep

Filter a file for lines matching a specified pattern. Can also be reversed to print out lines that don't match the specified pattern.

gzip (gunzip)

Compress (uncompress) a file.

tar

Archive or unarchive an entire directory into a single file.

emacs

Run the Emacs text editor (good for experts).

Networking

ssh

A secure (encrypted) way to log into machines.

ping

See if a remote host is up.

ftp and the secure version sftp

Transfer files using the File Transfer Protocol.

who

See who else is logged in.

lp

Send a file or set of files to a printer.

Standard I/O and Command Redirection

Unix commands communicate via the command line interface. They can print information out to the terminal for you to see, and accept input from the keyboard (that is, from *you*!)

Every Unix program starts out with three connections to the outside world. These connections are called "streams" because they act like a stream of information (metaphorically speaking):

standard input

This is a communications stream initially attached to the keyboard. When the program reads from standard input, it reads whatever text you type in.

standard output

This stream is initially attached to the command window. Anything the program prints to this channel appears in your terminal window.

standard error

This stream is also initially attached to the command window. It is a separate channel intended for printing error messages.

The word "initially" might lead you to think that standard input, output and error can somehow be detached from their starting places and reattached somewhere else. And you'd be right. You can attach one or more of these three streams to a file, a device, or even to another program. This sounds esoteric, but it is actually very useful.

A Simple Example

The **wc** program counts lines, characters and words in data sent to its standard input. You can use it interactively like this:

```
(~) 62% wc
Mary had a little lamb,
little lamb,
little lamb.
Mary had a little lamb,
whose fleece was white as snow.
^D
```

6 20 107

In this example, I ran the **wc** program. It waited for me to type in a little poem. When I was done, I typed the END-OF-FILE character, control-D (^D for short). **wc** then printed out three numbers indicating the number of lines, words and characters in the input.

More often, you'll want to count the number of lines in a big file; say a file filled with DNA sequences. You can do this by *redirecting* **wc**'s standard input from a file. This uses the **<** metacharacter:

```
(~) 63% wc <big_file.fasta
2943 2998 419272
```

If you wanted to record these counts for posterity, you could redirect standard output as well using the > metacharacter:

```
(~) 64% wc <big_file.fasta >count.txt
```

Now if you **cat** the file *count.txt*, you'll see that the data has been recorded. **cat** works by taking its standard input and copying it to standard output. We redirect standard input from the *count.txt* file, and leave standard output at its default, attached to the terminal:

(~) 65% cat <count.txt 2943 2998 419272

Redirection Meta-Characters

Here's the complete list of redirection commands for **bash**:

<filename< th=""><th>Redirect standard input to file</th></filename<>	Redirect standard input to file
>filename	Redirect standard output to file
1>filename	Redirect just standard output to file (same as above)
2>filename	Redirect just standard error to file
<i>>filename</i> 2>&1	Redirect both stdout and stderr to file

These can be combined. For example, this command redirects standard input from the file named */etc/passwd*, writes its results into the file *search.out*, and writes its error messages (if any) into a file named *search.err*. What does it do? It searches the password file for a user named "root" and returns all lines that refer to that user.

```
(~) 66% grep root </etc/passwd >search.out 2>search.err
```

Filters, Filenames and Standard Input

Many Unix commands act as filters, taking data from a file or standard input, transforming the data, and writing the results to standard output. Most filters are designed so that if they are called with one or more filenames on the command line, they will use those files as input. Otherwise they will act on standard input. For example, these two commands are equivalent:

(~) 66% grep 'gatttgc' <big_file.fasta
(~) 67% grep 'gatttgc' big_file.fasta</pre>

Both commands use the **grep** command to search for the string "gatttgc" in the file *big_file.fasta*. The first one searches standard input, which happens to be redirected from the file. The second command is explicitly given the name of the file on the command line.

Sometimes you want a filter to act on a series of files, one of which happens to be standard input. Many filters let you use "-" on the command line as an alias for standard input. Example:

(~) 68% grep 'gatttgc' big_file.fasta bigger_file.fasta -

This example searches for "gatttgc" in three places. First it looks in *big_file.fasta*, then in *bigger_file.fasta*, and lastly in standard input (which, since it isn't redirected, will come from the keyboard).

Standard I/O and Pipes

The coolest thing about the Unix shell is its ability to chain commands together into pipelines. Here's an example:

```
(~) 65% grep gatttgc big_file.fasta | wc -l
22
```

There are two commands here. **grep** searches a file or standard input for lines containing a particular string. Lines which contain the string are printed to standard output. **wc** -I is the familiar word count program, which counts words, lines and characters in a file or standard input. The -I command-line option instructs **wc** to print out just the line count. The I character, which is known as the "pipe" character, connects the two commands together so that the standard output of **grep** becomes the standard input of **wc**.

What does this pipe do? It prints out the number of lines in which the string "gatttgc" appears in the file *big_file.fasta*.

More Pipe Idioms

Pipes are very powerful. Here are some common command-line idioms.

Count the Number of Times a Pattern does NOT Appear in a File

The example at the top of this section showed you how to count the number of lines in which a particular string pattern appears in a file. What if you want to count the number of lines in which a pattern does **not** appear?

Simple. Reverse the test with the grep -v switch:

```
(~) 65% grep -v gatttgc big_file.fasta | wc -l
2921
```

Uniquify Lines in a File

If you have a long list of names in a text file, and you are concerned that there might be some duplicates, this will weed out the duplicates:

(~) 66% sort long_file.txt | uniq > unique.out

This works by sorting all the lines alphabetically and piping the result to the **uniq** program, which removes duplicate lines that occur together. The output is placed in a file named *unique.out*.

Concatenate Several Lists and Remove Duplicates

If you have several lists that might contain repeated entries among them, you can combine them into a single unique list by **cat**ing them together, then uniquifying them as before:

(~) 67% cat file1 file2 file3 file4 | sort | uniq

Count Unique Lines in a File

If you just want to know how many unique lines there are in the file, add a wc to the end of the pipe:

(~) 68% sort long_file.txt | uniq | wc -l

Page Through a Really Long Directory Listing

Pipe the output of **Is** to the **more** program, which shows a page at a time. If you have it, the **less** program is even better:

(~) 69% **ls -1** | **more**

Monitor a Rapidly Growing File for a Pattern

Pipe the output of **tail -f** (which monitors a growing file and prints out the new lines) to **grep**. For example, this will monitor the */var/log/syslog* file for the appearance of e-mails addressed to *mzhang*:

(~) 70% tail -f /var/log/syslog | grep mzhang

Beginning Perl Scripting

Simple scripts, Expressions, Operators, Statements, Variables

Simon Prochnik & Lincoln Stein

Suggested Reading

Learning Perl (6th ed.): Chap. 2, 3, 12, Unix & Perl to the Rescue (1st ed.): Chap. 4 Chapters 1, 2 & 5 of *Learning Perl*.

Lecture Notes

- 1. What is Perl?
- 2. <u>Some simple Perl scripts</u>
- 3. Mechanics of creating a Perl script
- 4. Statements
- 5. Literals
- 6. Operators
- 7. Functions
- 8. Variables
- 9. Processing the Command Line

Problems

What is Perl?

Perl is a Programming Language

Written by Larry Wall in late 80's to process mail on Unix systems and since extended by a huge cast of characters. The name is said to stand for:

- 1. Pathologically Eclectic Rubbish Lister
- 2. Practical Extraction and Report Language

Perl Properties

- 1. Interpreted Language
- 2. "Object-Oriented"
- 3. Cross-platform
- 4. Forgiving
- 5. Great for text
- 6. Extensible, rich set of libraries
- 7. Popular for web pages
- 8. Extremely popular for bioinformatics

Other Languages Used in Bioinformatics

C, C++

Compiled languages, hence very fast. Used for computation (BLAST, FASTA, Phred, Phrap, ClustalW) Not very forgiving.

Java

Interpreted, fully object-oriented language.

Built into web browsers. Supposed to be cross-platform, getting better.

Python , Ruby

Interpreted, fully object-oriented language. Rich set of libraries. Elegant syntax. Smaller user community than Java or Perl.

Some Simple Scripts

Here are some simple scripts to illustrate the "look" of a Perl program.

Print a Message to the Terminal

Code:

```
#!/usr/bin/perl
# file: message.pl
use strict;
use warnings;
print "When that Aprill with his shoures soote\n";
print "The droghte of March ath perced to the roote,\n";
print "And bathed every veyne in swich licour\n";
print "Of which vertu engendered is the flour...\n";
```

Output:

```
(~) 50% perl message.pl
When that Aprill with his shoures soote
The droghte of March ath perced to the roote,
And bathed every veyne in swich licour
Of which vertu engendered is the flour...
```

Do Some Math

Code:

```
#!/usr/bin/perl
# file: math.pl
use strict;
use warnings;
print "2 + 2 =", 2+2, "\n";
print "log(le23)= ", log(le23), "\n";
print "2 * sin(3.1414)= ", 2 * sin(3.1414), "\n";
```

Output:

```
(~) 51% perl math.pl
2 + 2 =4
log(1e23)= 52.9594571388631
2 * sin(3.1414)= 0.000385307177203065
```

Run a System Command

Code:

#!/usr/bin/perl

```
# file: system.pl
use strict;
use warnings;
system "ls";
```

Output:

```
(~/docs/grad_course/perl) 52% perl system.pl
index.html math.pl~ problem_set.html~ what_is_perl.html
index.html~ message.pl simple.html what_is_perl.html~
math.pl problem_set.html simple.html~
```

Return the Time of Day

Code:

```
#!/usr/bin/perl
# file: time.pl
use strict;
use warnings;
my $time = localtime;
print "The time is now $time\n";
```

Output:

```
(~) 53% perl time.pl
The time is now Thu Sep 16 17:30:02 1999
```

Mechanics of Writing Perl Scripts

Some hints to help you get going.

Creating the Script

A Perl script is just a text file. Use any text (programmer's) editor. Don't use word processors like Word.

By convention, Perl script files end with the extension .pl.

I suggest Emacs, because it is already installed on almost all Unix machines, but there are many good options: vi, vim, Textwrangler, eclipse

The Emacs text editor has a *Perl mode* that will auto-format your Perl scripts and highlight keywords. Perl mode will be activated automatically if you end the script name with **.pl**.

GUI-based script writing tools (Aquamacs, xemacs, Textwrangler, Eclipse) are easier to use, but you may have to install them yourself.

Let's write a simple perl script. It'll be a simple text file called time.pl and will contain the lines above.

Let's try doing this in emacs

Emacs Essentials

A GUI version is simpler to use e.g. Aquamacs, run it by adding the icon for the application to your Dock then clicking on the icon. You can also run emacs in a Terminal window. Emacs will be installed on almost every Unix system you encounter.

(~) 50% emacs

The same shortcuts you can use on the command line work in Emacs e.g.

control-a (^a) move cursor to beginning of line etc

The most important Emacs-specific commands

```
control-x control-f (^x ^f)
     open a file
control-x control-w (^x ^w)
     save as...
control-x control-c (^x ^c)
     quit
control-g (^g)
     cancel command
shift-control-_ (^_)
     Undo typing
control-h ?(^h ?)
     Help!!
option-; (M;)
     Add comment
option-/ (M/)
     Variable/subroutine name auto-completion (cycles through options)
```

Running the Script

Don't forget to save any changes in your script before running it. The filled red circle at the top left of the emacs GUI window has a dot in it if there are unsaved changes.

Option 1 (quick, not used much)

Run the **perl** program from the command line, giving it the name of the script file to run.

(~) 50% **perl time.pl** The time is now Thu Sep 16 18:09:28 1999

Option 2 (as shown in examples above) Put the magic comment

#!/usr/bin/perl

at the top of your script.

It's really easy to make a mistake with this complicated line and this causes confusing errors (see below). Double check, or copy from a friend who has it working.

And always add

```
use strict;
use warnings;
```

to the top of your script like in the example below

```
#!/usr/bin/perl
# file: time.pl
use strict;
use warnings;
my $time = localtime;
print "The time is now $time\n";
```

Now make the script executable with *chmod* +*x* time.pl:

(~) 51% chmod +x time.pl

Run the script as if it were a command:

(~) 52% ./time.pl The time is now Thu Sep 16 18:12:13 1999

Note that you have to type "./time.pl" rather than "time.pl" because, by default, **bash** does not search the current directory for commands to execute. To avoid this, you can add the current directory (".") to your search PATH environment variable. To do this, create a file in your home directory named .bashrc and enter the following line in it:

```
export PATH=$PATH:.
```

The next time you log in, your path will contain the current directory and you can type "time.pl" directly.

Common Errors

Plan out your script before you start coding. Write the code, then run it to see if it works. Every script goes through a few iterations before you get it right. Here are some common errors:

Syntax Errors

Code:

```
#!/usr/bin/perl
# file: time.pl
use strict;
use warnings;
time = localtime;
print "The time is now $time\n";
```

Output:

```
(~) 53% time.pl
Can't modify time in scalar assignment at time.pl line 3, near "localtime;"
Execution of time.pl aborted due to compilation errors.
```

Runtime Errors

Code:

```
#!/usr/bin/perl
# file: math.pl
use strict;
use warnings;
$six_of_one = 6;
$half_dozen = 12/2;
$result = $six_of_one/($half_dozen - $six_of_one);
print "The result is $result\n";
```

Output:

(~) 54% **math.pl**

Illegal division by zero at math.pl line 6.

Forgetting to Make the Script Executable

(~) 55% **test.pl** test.pl: Permission denied.

Getting the Path to Perl Wrong on the #! line

Code:

```
#!/usr/local/bin/pearl
# file: time.pl
use strict;
use warnings;
my $time = localtime;
print "The time is now $time\n";
```

(~) 55% time.pl time.pl: Command not found.

This gives a very confusing error message because the command that wasn't found is 'pearl' not time.pl

Useful Perl Command-Line Options

You can call Perl with a few command-line options to help catch errors:

-C

Perform a syntax check, but don't run.

-w

Turn on verbose warnings. Same as

use warnings;

-d

Turn on the Perl debugger.

Usually you will invoke these from the command-line, as in *perl -cw time.pl* (syntax check *time.pl* with verbose warnings). You can also put them in the top line: *#!/usr/bin/perl -w*.

Perl Statements

A Perl script consists of a series of *statements* and *comments*. Each statement is a command that is recognized by the Perl interpreter and executed. Statements are terminated by the semicolon character (;). They are also usually separated by a newline character to enhance readability.

A *comment* begins with the # sign and can appear anywhere. Everything from the # to the end of the line is ignored by the Perl interpreter. Commonly used for human-readable notes. Use comments plentifully, especially at the beginning of a script to describe what it does, at the beginning of each section of your code and for any complex code.

Some Statements

\$sum = 2 + 2; # this is a statement

\$f = <STDIN>; \$g = \$f++; # these are two statements

\$sum; # this is one statement, spread across 3 lines

The Perl interpreter will start at the top of the script and execute all the statements, in order from top to bottom, until it reaches the end of the script. This execution order can be modified by loops and control structures.

Blocks

It is common to group statements into *blocks* using curly braces. You can execute the entire block conditionally, or turn it into a *subroutine* that can be called from many different places.

Example blocks:

```
{ # block starts
 my $EcoRI = 'GAATTC';
  my $sequence = <STDIN>;
  print "Sequence contains an EcoRI site" if $sequence=~/$EcoRI/;
  # block ends
}
my $sequence2 = <STDIN>;
if (length($sequence) < 100) { # another block starts
  print "Sequence is too small. Throw it back\n";
  exit 0;
} # and ends
foreach $sequence (@sequences) { # another block
  print "sequence length = ",length($sequence),"\n";
}
```

Literals

A *literal* is a constant value that you embed directly in the program code. You can think of the value as being *literally* in the code. Perl supports both *string literals* and *numeric literals*. A string literal or a numeric literal is a scalar i.e. a single value.

Literals cannot be changed. If you want to change the value of some data, it needs to be a variable. Much, much more on this coming up, until you're really sick of the whole thing.

String Literals

String literals are enclosed by single quotes (') or double quotes ("):

```
'The quality of mercy is not strained.'; # a single-quoted string
"The quality of mercy is not strained."; # a double-quoted string
```

The difference between single and double-quoted strings is that variables and certain special escape codes are interpolated into double quoted strings, but not in single-quoted ones. Here are some escape codes:

\n	New line
١t	Tab
١r	Carriage return
١f	Form feed
\a	Ring bell

10/13/2014

Beginning Perl Scripting

\040	Octal character (octal 040 is the space character)
\0x2a	Hexadecimal character (hex 2A is the "*" character)
\cA	Control character (This is the ^A character)
\u	Uppercase next character
N	Lowercase next character
١U	Uppercase everything until \E
۱L	Lowercase everything until \E
١Q	Quote non-word characters until \E
١E	End \U, \L or \Q operation

```
"Here goes\n\tnothing!";
 # evaluates to:
 # Here goes
 #
        nothing!
'Here goes\n\tnothing!';
 # evaluates to:
 # Here goes\n\tnothing!
"Here goes \unothing!";
 # evaluates to:
 # Here goes Nothing!
"Here \Ugoes nothing \E";
 # evaluates to:
 # Here GOES NOTHING!
"Alert! \a\a\a";
 # evaluates to:
 # Alert! (ding! ding! ding!)
```

Putting backslashes in strings is a problem because they get interpreted as escape sequences. To inclue a literal backslash in a string, double it:

```
"My file is in C:\\Program Files\\Accessories\\wordpad.exe";
# evaluates to: C:\Program Files\Accessories\wordpad.exe
```

Put a backslash in front of a quote character in order to make the quote character part of the string:

"She cried \"Oh dear! The parakeet has flown the coop!\"";

evaluates to: She cried "Oh dear! The parakeet has flown the coop!"

Numeric Literals

You can refer to numeric values using integers, floating point numbers, scientific notation, hexadecimal notation, and octal. With some help from the Math::Complex module, you can refer to complex numbers as well:

1.23;	# a floating point number
-1.23;	<pre># a negative floating point number</pre>
1_000_000;	<pre># you can use _ to improve readability</pre>
1.23E45;	<pre># scientific notation</pre>
0x7b ;	<pre># hexadecimal notation (decimal 123)</pre>
0173 ;	<pre># octal notation (decimal 123)</pre>
use Math::0	Complex; # bring in the Math::Complex module
12+3*i;	# complex number 12 + 3i

Backtick Strings

You can also enclose a string in backtics (`). This has the helpful property of executing whatever is inside the string as a Unix system command, and returning its output:

```
`ls -l`;
# evaluates to a string containing the output of running the
# ls -l command
```

Lists

The last type of literal that Perl recognizes is the *list*, which is multiple values strung together using the comma operator (,) and enclosed by parentheses. Lists are closely related to *arrays*, which we talk about later. *Lists* (and *arrays*) are composed from zero, one or more *scalars*, making an empty list, a list containing a single item or a more typical list containing many items, respectively.

```
('one', 'two', 'three', 1, 2, 3, 4.2);
# this is 7-member list contains a mixure of strings, integers
# and floats
```

Operators

Perl has numerous *operators* (over 50 of them!) that perform operations on string and numberic values. Some operators will be familiar from algebra (like "+", to add two numbers together), while others are more esoteric (like the "." string concatenation operator).

Numeric & String Operators

The "." operator acts on strings. The "!" operator acts on strings and numbers. The rest act on numbers.

Operator	Description	Example	Result
-	String concatenate	'Teddy' . 'Bear'	TeddyBear
=	Assignment	\$a = 'Teddy'	\$a variable contains 'Teddy'
+	Addition	3+2	5
-	Subtraction	3-2	1
-	Negation	-2	-2

file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html

1			
!	Not	!1	0
*	Multiplication	3*2	6
/	Division	3/2	1.5
%	Modulus	3%2	1
**	Exponentiation	3**2	9
<filehandle></filehandle>	File input	<stdin></stdin>	Read a line of input from standard input
>>	Right bit shift	3>>2	0 (binary 11>>2=00)
~	Left bit shift	3<<2	12 (binary 11<<2=1100)
I	Bitwise OR	312	3 (binary 11110=11
&	Bitwise AND	3&2	2 (binary 11&10=10
•	Bitwise XOR	3^2	1 (binary 11^10=01

Operator Precedence

When you have an expression that contains several operators, they are evaluated in an order determined by their *precedence*. The precedence of the mathematical operators follows the rules of arithmetic. Others follow a precedence that usually does what you think they should do. If uncertain, use parentheses to force precedence:

```
2+3*4; # evaluates to 14, multiplication has precedence over addition
(2+3)*4; # evaluates to 20, parentheses force the precedence
```

Logical Operators

These operators compare strings or numbers, returning TRUE or FALSE:

Numeric Comparison		String Comparison	
3 == 2	equal to	'Teddy' eq 'Bear'	equal to
3 != 2	not equal to	'Teddy' ne 'Bear'	not equal to
3 < 2	less than	'Teddy' It 'Bear'	less than
3 > 2	greater than	'Teddy' gt 'Bear'	greater than
3 <= 2	less or equal	'Teddy' le 'Bear'	less than or equal
3 >= 2	greater than or equal	'Teddy' ge 'Bear'	greater than or equal
3 <=> 2	compare	'Teddy' cmp 'Bear'	compare
		'Teddy' =~ /Bear/	pattern match

The <=> and cmp operators return:

- -1 if the left side is less than the right side
- **0** if the left side equals the right side
- +1 if the left side is greater than the right side

File Operators

Perl has special *file operators* that can be used to query the file system. These operators generally return TRUE or FALSE.

Example:

```
print "Is a directory!\n" if -d '/usr/home';
print "File exists!\n" if -e '/usr/home/lstein/test.txt';
print "File is plain text!\n" if -T '/usr/home/lstein/test.txt';
```

There are many of these operators. Here are some of the most useful ones:

-e filename	file exists	
-r filename	file is readable	
-w filename	file is writable	
-x filename	file is executable	
-z filename	file has zero size	
-s filename	file has nonzero size (returns size)	
-d filename	file is a directory	
-T filename	file is a text file	
-B filename	file is a binary file	
-M filename	age of file in days since script launched	
-A filename	same for access time	

Functions

In addition to its operators, Perl has many *functions*. Functions have a human-readable name, such as **print** and take one or more arguments passed as a list. A function may return no value, a single value (AKA "scalar"), or a list (AKA "array"). You can enclose the argument list in parentheses, or leave the parentheses off.

A few examples:

The function is print. Its argument is a string. # The effect is to print the string to the terminal. print "The rain in Spain falls mainly on the plain.\n"; # Same thing, with parentheses. print("The rain in Spain falls mainly on the plain.\n"); # You can pass a list to print. It will print each argument. # This prints out "The rain in Spain falls 6 times in the plain." print "The rain in Spain falls ",2*4-2," times in the plain.\n"; # Same thing, but with parentheses. print ("The rain in Spain falls ",2*4-2," times in the plain.\n"); # The length function calculates the length of a string, # yielding 45. length "The rain in Spain falls mainly on the plain.\n"; # The split function splits a string based on a delimiter pattern # yielding the list ('The','rain in Spain','falls mainly','on the plain.') split '/', 'The/rain in Spain/falls mainly/on the plain.';

Creating Your Own Functions

You can define your own functions or redefine the built-in ones using the **sub** function. This is described in more detail in the lesson on creating subroutines, which you'll be seeing soon..

Often Used Functions (alphabetic listing)

For specific information on a function, use perIdoc -f function_name to get a concise summary.

abs	absolute value
<u>chdir</u>	change current directory
<u>chmod</u>	change permissions of file/directory
<u>chomp</u>	remove terminal newline from string variable
<u>chop</u>	remove last character from string variable
<u>chown</u>	change ownership of file/directory
<u>close</u>	close a file handle
<u>closedir</u>	close a directory handle
cos	cosine
defined	test whether variable is defined
delete	delete a key from a hash
die	exit with an error message
each	iterate through keys & values of a hash
eof	test a filehandle for end of file
<u>eval</u>	evaluate a string as a perl expression
exec	quit Perl and execute a system command
<u>exists</u>	test that a hash key exists
exit	exit from the Perl script
<u>glob</u>	expand a directory listing using shell wildcards
<u>gmtime</u>	current time in GMT
<u>grep</u>	filter an array for entries that meet a criterion
index	find location of a substring inside a larger string
int	throw away the fractional part of a floating point number
j <u>oin</u>	join an array together into a string
<u>keys</u>	return the keys of a hash
<u>kill</u>	send a signal to one or more processes
last	exit enclosing loop
	convert string to lowercase
<u>lcfirst</u>	lowercase first character of string
length	find length of string

10/13/2014

Beginning Perl Scripting

local	temporarily replace the value of a global variable
localtime	return time in local timezone
log	natural logarithm
<u>m//</u>	pattern match operation
map	perform on operation on each member of array or list
<u>mkdir</u>	make a new directory
<u>my</u>	create a local variable
next	jump to the top of enclosing loop
open	open a file for reading or writing
opendir	open a directory for listing
pack	pack a list into a compact binary representation
package	create a new namespace for a module
pop	pop the last item off the end of an array
<u>print</u>	print to terminal or a file
<u>printf</u>	formatted print to a terminal or file
<u>push</u>	push a value onto the end of an array
q/STRING/	generalized single-quote operation
qq/STRING/	generalized double-quote operation
qx/STRING/	generalized backtick operation
<u>qw/STRING/</u>	turn a space-delimited string of words into a list
<u>rand</u>	random number generator
read	read binary data from a file
<u>readdir</u>	read the contents of a directory
<u>readline</u>	read a line from a text file
<u>readlink</u>	determine the target of a symbolic link
<u>redo</u>	restart a loop from the top
<u>ref</u>	return the type of a variable reference
<u>rename</u>	rename or move a file
<u>require</u>	load functions defined in a library file
<u>return</u>	return a value from a user-defined subroutine
reverse	reverse a string or list
<u>rewinddir</u>	rewind a directory handle to the beginning
<u>rindex</u>	find a substring in a larger string, from right to left
<u>rmdir</u>	remove a directory
<u>s///</u>	pattern substitution operation
<u>scalar</u>	force an expression to be treated as a scalar

10/

/13/2014	Beginning Perl Scripting
	make a filohandle the default for output
	shift a value off the beginning of an array
<u>sieep</u>	put the script to sleep for a while
sort	sort an array or list by user-specified criteria
<u>splice</u>	insert/delete array items
<u>split</u>	split a string into pieces according to a pattern
<u>sprintf</u>	formatted string creation
<u>sqrt</u>	square root
<u>stat</u>	get information about a file
<u>sub</u>	define a subroutine
<u>substr</u>	extract a substring from a string
<u>symlink</u>	create a symbolic link
<u>system</u>	execute an operating system command, then return to Perl
tell	return the position of a filehandle within a file
tie	associate a variable with a database
<u>time</u>	return number of seconds since January 1, 1970
tr///	replace characters in a string
truncate	truncate a file (make it smaller)
uc	uppercase a string
<u>ucfirst</u>	uppercase first character of a string
umask	change file creation mask
<u>undef</u>	undefine (remove) a variable
<u>unlink</u>	delete a file
unpack	the reverse of pack
<u>untie</u>	the reverse of tie
<u>unshift</u>	move a value onto the beginning of an array
<u>use</u>	import variables and functions from a library module
values	return the values of a hash variable
wantarray	return true in an array context
warn	print a warning to standard error
write	formatted report generation

Ok, now you know all the perl functions, so we're done. Thanks for coming.

Variables

A variable is a symbolic placeholder for a value, a lot like the variables in algebra. These values can be changed. Compare literals whose values cannot be changed. Perl has several built-in variable types:

Scalars: **\$variable_name**

A single-valued variable, always preceded by a \$ sign.

Arrays: @array_name

A multi-valued variable indexed by integer, preceded by an @ sign.

Hashes: %hash_name

A multi-valued variable indexed by string, preceded by a % sign.

Filehandle: FILEHANDLE_NAME

A file to read and/or write from. Filehandles have no special prefix, but are usually written in all uppercase.

We discuss arrays, hashes and filehandles later.

Scalar Variables

Scalar variables have names beginning with \$. The name must begin with a letter or underscore, and can contain as many letters, numbers or underscores as you like. These are all valid scalars:

- \$foo
- \$The_Big_Bad_Wolf
- \$R2D2
- \$____A23
- \$Once_Upon_a_Midnight_Dreary_While_I_Pondered_Weak_and_Weary

You assign values to a scalar variable using the = operator (not to be confused with ==, which is numeric comparison). You read from scalar variables by using them wherever a value would go.

A scalar variable can contain strings, floating point numbers, integers, and more esoteric things. You don't have to predeclare scalars. A scalar that once held a string can be reused to hold a number, and vice-versa:

Code:

```
$p = 'Potato'; # $p now holds the string "potato"
$bushels = 3; # $bushels holds the value 3
$potatoes_per_bushel = 80; # $potatoes_per_bushel contains 80;
$total_potatoes = $bushels * $potatoes_per_bushel; # 240
print "I have $total_potatoes $p\n";
```

Output:

I have 240 Potato

Scalar Variable String Interpolation

The example above shows one of the interesting features of double-quoted strings. If you place a scalar variable inside a double quoted string, it will be interpolated into the string. With a single-quoted string, no interpolation occurs.

To prevent interpolation, place a backslash in front of the variable:

```
print "I have \$total_potatoes \$p\n";
# prints: I have $total potatoes $p
```

Operations on Scalar Variables

You can use a scalar in any string or numeric expression like \$hypotenuse = sqrt(\$x**2 + \$y**2) or \$name =
\$first_name . ' ' . \$last_name. There are also numerous shortcuts that combine an operation with an
assignment:

\$a++

Increment \$a by one

\$a--

Decrement \$a by one

\$a += \$b

Modify \$a by adding \$b to it.

\$a -= \$b

Modify \$a by subtracting \$b from it.

\$a *= \$b

Modify \$a by multiplying \$b to it.

\$a /= \$b

Modify \$a by dividing it by \$b.

\$a .= \$b

Modify the **string** in \$a by appending \$b to it.

Example Code:

\$potatoes_per_bushel = 80; # \$potatoes_per_bushel contains 80;

```
$p = 'one';
$p .= ' ';  # append a space
$p .= 'potato'; # append "potato"
```

```
$bushels = 3;
$bushels *= $potatoes_per_bushel; # multiply
```

print "From \$p come \$bushels.\n";

Output:

From one potato come 240.

String Functions that Come in Handy for Dealing with Sequences

Reverse the Contents of a String

```
$name = 'My name is Lincoln';
$reversed_name = reverse $name;
print $reversed_name,"\n";
# prints "nlocniL si eman yM"
```

Translating one set of letters into another set

```
$name = 'My name is Lincoln';
# swap a->g and c->t
$name =~ tr/ac/gt/;
print $name,"\n";
file:///Users/smr/Dropbox/PFB_CourseMaterial/PFB2014/Lectures/BeginningPerlScripting.2012.html
```

prints "My ngme is Lintoln"

Can you see how a combination of these two operators might be useful for computing the reverse complement?

Processing Command Line Arguments

When a Perl script is run, its command-line arguments (if any) are stored in an automatic array called @**ARGV**. You'll learn how to manipulate this array later. For now, just know that you can call the **shift** function repeatedly from the main part of the script to retrieve the command line arguments one by one.

Printing the Command Line Argument

Code:

```
#!/usr/bin/perl
# file: echo.pl
use strict;
use warnings;
$argument = shift;
print "The first argument was $argument.\n";
```

Output:

```
(~) 50% chmod +x echo.pl
(~) 51% echo.pl tuna
The first argument was tuna.
(~) 52% echo.pl tuna fish
The first argument was tuna.
(~) 53% echo.pl 'tuna fish'
The first argument was tuna fish.
(~) 53% echo.pl
The first argument was.
```

Computing the Hypotenuse of a Right Triangle

Code:

```
#!/usr/bin/perl
# file: hypotense.pl
use strict;
use warnings;
$x = shift;
$y = shift;
$x>0 and $y>0 or die "Must provide two positive numbers";
print "Hypotenuse=",sqrt($x**2+$y**2),"\n";
Output:
   (~) 82% hypotenuse.pl
```

```
(~) 82% hypotenuse.pi
Must provide two positive numbers at hypotenuse.pl line 6.
(~) 83% hypotenuse.pl 1
Must provide two positive numbers at hypotenuse.pl line 6.
(~) 84% hypotenuse.pl 3 4
Hypotenuse=5
(~) 85% hypotenuse.pl 20 18
```

Hypotenuse=26.9072480941474
(~) 86% hypotenuse.pl -20 18
Must provide two positive numbers at hypotenuse.pl line 6.

Examples of truth

3

Control structures

Control structures allow you to control if and how a line of code is executed.

You can create alternative branches in which different sets of statements are executed depending on the circumstances.

You can create various types of repetitive loops.

if if (\$x == \$y) { print "\$x and \$y are equal\n"; } If \$x is the same as \$y, then the print statement will be executed. or said another way: If (\$x == \$y) is true, then the print statement will be executed.

if — a common mistake

I equals sign to *make* the left side equal the right side. 2 equals signs to *test* if the left side is equal to the right.

use warnings will catch this error.

else

If the if statement is false, then the first print statement will be skipped and only the second print statement will be executed.

```
if ($x == $y) {
    print "$x and $y are equal\n";
}
else {
    print "$x and $y aren't equal\n";
}
```

elsif

Sometimes you want to test a series of conditions.

```
if ($x == $y) {
    print "$x and $y are equal\n";
}
elsif ($x > $y) {
    print "$x is bigger than $y\n";
}
elsif ($x < $y) {
    print "$x is smaller than $y\n";
}</pre>
```

elsif

What if more than one condition is true?

```
if (1 == 1) {
    print "$x and $y are equal\n";
}
elsif (2 > 0) {
    print "2 is positive\n";
}
elsif (2 < 10) {
    print "2 is smaller than 10\n";
}</pre>
```

while

```
As long as (x == y) is true, the print statement will be executed over and over again.
```

```
while ($x == $y) {
    print "$x and $y are equal\n";
}
```

Why might you want to execute a block repeatedly?

Perl III

File input and output

Dave Messina

1

v5 2013

Recap of UNIX I/O STDIN - Reads in the text you type or from a file using redirection or pipes. STDOUT - Prints to your screen, but can be redirected to a file or other program in the shell using redirection or pipes. STDERR Standard error, used for diagnostic messages. Also prints to your screen, and also can be redirected in the shell.

<section-header><text><text><text><code-block><page-footer></code>

Perl I/O

The Perl way of reading from or writing to a file is the function open.

```
open(IN, '<', 'myfile.txt') or die "can't open
myfile.txt: $!\n";</pre>
```

open's first argument

open is a function, which takes 3 arguments:

First argument

The first argument is a filehandle. Filehandles are how you refer to a file within Perl.

STDOUT and STDERR are filehandles.

When you open a file yourself, you make your own filehandle and give it a name (here, I chose IN).

Filehandles

5

Reading and writing to the filesystem is very complicated, involving bits, buffers, and memory.

Perl provides a 'handle' to the file and takes care of all the complicated parts for us so we can interact with a file more simply.

Filenames, filehandles, and the data in a file are three different things.

Filename	the name of the file
Filehandle	a way to get access to a file's contents
File contents	the actual data inside the file

Catch errors with die If you're going to read from a file, that file must exist and be readable. Since it rarely makes sense to continue when it's not possible to read the file, we want the program to stop. We do this with die. open(IN, '<', 'myfile.txt')</pre> or die "can't open myfile.txt: \$!\n"; open or die is a Perlidiom. die is a function that exits the program immediately and prints the specified string to STDERR. 9 Capturing system errors with \$! Perl can also tell us what the filesystem said about why the file couldn't be opened. \$! is a special Perl variable that contains error messages from the system. If there was a problem with opening your file, there will be an error message in \$!, and we can include it in *our* error string. or die "can't open \$file: \$!\n"; contains error Let's try it. message from the filesystem

Open a file for writing

Open also can be used to open files for *writing* by using '>' as the second argument to open.

```
my $out = 'out.txt';
open(OUT, '>', $out) or die "can't open $out: $!\n";
```

Now specify that filehandle when you print

```
print OUT "I'm writing to a file!\n";
```

and the output will go into a file instead of the screen:

Opening multiple files

You can open more than one file in a script — just give them different filehandles.

```
my $in = 'in.txt';
my $out = 'out.txt';
open(IN, '<', $in ) or die "can't open $in: $!\n";
open(OUT, '>', $out) or die "can't open $out: $!\n";
```

Open files from user input

13

Instead of hardcoding filenames inside your program, you can read them in from the command line:

```
my $in = shift @ARGV;
my $out = shift @ARGV;
open(IN, '<', $in ) or die "can't open $in: $!\n";
open(OUT, '>', $out) or die "can't open $out: $!\n";
```

On the command line, you'd type this:

\$ perl test.pl myinfile.txt myoutfile.txt

Open files from user input

Command line
\$ perl test.pl myinfile.txt myoutfile.txt

Inside our Perl program

```
my $in = shift @ARGV;
my $out = shift @ARGV;
open(IN, '<', $in ) or die "can't open $in: $!\n";
open(OUT, '>', $out) or die "can't open $out: $!\n";
```

Which are the filehandles and which are the filenames?

myinfile.txt and myoutfile.txt are filenames. IN and OUT are filehandles.

\$in and \$out are variables containing the filenames.

```
<> to get contents out of a file
Perl reads files one line at a time.
To read a line from a file, you put the filehandle inside
<>, like this:
my $in = 'in.txt';
open(IN, '<', $in ) or die "can't open $in: $!\n";
print "This is the first line from the file $in:\n";
my $line = <IN>;
print $line;
```

<> to get contents out of a file

This code reads the first two lines from a file:

```
my $in = 'in.txt';
open(IN, '<', $in ) or die "can't open $in: $!\n";
print "This is the first line from the file $in:\n";
my $line = <IN>;
print $line;
print "This is the 2nd line from the file $in:\n";
$line = <IN>;
print $line;
```

<> to get contents out of a file

17

Most files have lots of lines, and we often want to read *all* the lines in a file one by one. We can do that using a while loop.

To read from a filehandle line by line, put

my \$line = <IN> into a while loop, like this:

```
my $in = shift @ARGV;
open(IN, '<', $in) or die "can't open $in: $!\n";
while (my $line = <IN>) {
    chomp $line;
    print "This line is from the file $in:\n";
    print $line\n";
}
```

Removing newlines with chomp

Chomp removes the newline from the end of a string (if there is a newline).

```
my $string = "hey there!\n";
print "my string is: ", $string, "\n";
chomp $string;
print "after chomp : ", $string, "\n";
```

When you read a line from a file, the first thing you always want to do is Chomp.

Counting lines in a file

19

Let's do something more interesting than printing the line back out. Let's count how many lines there are in the file.

```
my $line_count;
while (my $line = <IN>) {
    chomp $line;
    $line_count = $line_count + 1;
}
print "There are $line_count lines\n";
```

Why we read a file with while

Let's step back for a moment and think about why this works. What exactly is going on on this line?

while (my \$line = <IN>) {

<IN> returns a line from a file. We assign that line to a variable, \$line. while tests that assignment for truth: "Can we assign a value to \$line?"

If we've hit the end of the file, there are no more lines to read, and so the answer is "no", or FALSE. When the expression in parentheses is false, we exit the loop.

What happens if the input file contains a blank line?

Arrays and Loops

Sofia Robb

An array is a Named Ordered List.

1

- What is a list?
 - ('cat', 'dog', 'narwhal')
- Why is it named?
 - @animals = ('cat', 'dog', 'narwhal');
- Why is is ordered?
 - each element has an ordered numerical index or position

0		2
cat	dog	narwhal

Arrays are denoted with '@' symbol

Th	The elements of the array are stored in a specific order.						
	<pre>my @colors = ('red', \$favorite_color, 'cornflower blue', 5);</pre>						
	0	I	2	3			
	'red'	\$favorite_color	'cornflower blue'	5			
	\$colors[0]	\$colors[1]	\$colors[2]	\$colors[3]			
		_					
	Each element of an array can be accessed by its position, or <u>index</u> , in the array.						
	<pre>my @colors = ('red', \$favorite_color, 'cornflower blue', 5);</pre>						
	GET						
	my \$first my \$secon my \$third my \$last negative numb	= \$color; d = \$color; = \$color; = \$color; pers can be use	s[0]; s[1]; s[2]; s[-1]; 1 d to access from	n the end			

The value of each element can be reassigned with use of its index.

\$colors[0]	\$colors[1]	\$colors[2]	\$colors[3]
red	\$favorite_ color	cornflower blue	5

\$colors[0]	\$colors[1]	\$colors[2]	\$colors[3]
green	\$favorite_ color	gray	5

Assign values to indices that are far away

\$colors[0]	\$colors[1]	\$colors[2]	\$colors[3]
red	\$favorite_ color	cornflower blue	5

<pre>\$colors[0]</pre>	=	'green';
<pre>\$colors[2]</pre>	=	'gray';
<pre>\$colors[8]</pre>	=	'black';

\$colors[0]	\$colors[1]	\$colors[2]	\$colors[3]	\$colors[4]	\$colors[5]	\$colors[6]	\$colors[7]	\$colors	;[8]
green	\$favorite_ color	gray	5	undefined	undefined	undefined	undefined	black	<
						@colors e 4 of the ur	now contai lements. e elements a ndefined.	ns 9 are	
				0					

GET/SET: Mirror Images

```
#GET:
$first = $colors[0];
$second = $colors[1];
#SET:
$colors[0] = 'green';
```

\$colors[2] = 'gray';

A common <u>MISTAKE</u> is to try to access an element in array context (meaning using the '@').

```
my @colors = ('red', $favorite_color, 'cornflower blue', 5);
This is wrong:
my $first = @colors[0];
This is correct:
my $first = $colors[0];
```

Length of an array

scalar(@array)

The scalar() function can be used to return the scalar attribute of an array. It scalar attribute is the length, or in other words, the number of elements in the array.

my @colors = ('red', \$favorite color, 'cornflower blue', 5);

my \$length = scalar @colors;
print "len of array: \$length\n";

Output:

len of array: 4

A common <u>MISTAKE</u> is to use the length() function to get the number of elements in an array

11

my @colors = ('red', \$favorite_color, 'cornflower blue', 5);

WRONG:

my \$length = <u>length</u> @colors; print "len of array: \$length\n";

Output:

len of array: 1

CORRECT:

my \$length = scalar @colors;
print "len of array: \$length\n";

Output:

len of array: 4

Quick print of an array

When an array is printed with use of double quotes ("@array"), a single white space is automatically inserted between each element. This allows for a quick way to visualize the contents of your array.

```
my @colors = ('red', $favorite_color, 'cornflower blue', 5);
```

```
print "@colors";
```

Output

red purple cornflower blue 5

Notice that the print out of the array looks like it has 5 elements while our array actually has 4 elements. Printing within quotes may not always be helpful in cases when a white space is included within a single element, such as 'cornflower blue'.

13

Array to a String

my \$new_string = join(string , @array);

join() can be used to combine all the individual elements of list or array into a string on a set of characters. A string is returned.

```
my @colors = ('red', $favorite color, 'cornflower blue', 5);
```

```
my $new_string = join ('--' , @colors);
print "$new_string\n";
```

Output

red--purple--cornflower blue--5

'--' is used here to clearly differentiate the elements of @colors. A tab ("\t") is a common character to use with the join() fuction.

splice(...)

everything above and more!

String to an Array

my @array = split(/pattern/ , string);

The split() function can be used to create an array from a string by providing a delimiter of any set of characters or any pattern. split() is similar to Excel's "Text to columns" feature that allows you to indicate which characters separate each field, such as tabs (\t) and commas (,). Just like in Excel, the split() function will remove the delimiter and it will not be present in the returned data.

```
my $string = "I do not like green eggs and ham";
#'/ /' sets the delimiter to a single white space
my @words = split(/ /,$string);
```

```
print join('--',@words),"\n";
I--do--not--like--green--eggs--and--ham
```

Notice that there are no white spaces in the printed array. The delimiter was removed.

25

Using qw() to create a list of words

my @array = ('one', 'two', 'three', 'four');

It is a lot of work to type all the quotes and commas. Use qw() instead:

my $@array = \underline{qw}$ (one two three four);

qw() will produce a list of quoted words: ('one', 'two', 'three', 'four') that can now be saved as an array

Quick Review: The comparison operator and strings

my \$x = 'sid'; my \$y = 'nancy'; my \$result = \$x cmp \$y;

\$result is:

- I if the left side is less than the right side
- 0 if the left side equals the right side
- + I if the left side is greater than the right side

29

Quick Review: The comparison operator and numbers

\$result is:

- I if the left side is less than the right side
- 0 if the left side equals the right side
- + I if the left side is greater than the right side

The comparison operator

use <u>cmp</u> to compare two strings

```
my $x = 'sid';
my $y = 'nancy';
my $result = $x cmp $y;
```

use <=> to compare two numbers

```
my $x = 2;
my $y = 3.14;
my $result = $x <=> $y;
```

Modify sort behavior for Numeric Sorting

The default sort can be modified by specifying the sort behavior in {} using Perl reserved variables \$a and \$b.

31

my @numbers = (15,2,10,20,11,1);

```
## default sorting is ascii
my @sorted_numbers = sort @numbers;
print "@sorted numbers\n";
```

Output 1 10 11 15 2 20

```
## modify to sort numerically
@sorted_numbers = sort {$a <=> $b}@numbers;
print "@sorted_numbers\n";
```

Output 1 2 10 11 15 20

Sorting and map{}

```
my @words = qw(I do not like green eggs and ham);
my @ABC words = map { uc }@words;
print join('--',@ABC words),"\n";
I--DO--NOT--LIKE--GREEN--EGGS--AND--HAM
my @sorted words = sort (@ABC words);
print join('--',@sorted words),"\n";
AND--DO--EGGS--GREEN--HAM--I--LIKE--NOT
                                33
          More sort() customization with uc()
   Before $a and $b are compared they are uppercased. This only changes the temporary copy of
   the array elements stored in $a and $b during the sort. The actual array elements are not being
            changed. It is a sorted list of the original list that is being returned
my @sorted = sort { uc($a) cmp uc($b) } @array;
 my @words = qw(I do not like green eggs and ham);
 my @sorted words = sort {uc($a) cmp uc($b)}(@words);
 print join('--',@sorted words),"\n";
 Output
 and--do--eggs--green--ham--I--like--not
                                              The returned list is in the same
                                              format as the original list. The
```

uc() used on \$a and \$b did not change the @array

Swapping the values of 2 elements

```
my @words = qw(I do not like green eggs and ham);
print "Before Swap : w5=$words[5] w7=$words[7]\n";
my $val_1 = $words[5];
my $val_2 = $words[7];
$words[5] = $val_2;
$words[7] = $val_1;
print "After Swap : w5=$words[5] w7=$words[7]\n";
print join('--',@words),"\n";
```

Output

```
Before Swap : w5=eggs w7=ham
After Swap : w5=ham w7=eggs
I--do--not--like--green--ham--and--eggs
```

What is wrong with this?

```
$words[5] = $words[7];
$words[7] = $words[5];
print join('--',@words),"\n";
```

I--do--not--like--green--ham--and--ham

37

Swapping values

```
my @words = qw(I do not like green eggs and ham);
print "Before Swap : w5=$words[5] w7=$words[7]\n";";
```

```
($words[5],$words[7]) = ($words[7],$words[5]);
```

```
print "After Swap : w5=$words[5] w7=$words[7]\n";
print join('--',@words),"\n";
```

Output

```
Before Swap:
w5:eggs w7:ham
after swap:
w5:ham w7:eggs
I--do--not--like--green--ham--and--eggs
```

Loops

- foreach() : perfect for arrays
- for() : good for arrays and much more
- while() : perfect for many things other than arrays as well as lines of files

39

foreach loop

The foreach loop is especially equipped to iterate through each element of a list. It retrieves the value of each element of the list, one at at time, in the order of indices, and stores it in a variable for use within the foreach code block.

\$array[0]	\$array[1]	\$array[2]	\$array[3]	\$array[4]	\$array[5]
15	2	10	20	11	I

```
my \ @array = (15, 2, 10, 20, 11, 1);
```

```
foreach my $one_element(@array){
    ##do something to each $one_element
```

}

foreach loop

The foreach loop is especially equipped to iterate through each element of a list. It retrieves the value of each element of the list, one at at time, in the order of indices, and stores it in a variable for use within the foreach code block.

\$array[0]	\$array[1]	\$array[2]	\$array[3]	\$array[4]	\$array[5]
15	2	10	20	11	I

```
my @array = (15,2,10,20,11,1);
foreach my $one_element(@array){
```

```
##do something to each $one_element
```

```
print "Number: $one_element\n";
```

Output

}

Number: 15 Number: 2 Number: 10 Number: 20 Number: 11 Number: 1 A foreach loops **know** everything about your array.

foreach() code block

41

All the lines within the foreach code block will be executed on each array element, one at at time.

```
my @words = qw(I do not like green eggs and ham);
```

```
foreach my $word (@words) {
  my $uc_word = uc($word);
  my $len = length($word);
  print "word: $uc_word($len)\n";
}
```

Output

word: I(1)
word: DO(2)
word: NOT(3)
word: LIKE(4)
word: GREEN(5)
word: EGGS(4)
word: AND(3)
word: HAM(3)

start at \$index=0;
I.The value of the index \$index is retrieved from @words and a copy is stored in \$word.
2. \$word is uppercased and the result is stored in \$uc_word.
3.The length of \$word is calculated and stored in \$len.
4. \$uc_word and \$length are printed.
5. Increment to the next index (\$index++).
6.Go to Step 1, repeat until the foreach code block is executed on all elements


```
my @array = (15,2,10,20,11,1);
for (my $i=0; $i<scalar @array ; $i++){
   my $value = $array[$i]
   print "value of $i is $value\n";
}</pre>
```

Output

value of 0 is 15 value of 1 is 2 value of 2 is 10 value of 3 is 20 value of 4 is 11 value of 5 is 1 Loops are similar to the steps in a thermocycler program

```
start at $i=0;
```

 I. if \$i is less than the length of the @array (scalar @array) then the code in the for block will be executed.
 2. \$value is set to contain the contents of

2. \$value is set to contain the contents of \$array[\$i].

3. \$value is printed

4. \$i is auto incremented. (\$i=\$i+1);

5. Go to Step **1**, repeat as long as the test (\$i<scalar @array) remains true.

Thermocycler Program and loops

Standard PCR program my (\$temp, \$time); my $\$ = 30; 1.94 °C 3 min : Initial Denature 2.94 °C 30 sec : Denature (\$temp,\$time) = (94,"3min"); 3.57 °C 30 sec : Annealing doDenature(\$temp,\$time); 4.72 °C I min :Extension 5. Go to step 2, for additional 29 times for (my \$i=0 ; \$i<\$cycles ; \$i++) {</pre> 6.72 °C 5 min 7.4 °C for ever (\$temp,\$time) = (94, "30sec"); doDenature(\$temp,\$time); (\$temp,\$time) = (57, "30sec"); doAnnealing(\$temp,\$time); (\$temp,\$time) = (72, "1min"); doExtension(\$temp,\$time); } (\$temp,\$time) = (72, "5min"); doAnnealing(\$temp,\$time); while (1) { (\$temp,\$time) = (4, "forever"); doChilling(\$temp,\$time); } 45

while loop

while loops continue to execute the while code block until the while conditional statement is true.

while (condition) {
 code;
}

A while loop **does not know** anything about your array.

while loops and <FILEHANDLES> while loops are great for getting lines from a file one by one and executing code on each line. It will continue until the condition is false. open (IN, ">", "file.txt") or die "Can't open file.txt \$!"; while (my \$line = <IN>) { chomp \$line; print "\$line\n"; } Loops are similar to the steps in a Output thermocycler program file line 1 start at line 1; file line 2 |. <> is an operator that returns the contents file line 3 of one line from a file. If the end of the file is reached, nothing is returned, and nothing is false. 2. if the contents of \$line is true the code block is executed. 3. \$line is chomped, then printed. 4. Go to Step **1**. 47

while loop

while loops can also be used for counting.

```
my $i = 0;
while ($i<5) {
    print "\$i is $i\n";
    $i++;
}
```

This instance of the while loop functions like a for loop.

 A counter is initialized
 there is a test that incorporates the counter
 the counter is changed in each iteration of the loop.

Output

\$i	is:	0
\$i	is:	1
\$i	is:	2
\$i	is:	3
\$i	is:	4

for and while loop can do the same thing for and while loops can be used to do the same things, the format is just different. Neither way is better, just different for(;;){} \$i<5 print ''\$i\n''; \$i++ \$i for (my \$i=0; \$i<5; \$i++) { print "\$i\n"; 0 0 yes } yes 2 2 2 3 yes while(){} 3 3 4 yes 4 4 5 my \$i = 0;yes while (\$i<5) { 5 no print "\$i\n"; \$i++; } 49 Different loops can do the same things foreach and for loops with arrays for and while loops with counters my @array = (15, 2, 10, 20, 11, 1);for (my \$i=0; \$i<5; \$i++) { print "\$i\n";</pre> foreach my \$ele(@array) { print "\$ele\n"; } } my \$i = 0; for (my \$i=0; \$i<scalar @array ; \$i++) {</pre> while (\$i<5){ my \$ele = \$array[\$i]

}

print "\$ele\n";

}

Loop Control: next() execution of next() will cause the loop to jump to the next iteration. Any code, in the loop block, that falls after the next will be skipped. The next iteration of the loop will commence. All code after the loop block will also be executed. my @words = qw(I do not like green eggs and ham); foreach my \$word (sort {uc(\$a) cmp uc(\$b)}@words) { if (\$word eq 'and'){ next; } print "\$word\n"; } Every element but 'and' is printed. Output do eggs green ham Т like not 51 Loop Control: last

execution of last() will cause the loop to exit the loop. Any code, in the loop block, that falls after the last will be skipped. No further iterations will be attempted. All code that falls after the loop block will also be executed.

```
my @words = qw(I do not like green eggs and ham);
foreach my $word (@words) {
    if ($word eq 'and') {
       last;
                                             Every word before 'and' in
    print "$word\n";
                                              @words is printed. When
}
                                              the element is equal to
Ι
                                              'and' the current iteration
do
                                               ends, the loop block is
not
                                             exited and no other words
like
                                                    are printed
green
eggs
```



```
53
```

Example usage of a foreach loop

```
my @seqs = qw(TTT CGG ATG TAA CCC ACC TGA);
my $count = 0;
foreach my $seq (@seqs){
    if ($seq eq 'TAA' or $seq eq 'TGA' or $seq eq 'TAG'){
        print "*\n";
    }else {
        $count++;
    }
}
print "$count non-stop codons\n";
```

Output

* 5 non-stop codons

<pre>@ARGV is a special Perl array that automatically contains the list of arguments that follow the script</pre>		@4	٩RGV			
<pre>./sample_usr_input.pl 5 five \$ARGV[0] \$ARGV[1] 5 five print "\@ARGV: @ARGV\n"; print "\\$ARGV[0]: \$ARGV[0]\n"; print "\\$ARGV[1]: \$ARGV[1]\n"; my \$arg1 = shift @ARGV; my \$arg2 = shift @ARGV; my \$arg2 = shift @ARGV; print "arg1: \$arg1\n"; print "arg2: \$arg2\n"; </pre> <pre> @ARGV: 5 five \$ARGV[0]: 5 \$ARGV[0]: 5 \$ARGV[1]: five arg1: 5 arg2: five </pre>	@ARGV is a special	Perl array that automatically name on the	contains [.] comman	the list of argume d line.	ents that follow	the script
\$ARGV[0]\$ARGV[1]5fiveprint "\@ARGV: @ARGV\n";print "\\$ARGV[0]: \$ARGV[0]\n";print "\\$ARGV[1]: \$ARGV[1]\n";my \$arg1 = shift @ARGV;my \$arg2 = shift @ARGV;print "arg1: \$arg1\n";print "arg2: \$arg2\n";@ARGV: 5 fivearg1: 5arg2: five		./sample_usr_in	put.pl	L 5 five		
5fiveprint "\@ARGV: @ARGV\n";print "\\$ARGV[0]: \$ARGV[0]\n";print "\\$ARGV[1]: \$ARGV[1]\n";my \$arg1 = shift @ARGV;my \$arg2 = shift @ARGV;print "arg1: \$arg1\n";print "arg2: \$arg2\n";@ARGV: 5 five\$ARGV[0]: 5\$ARGV[1]: fivearg1: 5arg2: five		\$ARGV[0]	\$/	ARGV[1]]	
<pre>print "\@ARGV: @ARGV\n"; print "\\$ARGV[0]: \$ARGV[0]\n"; print "\\$ARGV[1]: \$ARGV[1]\n"; my \$arg1 = shift @ARGV; my \$arg2 = shift @ARGV; print "arg1: \$arg1\n"; print "arg2: \$arg2\n";</pre>		5		five		
<pre>my sarg2 = shift @ARGV; print "arg1: \$arg1\n"; print "arg2: \$arg2\n";</pre>	pri pri my	<pre>.nt "\\$ARGV[0]: \$AR .nt "\\$ARGV[1]: \$AR \$arg1 = shift @ARG</pre>	.GV[0]\r .GV[1]\r	1"; 1";		
<pre>print "arg1: \$arg1\n"; print "arg2: \$arg2\n"; \$ARGV[0]: 5 \$ARGV[1]: five arg1: 5 arg2: five</pre>	my Şarg2 = shift @ARGV;		·	Output		
arg1: 5 arg2: five	print "arg1: \$arg1\n"; print "arg2: \$arg2\n";		; ;	\$ARGV[0]: 5 \$ARGV[1]: 1	5 five	
				arg1: 5 arg2: five		

Hashes

Sofia Robb


```
My %genetic_code = (
    "ATG" => "Met",
    "AAA" => "Lys",
    "CCA" => "Pro",
    );

    my $aa = $genetic_code{"ATG"};
    print "ATG translates to $aa\n";
    ATG translates to Met

Each value of the hash is a scalar therefore we use
the '$' when we refer to an individual value.
Hash keys are surrounded by squiggly brackets {}
```

keys() returns an unordered list of the keys of a hash

```
@array_of_keys = keys (%hash);
my %genetic_code = (
  "ATG" => "Met",
  "AAA" => "Lys",
  "CCA" => "Pro",
);
my @codons = keys (%genetic_code);
print join("--",@codons), "\n";
CCA--AAA--ATG
```

Iterating through a hash by looping through an list of hash keys.

```
my %genetic_code = (
   "ATG" => "Met",
   "AAA" => "Lys",
   "CCA" => "Pro",
   );

foreach my $codon (keys %genetic_code) {
   my $aa = $genetic_code{$codon};
   print "$codon translates to $aa\n";
}
CCA translates to Pro
AAA translates to Lys
ATG translates to Met
```

```
Sorting and iterating through the keys of a hash
my %genetic code = (
                                   Remember: hash keys are
 "ATG" => "Met",
                                 unordered so we use sort to be
 "AAA" => "Lys",
                                 sure that the order is always the
 "CCA" => "Pro",
                                         same.
);
foreach my $codon (sort keys %genetic code) {
   my $aa = $genetic code{$codon};
   print "$codon translates to $aa\n";
}
AAA translates to Lys
ATG translates to Met
CCA translates to Pro
```



```
values() returns an unordered list of values
@array_of_values = values(%hash);
my %genetic_code = (
    "ATG" => "Met",
    "AAA" => "Lys",
    "CCA" => "Pro",
);
my @amino_acids = values(%genetic_code);
print join("--",@amino_acids), "\n";
Pro--Lys--Met
```

```
Adding additional key/value pairs

my %genetic_code = (
  "ATG" => "Met",
  "AAA" => "Lys",
  "CCA" => "Pro",
);

$genetic_code{"TGT"} = "Cys";
foreach my $codon (keys %genetic_code){
  print "$codon -- $genetic_code{$codon}\n";
}
CCA -- Pro
AAA -- Lys
ATG -- Met
TGT -- Cys
```

Deleting key/value pairs

```
my %genetic_code = (
  "ATG" => "Met",
  "AAA" => "Lys",
  "CCA" => "Pro",
);

delete $genetic_code{"AAA"};

foreach my $codon (keys %genetic_code){
  print "$codon -- $genetic_code{$codon}\n";
}
CCA -- Pro
ATG -- Met
```

Use exists() to test if a key exists. my %genetic code = (key exists? return value "ATG" => "Met", "AAA" => "Lys", "CCA" => "Pro", 1 yes); `' empty string no is false my \$codon = "ATG"; if (exists \$genetic code{\$codon}) { print "\$codon -- \$genetic code{\$codon}\n"; }else{ print "key: \$codon does not exist\n"; } ATG -- Met ##when \$codon= "TTT", code prints "key: TTT does not exist"

Auto increment hash values

```
Auto increment scalars:
my $num = 1;
print $num , "\n"; #prints 1
$num++; #same as $num=$num +1;
print $num , "\n"; #prints 2
```

```
Auto increment hash values:
my %hash;
$hash{books} = 0;
print $hash{books}, "\n"; #prints 0
$hash{books}++; #same as $hash{books} = $hash{books} + 1
print $hash{books} , "\n"; #prints 1
```


Using hashes for keeping count

```
my $seq = "ATGGGCGTATGCAATT";
my @nucs = split "", $seq;
print "@nucs\n";
#A T G G G C G T A T G C A A T T
my %nt count;
foreach my $nt (@nucs) {
        $nt count{$nt}++;
}
foreach my $nt (keys %nt count) {
        my $count = $nt count{$nt};
        print "$nt\t$count\n";
}
       4
Α
Т
       5
       2
С
        5
G
```

Creating a hash from variable input like data from a file my \$file = shift; open (my \$in_file, '<', \$file) or die "can't open file \$file \$!\n"; my %hash; while (my \$line = <\$in_file>) { chomp \$line; my (\$key, \$value) = split /\t/, \$line; \$hash{\$key} = \$value; } foreach my \$key (sort keys %hash) { my \$value = \$hash{\$key}; print "key:\$key value:\$value\n"; }

Regular Expressions

Sofia Robb

What is a regular expression?

A regular expression is a string template against which you can match a piece of text.

They are something like shell wildcard expressions, but **much** more powerful.

Examples of Regular Expressions

This bit of code loops through @ARGV files or STDIN. Finds all lines containing an EcoRI site, and bumps up a counter:

```
my $sites = 0;
while (my $line = <>) {
   chomp $line;
   if ($line =~ /GAATTC/) {
      print "Found an EcoRI site!\n";
      $sites++;
   }
}
print "$sites EcoRI sites total.\n"
```

Examples of Regular Expressions This does the same thing, but counts one type of methylation site (Pu-C-X-G) instead: my \$sites = 0; while (my \$line = <>) { chomp \$line; if (\$line =~ /[GA]C.?G/) { print "Found a methylation site!\n"; \$sites++; } print "\$sites methylation sites total.\n"

Specifying the String to Search

To specify which string variable to search, use the $=\sim$ operator:

```
my $h = "Who's afraid of Virginia Woolf?";
print "I'm afraid!\n" if $h =~ /Woo?lf/;
```

Regular Expression Atoms

A regular expression is normally delimited by two slashes ("/"). Everything between the slashes is a pattern to match. A pattern is composed of one or more atoms:

```
1.Ordinary characters:
  a-z, A-Z, 0-9 and some punctuation.
  These match themselves.
2.The "." character:
   matches everything except the newline.
3.A bracket list of characters
   [AaGgCcTtNn], [A-F0-9], or [^A-Z]
   (the last means anything BUT A-Z).
4.Predefined character sets:
 \d The digits [0-9]
 \w A word character [A-Za-z 0-9]
 \s White space [ \t n r]
 \D A non-digit
 \W A non-word
 \S Non-whitespace
5.Anchors:
 ^ Matches the beginning of the string
 $ Matches the end of the string
 \b Matches a word boundary (between a \w and a \W)
```

Regular Expression Atoms

Examples

- /g..t/ matches "gaat", "goat", and "gotta get a goat" (twice)
- /g[gatc][gatc]t/ matches "gaat", "gttt", "gatt", and "gotta get an agatt" (once)
- /\d\d\d-\d\d\d\d\ matches 376-8380, and 5128-8181, but not 055-98-2818.
- /^\d\d\d-\d\d\d\d matches 376-8380 and 376-83801, but not 5128-8181.
- /^\d\d\d-\d\d\d\d\$/ only matches telephone numbers.
- /\bcat/ matches "cat", "catsup" and "more catsup please" but not "scat".
- /\bcat\b/ only text containing the word "cat".

Alternatives and Grouping

A set of alternative patterns can be specified with the | symbol:

```
/wolf|sheep/;
# matches "wolf" or "sheep"
/big bad (wolf|sheep)/;
# matches "big bad wolf"
# or "big bad sheep"
```

Parenthesis and Quantifies

You can combine parenthesis and quantifiers to quantify entire subpatterns:

```
/Who's afraid of the big (bad )?wolf\?/;
```

matches "Who's afraid of the big bad wolf?"
and "Who's afraid of the big wolf?"

This also shows how to literally match the special characters -- put a backslash (\) in front of them.

What about finding strings that don't contain the pattern?

use !~ instead of =~

This is equivalent to "not match" operator !~, which reverses the sense of the match:

\$h = "Who's afraid of Virginia Woolf?";
print "I'm not afraid!\n" if \$h !~ /Woo?lf/;

Matching with a Variable Pattern

You can use a scalar variable for all or part of a regular expression.

```
$pattern = '/usr/local';
if ($file =~ /^$pattern/){
    print "matches";
}
```

See the o flag for important information about using variables inside patterns.

Subpatterns

You can extract and manipulate subpatterns in regular expressions.

To designate a subpattern, surround its part of the pattern with parenthesis (same as with the grouping operator). This example has just one subpattern, (.+):

/Who's afraid of the big bad w(.+)f/

Using Subpatterns inside the Match

Once a subpattern matches, you can refer to it later within the same regular expression.

The first subpattern becomes 1, the second 2, the third 3, and so on.

Using Subpatterns Inside the Match

```
while (my $line = <>) {
   chomp $line;
   if ($line =~ /Who's afraid of the big bad w(.)\lf/){
      print "I'm scared!\n"
   }
}
```

This loop will print "I'm scared!" for the following matching lines:

• Who's afraid of the big bad woof

• Who's afraid of the big bad weef

• Who's afraid of the big bad waaf but not

• Who's afraid of the big bad wolf

• Who's afraid of the big bad wife

Using Subpatterns Inside the Match

```
/\b(\w+)s love \1 food\b/
```

will match "dogs love dog food", but not "dogs love monkey food".

```
Using Subpatterns Outside the Match
Outside the regular expression match statement, the matched subpatterns (if any) can be
found the variables $1, $2, $3, and so forth.
Example Extract 50 base pairs upstream and 25 base pairs downstream of the TATTAT
consensus transcription start site:
while (my $line = <>) {
    chomp $line;
    next unless $line =~ /(.{50})TATTAT(.{25})/;
    my $upstream = $1;
    my $downstream = $2;
}
```

Extracting and Saving Subpatterns Using Arrays

If you assign a regular expression match to an **array**, it will return a list of all the subpatterns that matched. Alternative implementation of previous example:

```
while (my $line = <>) {
    chomp $line;
    my ($upstream,$downstream) = $line =~ /(.{50})TATTAT(.{25})/;
}
```

If the regular expression doesn't match at all, then it returns an empty list. Since an empty list is FALSE, you can use it in a logical test:

```
while (my $line = <>) {
    chomp $line;
    next unless my ($upstream,$downstream) = $line =~ /(.{50})TATTAT(.{25})/;
    print "upstream = $upstream\n";
    print "downstream = $downstream\n";
}
```

Grouping without Making Subpatterns

Because parentheses are used both for grouping (a|ab|c) and for matching subpatterns, you may match subpatterns that don't want to. To avoid this, group with (?:pattern):

/big bad (?:wolf|sheep)/;

matches "big bad wolf" or "big bad sheep", # but doesn't extract a subpattern.

Subpatterns and Greediness

By default, regular expressions are "greedy". They try to match as much as they can. For example:

\$h = 'The fox ate my box of doughnuts'; \$h =~ /(f.+x)/; \$subpattern = \$1;

Because of the greediness of the match, **\$subpattern** will contain "fox ate my box" rather than just "fox".

To match the minimum number of times, put a ? after the qualifier, like this:

```
$h = 'The fox ate my box of doughnuts';
$h =~ /(f.+?x)/;
$subpattern = $1;
```

Now **\$subpattern** will contain "fox". This is called *lazy* matching. Lazy matching works with any quantifier, such as +?, *?, ?? and {2,50}?.

```
String Substitution
The s/// Function
String substitution allows you to replace a pattern or character range with another one using the
s/// and tr/// functions.
s/// has two parts: the regular expression and the string to replace it with: s/expression/replacement/.
$h = "Who's afraid of the big bad wolf?";
$i = "He had a wife.";
$h =~ s/w.+f/goat/;
# yields "Who's afraid of the big bad goat?"
$i =~ s/w.+f/goat/;
# yields "He had a goate."
```

Extract pattern matches and use them in the replacement part of the substitution:

```
$h = "Who's afraid of the big bad wolf?";
$h =~ s/(\w+) (\w+) wolf/$2 $1 wolf/;
# yields "Who's afraid of the bad big wolf?"
```

Using a Variable in the Substitution Part

```
$h = "Who's afraid of the big bad wolf?";
$animal = 'hyena';
$h =~ s/(\w+) (\w+) wolf/$2 $1 $animal/;
# yields "Who's afraid of the bad big hyena?"
```


This example counts N's in a series of DNA sequences: tr/// returns the number of characters transformed, which is sometimes handy for counting the number of a particular character without actually changing the string. Code: while (my $\ \ = \ <>$) { chomp \$line; # assume one sequence per line my \$count = \$line =~ tr/Nn/Nn/; print "Sequence \$line contains \$count Ns\n"; } Output: Input: (~) 50% count_Ns.pl AGCTGGGAAAGT sequence list.txt AGCNGNNAAAGT Sequence I contains 0 Ns TAGCNGTTAAAT Sequence 2 contains 3 Ns GAATCAGCTGGG Sequence 3 contains I Ns . . . Sequence 4 contains 0 Ns

••••

Case insensitive Matches

```
my $string = 'Big Bad WOLF!';
if ($string =~ /wolf/i) {
    print "There's a wolf in the closet!";
}
```

Global Matches

Adding the g modifier to the pattern causes the match to be global. Called in a scalar context (such as an if or while statement), it will match as many times as it can.

This will match all codons in a DNA sequence, printing them out on separate lines:

Code:

```
my $sequence = 'GTTGCCTGAAATGGCGGAACCTTGAA';
while ( $sequence =~ /(.{3})/g ) {
    print $1,"\n";
}
```

Output:

GTT GCC TGA	The pos() function retrieves the position where the next attempt begins
AAT	<pre>\$position_of_next_attempt = pos(\$sequence)</pre>
GGC	
GGA	
ACC	
TTG	

If you perform a global match in a **list** context (e.g. assign its result to an array), then you get a list of all the subpatterns that matched from left to right.

This code fragment gets arrays of codons in three reading frames:

```
@frame1 = $sequence =~ /(.{3})/g;
@frame2 = substr($sequence,1) =~ /(.{3})/g;
@frame3 = substr($sequence,2) =~ /(.{3})/g;
```

Additional regular expression modifiers

0

Only compile variable patterns once.

m

Treat string as multiple lines. ^ and \$ will match at start and end of internal lines, as well as at beginning and end of whole string. Use A and Z to match beginning and end of whole string when this is turned on.

S

Treat string as a single line. "." will match any character at all, including newline.

Х

Allow extra whitespace and comments in pattern.

Subroutines

1

v5 2014 Dave Messina

```
#!/usr/bin/perl
use strict;
use warnings;
my $seq1 = "ac ggTtAa";
my $seq2 = "tTcC aaA tgg";
# clean up $seq1
# 1) make it all lower case
$seq1 = lc $seq1;
# 2) remove white space
seq1 = s/s/g;
# clean up $seq2
# 1) make it all lower case
seq2 = lc seq2;
# 2) remove white space
seq2 = s/s/g;
# print cleaned up sequences
print "seq1: $seq1\n";
print "seq2: $seq2\n";
```

Problems With This Code

- The same cleanup statements are run for \$seq1 and \$seq2.
- Duplication of code (BAD!).
- Subroutines to the rescue.

Subroutines

3

- Blocks of code that you can call in different places.
- Code resides in one place.
 - Only need to write the code once.
 - Easier to maintain.
- Take arguments and return results.
- Make code easier to read.
- Like a mini-program within your program.

Creating a Subroutine 3. Add statements to read the subroutine argument(s) and return the subroutine result(s). 7 sub cleanup sequence { # get the sequence argument to the # subroutine - note that just like shift gets # an argument for your program, shift gets an # argument to your subroutine my \$seq = shift; # clean up \$seq # 1) make it all lower case \$seq = lc \$seq; # 2) remove white space \$seq =~ s/\s//g; # return cleaned up sequence return \$seq; }

Passing Arguments to a Subroutine

Arguments are passed in @ a special array created by Perl.

• Analogous to @ARGV for program arguments.

Can use shift to take one argument at a time.

```
# take the first argument
my $arg1 = shift;
# take the second argument
my $arg2 = shift;
```

Passing Arguments to a Subroutine

9

Can copy the contents of $@_$ into a list of named variables.

my (\$arg1, \$arg2) = @_;
Returning Subroutine Results Use return operator to return results. Usually return at the end of the subroutine but can use it to exit the subroutine earlier. Return a single value. return \$single value; #scalar Return a list. return (\$variable, "string", 3); #list return @array of values; #array 11 **Returning Subroutine Results** Return an empty list or undef depending on context.

return; #empty list or undef


```
#!/usr/bin/perl
use strict;
use warnings;
my $seq1 = "ac ggTtAa";
my $seq2 = "tTcC aaA tgg";
# call cleanup sequence for each sequence
$seq1 = cleanup sequence($seq1);
$seq2 = cleanup sequence($seq2);
# print cleaned up sequences
print "seq1: $seq1\n";
print "seq2: $seq2\n";
sub cleanup sequence {
   # get the sequence argument
   my $seq = shift;
   # cleanup $seq
   # 1) make it all lower case
   $seq = lc $seq;
   # 2) remove white space
   $seq =~ s/\s//g;
   # return cleaned up sequence
   return $seq;
}
```

15

Scope

```
#!/usr/bin/perl
                                Global symbol "$z" requires explicit
                                package name at ./scope.pl line 19.
use strict;
use warnings;
                                Execution of ./scope.pl aborted due
                               to compilation errors.
my \ \$x = 100;
my \$y = 20;
if (x > y) {
    my $z = 10;
    x = 30;
    print "x (inside if block): $x\n";
    print "y (inside if block): $y\n";
    print "z (inside if block): $z\n";
}
print "x (outside if block): $x\n";
print "y (outside if block): $y\n";
print "z (outside if block): $z\n";
```

```
Blocks
```

17

That's because z was declared inside the if block, so it's only accessible inside that block.

Any time we see { }, we're creating a block.

Blocks are like boxes that have one way mirrors – you can see outside the box from inside, but not inside the box from the outside.

To fix that error, we need to declare z outside the if block.

Scope

Does the program give the expected behavior?

By declaring "my z = 10;" inside the if block, we're creating a new variable called z only accessible within the block.

This new variable will not modify the outside variable!

Note that we can create a new z variable inside the block with no problems – if we do it outside, we'll get a warning.


```
#!/usr/bin/perl
                                   Output:
use strict;
                                   $x (inside if block): 30
use warnings;
                                    $y (inside if block): 20
                                   $z (inside if block): 10
my $x = 100;
                                   $x (outside if block): 30
my \$y = 20;
                                   $y (outside if block): 20
my $z = 5;
                                    $z (outside if block): 10
if (\$x > \$y) {
    \$_z = 10;
    x = 30;
    print "x (inside if block): $x\n";
    print "y (inside if block): $y\n";
    print "z (inside if block): $z\n";
}
print "x (outside if block): x\n";
print "y (outside if block): $y\n";
print "z (outside if block): $z\n";
```

```
23
```

Using Modules

Dave Messina

v5	20	14

.

http://perldoc.perl.org/perlmodlib.html

\$ perldoc perllocal

Which modules are installed on your machine?

Setting up your Perl environment
Download this .bashrc file
<pre>\$ cd ~ \$ wget http://bit.ly/sample_bashrc_pfb2014 \$ cat sample_bashrc >> .bashrc \$ source .bashrc</pre>
<pre># Perl setup export PERL_LOCAL_LIB_ROOT="\$HOME/perl5"; export PERL_MB_OPT="install_base \$HOME/perl5";</pre>
export PERL_MM_OPT="INSTALL_BASE=\$HOME/perl5"; export PERL5LIB="\$HOME/perl5/lib/perl5/x86_64-linux-gnu-thread-multi:\$HOME/perl5/ lib/perl5:\$PERL5LIB";
۲ Installing modules manually
<pre>\$ wget http://search.cpan.org/CPAN/authors/id/G/GL/GLASSCOCK/FASTAid-v0.0.4.tar.gz \$ tar zxvf FASTAid-v0.0.4.tar.gz</pre>
<pre>\$ cd FASTAid-v0.0.4 \$ perl Makefile.PL Checking if your kit is complete Looks good Writing Makefile for FASTAid \$ make</pre>
<pre>cp lib/FASTAid.pm blib/lib/FASTAid.pm Manifying blib/man3/FASTAid.3pm \$ make test ERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e" "test_harness(0, </pre>
'DIID/IID', 'DIID/arch')" t/*.t t/FASTAid.t ok All tests successful. Files=1, Tests=11, 0 wallclock secs (0.02 usr 0.01 sys + 0.03 cusr 0.01 csys = 0.07 CPU) Result: PASS
<pre>\$ make install cp lib/FASTAid.pm blib/lib/FASTAid.pm Manifying blib/man3/FASTAid.3pm Installing /home/pfbhome/dave/per15/lib/per15/FASTAid.pm Installing /home/pfbhome/dave/per15/man/man3/FASTAid.3pm</pre>

Installing Modules Using the CPAN Shell

% cpan

cpan shell -- CPAN exploration and modules installation (v1.59_54) ReadLine support enabled

cpan>

From this shell, there are commands for searching for modules, downloading them, and installing them.

The first time you run the CPAN shell, you need to set one thing.

cpan> o conf prefs_dir /home/your_username/
cpan> o conf commit

cpan will also ask you a lot of configuration questions. Generally, you can just hit return to accept the defaults.

To search for a module:

```
cpan> i /Wrap/
Going to read '/Users/dave/.cpan/Metadata'
Database was generated on Thu, 18 Oct 2012 12:07:03 GMT
...
Module < Text::Wrap (MUIR/modules/Text-Tabs+Wrap-2013.0523.tar.gz)
...
41 items found
cpan> install Text::Wrap
Running install for module Text::Wrap
...
```

Where are modules installed?

9

Module files end with the extension .pm. If the module name is a simple one, like **Env**, then Perl will look for a file named **Env.pm**. If the module name is separated by :: sections, Perl will treat the :: characters like directories. So it will look for the module **File::Basename** in the file **File/Basename.pm**

Perl searches for module files in a set of directories specified by the Perl library path. This is set when Perl is first installed. You can find out what directories Perl will search for modules in by issuing **perl -V** from the command line:

```
% perl -V
Summary of my perl5 (revision 5.0 version 6 subversion 1) configuration:
Platform:
    osname=linux, osvers=2.4.2-2smp, archname=i686-linux
...
Compiled at Oct 11 2001 11:08:37
@INC:
    /usr/lib/perl5/5.6.1/i686-linux
    /usr/lib/perl5/5.6.1
```

You can modify this path to search in other locations by placing the use lib command somewhere at the top of your script:

#!/usr/bin/perl

```
use lib '/home/lstein/lib';
use MyModule;
```

This tells Perl to look in /home/lstein/lib for the module MyModule before it looks in the usual places. Now you can install module files in this directory and Perl will find them.

Sometimes you really need to know where on your system a module is installed. Peridoc to the rescue again -- use the -1 command-line option:

```
% peridoc -1 File::Basename
/System/Library/Peri/5.8.8/File/Basename.pm
```

Making modules

Dave Messina

v4 2013

What is a module?

11

A module is an *container* which holds a collection of related code.

It allows you to use the code over and over again without copying and pasting.

Module using Exporter

```
package MySequence;
# file: MySequence.pm
use strict;
use base 'Exporter';
our @EXPORT = qw(reverseq);
our @EXPORT OK = qw(seqlen);
sub reverseq {
   my $sequence = shift @ ;
   $sequence = reverse $sequence;
   $sequence =~ tr/gatcGATC/ctagCTAG/;
   return $sequence;
}
sub seqlen {
   my $sequence = shift @_;
   $sequence =~ s/[^gatcnGATCN]//g;
   return length $sequence;
}
1;
```

*

Script when MySequence exports reverseq

15

```
#!/usr/bin/perl
# file: sequence.pl
use strict;
use warnings;
use MySequence;
my $sequence ='gattccggatttccaaagggttcccaatttggg';
my $complement = reverseq($sequence);
print "original = $sequence\n";
print "complement = $complement\n";
Now that MySequence exports reverseq automatically, you can use the
reverseq subroutine without the MySequence:: prefix.
reverseq is now is the same namespace as the main script, just as if it were
```

defined in the same file.

```
<text><code-block><text><text><text><text></code>
```

If I make a module, where should I put it?

Once you've made your own module, you will want to put it somewhere Perl knows to look.

\$ printenv PERL5LIB

```
Getopt::Long - Extended processing of command line options
    Command line operated programs traditionally take their arguments from the command line,
    for example filenames.
    These programs often take named command line arguments, so that the order in which you
    write arguments doesn't matter and so that it's clear which argument does what.
      $ grep -i 'AGCG' > capture.txt
      $ make fake fasta.pl --length 100
    By convention, single-letter arguments are prefixed with one dash -, and full-word arguments
    are prefixed with two dashes (--).
                                                19
                  Script using Getopt::long
#!/usr/bin/env perl
use strict;
use warnings;
use Getopt::Long;
my length = 30;
my $number = 10;
my $help;
GetOptions('1|length:i' => \$length,
          '1|lengen.l
'n|number:i' => \$number,
'h|help' => \$help);
my $usage = "make_fake_fasta.pl - generate random DNA seqs
Options:
-n <number>
            the number of sequences to make (default: 10)
-l <length> the length of each sequence (default: 30)
";
die $usage if $help;
my enucs = qw(A C T G);
for (my $i = 1; $i <= $number; $i++) {</pre>
    my $seq;
    for (my $j = 1; $j <= $length; $j++) {</pre>
    my $index = int(rand (4));
    my $nuc = $nucs[$index];
    $seq .= $nuc;
    }
    print ">fake$i\n";
    print $seq, "\n";
}
                                                                                                 *
```


	What good are reference	s?
Some than	etimes you need a more complex dat just an array or just a hash.	ta structure
Wha piece	t if you want to keep together severa es of information?	l related
Gene	Sequence	Organism
HOXB2	ATCAGCAATATACAATTATAAAGGCCTAAATTTAAAA	mouse
HDACI	GAGCGGAGCCGCGGGCGGGAGGGCGGACGGAC	human

References?!?!? Multi-dimensional data structures?!?!?

References are only addresses.

<u>Multi-dimensional data structures</u> are just hashes and arrays inside of hashes and arrays.

Friday, October 18, 13

Creating a Reference to a Hash

```
my %HDAC;

$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQG...";

$HDAC{function} = "Histone Deacetylase";

$HDAC{symbol} = "HDAC";

my $address = \%HDAC;

print "$address\n";

$address is now a

reference to the

hash.

Output:

%% ./references.pl

HASH(0x10081e538)
```

Friday, October 18, 13

Storing an array reference in an array

```
my @y = (1, 'a', 23); ##regular array
my $y_array_address = \@y; ##create a reference
print 'address of @y : ' ,"$y array address\n";
my @codons = ('ATG' , 'GCG' , 'CAG'); #regular array
my $codons_array_address = \@codons; #create a reference
print 'address of @codons : ', "$codons array address\n";
##store ref in regular array
push (@y , $codons_array_address);
## yeilds same as above
# push (@y, \@codons);
\# $y[3] = \@codons;
print 'contents of @y : ', "@y\n";
print 'address of @y : ', \@y, "\n";
address of @y : ARRAY(0x7fb78402c348)
address of @codons : ARRAY(0x7fb78402c3c0)
contents of @y : 1 a 23 ARRAY(0x7fb78402c3c0)
address of @y
                : ARRAY(0x7fb78402c348)
```

Friday, October 18, 13

Altering the Original Array affects the reference

3 Easy Steps to Dereference Dereference === retrieve data from address			
I. Get the address, or reference:	\$ADDRESS		
2. Wrap the address, or reference in {}:	{\$ADDRESS}		
3. Put the symbol of the data type out front @:	@{\$ADDRESS}		
Friday, October 18, 13	25		

```
Dereference a reference to an array
my @codons =('ATG', 'GCG', 'CAG');
my $codons_address = \@codons;
print "address of the array:\n$codons_address\n\n";
print "array from a dereferenced reference:\n @{$codons_address}\n";
```

array from a dereferenced reference: ATG GCG CAG

Dereferencing to access a piece of the anonymous array that is a hash value.
<pre>\$HDAC{codons} = ["ATG" , "GCG"] ; #my @codons = @{ <u>\$HDAC{codons}</u> };</pre>
<pre>my \$zeroth_element = \${ <u>\$HDAC{codons}</u> }[0]; evaluates to an address</pre>
<pre>print "the 0th element = \$zeroth_element\n";</pre>
Output:
the Oth element = ATG
Regular array
my \$value = \$array[1]
Friday, October 18, 13

Dereferencing to access a piece of the anonymous array that is a hash value.

```
HDAC\{codons\} = ["ATG", "GCG"];
my $zeroth element = ${ <u>$HDAC{codons}</u> }[0];
                         evaluates to an address
print "the Oth element = $zeroth_element\n";
$last element = pop @ { $HDAC{codons} };
print "the last element = $last element\n";
## pop actually changes the array
Output:
the Oth element
                         = ATG
                                                  Regular array
the last element = GCG
                                           $array[1] = "value";
                                           my $value = $array[1];
                                           my $last = pop @array;
```

Dereferencing to access a single key/value pair from the anonymous hash in a hash

Friday, October 18, 13

Dereferencing to access every key/value pair from the anonymous hash in a hash

Friday, October 18, 13

Friday, October 18, 13

The ref() function

```
ref(REF) returns the data type in which the reference points
```

```
my %hash;
$hash{codons}= ['ATG', 'TTT'];
my $address = $hash{codons};
ref ( $address );  ## returns ARRAY
ref ( $hash{codons} );  ## returns ARRAY
both $address and $hash{codons} evaluate to the address of the array
```

Friday, October 18, 13

Extra fun stuff to look over later.

- Array of arrays
- Another Scripting Example:
 - Creating a Hash of Hashes

```
Scripting Example: Creating a Hash of Hashes
We are presented with a table of sequences in the following format:
the ID of the sequence, followed by a tab, followed by the sequence
itself.
2L52.1 atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattggaagtaag...
4R79.2 tcaaatacagcaccagctcottttttatagttcgaattaatgtccaact...
AC3.1 atggctcaaactttactatcacgtcatttccgtggtgtcaactgttattt...
...
For each sequence calculate the length of the sequence and the count
for each nucleotide. Store the results into hash of hashes in which the
outer hash's key is the ID of the sequence, and the inner hashes' keys
are the names and counts of each nucleotide.
```

```
#!/usr/bin/perl -w
use strict;
# tabulate nucleotide counts, store into %sequences
my $infile = shift @ARGV;
open IN , '<' , $infile or die "Can't open $infile $!\n";
my %seqs;
while (my $line = <IN>) {
 chomp $line;
 my ($id,$sequence) = split "\t",$line;
 my @nucleotides = split '', $sequence; # array of nts
 foreach my $n (@nucleotides) {
     $seqs{$id}{$n}++; # count nts and keep tally
 }
}
# print table of results
print join("\t",'id','a','c','g','t'),"\n";
foreach my $id (sort keys %seqs) {
   print join("\t",$id,
                   $seqs{$id}{a},
                   $seqs{$id}{c},
                   $seqs{$id}{g},
                   $seqs{$id}{t},
              ),"\n";
}
```

Friday, October 18, 13

Object Oriented Programming and Perl

Prog for Biol 2011 Simon Prochnik

Friday, October 18, 13

Friday, October 18, 13

Friday, October 18, 13

Friday, October 18, 13

Friday, October 18, 13

Let's recap subroutines: new example with references

```
#!/usr/bin/perl
use strict;
use warnings;
my microarray = \{ gene => CDC2, \}
                     expression \Rightarrow 45,
                     tissue => 'liver',
                  };
my $gene_name = gene($microarray);
. . .
sub gene {
  my ($ref) = @_;
  return ${$ref}{gene};
}
sub tissue {
  my ($ref) = @_;
  return ${$ref}{tissue};
}
```

Friday, October 18, 13

Friday, October 18, 13

Friday, October 18, 13

Friday, October 18, 13

Friday, October 18, 13

final step		
object-oriented module or class	<pre>#File: Microarray.pm package Microarray; use strict; sub new { my \$class = shift; my %args = @_; my \$self = {}; foreach my \$key (keys %args) { \${\$self}{\$key} = \$args{\$key}; } # the magic happens here bless \$self, \$class;</pre>	
	<pre>return \$self; }</pre>	
	<pre>sub gene { my \$self = shift; return \${\$self}{gene}; } sub tissue {</pre>	
	<pre>my \$self = shift; return \${\$self}{tissue}; } 1;</pre>	

Friday, October 18, 13

Problems

I.Take a look at the Statistics::Descriptive module on cpan here http://search.cpan.org/ ~shlomif/Statistics-Descriptive-3.0202/lib/Statistics/Descriptive.pm

2.Write a script that uses the methods in Statistics::Descriptive to calculate the standard deviation, median, min and max of the following numbers

12,-13,-12,7,11,-4,-12,9,6,7,-9

Optional questions

4.Add a method to Microarray.pm called expression() which returns the expression value

5. Curently calling a = m-gene() gets the value of gene in the object m. Modify the gene() method so that if you call gene() with an argument, it will set the value of gene to be that argument e.g.

\$m->gene('FOXP1'); # this should set the #gene name to 'FOXP1' print \$m->gene(); # this should print the value 'FOXP1'

Friday, October 18, 13

Bioperl

Sofia Robb

What is Bioperl?

Collection of tools to help you get your work done

Open source, contributed by users

Used by GMOD, wormbase, flybase, me, you

http://www.bioperl.org

Why use BioPerl?

Code is already written. Manipulate sequences. Run programs (e.g., blast, clustalw and phylip). Parsing program output (e.g., blast and alignments). And much, much more. (http://www.bioperl.org/wiki/Bptutorial.pl)

Learning about bioperl

Manipulation of sequences from a file

Query a local fasta file

Creating a sequence record

File format conversions

Retrieving annotations

Parsing Blast output

Manipulating Multiple Alignments

Other Cool Things

Learning about Bioperl:

Navigating Bioperl website Deobfuscator Bioperl docs

www.bioperl.org Main Page

6	HOWTOs		
Ð	HOWTOs are narrative-based descriptions of BioPerl modules focusing more on a concept or a task than one specific module.		
X	BioPerl HOWTOs		
Derl	Beginners HOWTO		
s	An introduction to BioPerl, including reading and writing sequence files, running and parsing BLAST, retrievin from databases, and more.		
Page	SeqIO HOWTO		
tarted	Sequence file I/O, with many script examples.		
	SearchIO HOWTO		
ges	Parsing reports from sequence comparison programs like BLAST and writing custom reports.		
e	Using search reports parsed by SearchIO to obtain robust overall alignment statistics		
	Feature-Annotation HOWTO		
t	Reading and writing detailed data associated with sequences.		
	SimpleWebAnalysis HOWTO		
	Submitting sequence data to Web forms and retrieving results.		
,	Flat Databases HOWTO		
torial	Indexing local sequence files for fast retrieval.		
	PAML HOWTO		
	Using the PAML package using BioPen.		
	OBDA Access HOW TO		
1			
L	howto discussion view source history		
E	howto discussion view source history		
E	howto discussion view source history HOWTO:Beginners		
Ę	howto discussion view source history HOWTO:Beginners		
E	howto discussion view source history HOWTO:Beginners Contents [hide]		
E COPE	howto discussion view source history HOWTO:Beginners		
E to Pece	howto discussion view source history HOWTO:Beginners		
ks in Page ing Started	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract		
oPee s Page ng Started ploads	howto discussion view source history HOWTO:Beginners		
ioPee mks in Page tting Started wnloads tallation	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl		
in Page tting Started wnloads tallation cent change	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance		
hin Page ting Started wnloads tallation cent change ndom page	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself		
BioPee links ain Page etting Started ownloads stallation ecent change andom page	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself 8 Writing a script in Unix		
binks links lain Page tetting Started lownloads installation lecent change tandom page mentation huick Start	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself 8 Writing a script in Unix 9 Creating a sequence, and an Object		
BioPee Dinks Main Page Covenloads Installation Recent change Random page Imentation Cuick Start	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself 8 Writing a script in Unix 9 Creating a sequence, and an Object 10 Writing a sequence to a file		
BioPee n links Main Page Getting Started Downloads Installation Recent change Random page umentation Quick Start FAQ HOWTOS	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself 8 Writing a script in Unix 9 Creating a sequence, and an Object 10 Writing a sequence from a file 11 Retrieving a sequence from a file 12 Destination a sequence from a file		
BioPee in links Main Page Getting Started Downloads Installation Recent change Random page cumentation Quick Start FAQ HOWTOS API Docs	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself 8 Writing a script in Unix 9 Creating a sequence, and an Object 10 Writing a sequence to a file 11 Retrieving a sequence from a database 13 Retrieving a sequence from a database 13 Retrieving a sequence from a database		
BioPee m links Main Page Getting Started Downloads Installation Recent change Random page sumentation Quick Start FAQ HOWTOS API Docs Scrapbook	howto discussion view source history HOWTO:Beginners Image: Second Structure Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself 8 Writing a script in Unix 9 Creating a sequence, and an Object 10 Writing a sequence from a file 12 Retrieving a sequence from a database 13 Retrieving multiple sequences from a database 14 The Sequence Object		
BioPer BioPec ain links Main Page Getting Started Downloads Installation Recent change Random page Documentation Quick Start FAQ HOWTOS API Docs Scrapbook BioPerl Tutorial	howto discussion view source history HOWTO:Beginners HOWTO:Beginners Image: Second Structure I		
BioPee ain links Main Page Getting Started Downloads Installation Recent changee Random page cumentation Quick Start FAQ HOWTOS API Docs Scrapbook BioPerl Tutorial Tutorials	howto discussion view source history HOWTO:Beginners Image: Second Structure Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself 8 Writing a script in Unix 9 Creating a sequence, and an Object 10 Writing a sequence from a file 11 Retrieving a sequence from a database 13 Retrieving a sequences from a database 14 The Sequence Objects 15 Example Sequence Objects 16 BLAST		
BioPee n links Main Page Getting Started Downloads Installation Recent change Random page umentation Quick Start FAQ HOWTOS API Docs Scrapbook BioPerl Tutorial Tutorials Deobfuscator	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself 8 Writing a script in Unix 9 Creating a sequence, and an Object 10 Writing a sequence from a file 12 Retrieving a sequence from a database 13 Retrieving multiple sequences from a database 14 The Sequence Object 15 Example Sequence Objects 16 BLAST 17 Indexing for Fast Retrieval		
BioPee ain links Main Page Getting Started Downloads Installation Recent change Random page cumentation Quick Start FAQ HOWTOS API Docs Scrapbook BioPerl Tutorials Deobfuscator Browse Module	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself 8 Writing a script in Unix 9 Creating a sequence, and an Object 10 Writing a sequence from a file 12 Retrieving a sequence from a database 13 Retrieving multiple sequences from a database 14 The Sequence Object 15 Example Sequence Objects 16 BLAST 17 Indexing for Fast Retrieval 18 More on Bioperl		
BioPee ain links Main Page Getting Started Downloads Installation Recent change Random page Coumentation Quick Start FAQ HOWTOS Scrapbook BioPerl Tutorial Deobfuscator Browse Module Sommunity	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright Abstract 1 Authors 2 Copyright Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself Writing a script in Unix 9 Creating a sequence, and an Object 10 Writing a sequence from a file 12 Retrieving a sequence from a database 13 Retrieving multiple sequences from a database 13 Retrieving multiple sequence objects 16 BLAST 17 Indexing for Fast Retrieval 18 More on Bioperl 19 Perl's Documentation System		
BioPee ain links Main Page Getting Started Downloads Installation Recent change Random page Downloads Installation Recent change Random page Downloads Random page Cournentation Quick Start FAQ HOWTOS API Docs Scrapbook BioPerl Tutorials Deobfuscator Browse Module Downloads	howto discussion view source history HOWTO:Beginners Contents [hide] 1 Authors 2 Copyright 3 Abstract 4 Introduction 5 Installing Bioperl 6 Getting Assistance 7 Perl Itself 8 Writing a script in Unix 9 Creating a sequence, and an Object 10 Writing a sequence, and an Object 10 Writing a sequence from a file 11 Retrieving a sequence from a database 13 Retrieving multiple sequences from a database 13 Retrieving multiple sequences from a database 14 The Sequence Object 15 Example Sequence Objects 16 BLAST 17 Indexing for Fast Retrieval 18 More on Bioperl 19 Perl's Documentation System 20 The Basics of Perl Objects		

OR select a class from the list:

Bio::SearchIO::blast	Event generator for event based parsing of blast reports	
Bio::SearchIO::blast_pull	A parser for BLAST output	
Bio::SearchIO::blasttable	Driver module for SearchIO for parsing NCBI -m 8/9 format	
Bio::SearchIO::blastxml	A SearchIO implementation of NCBI Blast XML parsing.	
Bio::SearchIO::megablast	a driver module for Bio::SearchIO to parse megablast reports (format 0)	
Bio::Tools::Run::RemoteBlast	Object for remote execution of the NCBI Blast via HTTP	
Bio::Tools::Run::StandAloneBlast	Object for the local execution of the NCBI BLAST program suite (blastall, blastpgp, bl2seq). There is experimental support for WU-Blast and NCBI rpsblast.	
Bio::Tools::Run::StandAloneNCBIBlast	Object for the local execution of the NCBI BLAST program suite (blastall, blastpgp, bl2seq). With experimental support for NCBI rpsblast.	

Deobfuscator

Bio::SearchIO::XML::BlastHandler	AME Handler for NCBI Blast AME parsing.	
Bio::SearchIO::XML::PsiBlastHandler	XML Handler for NCBI Blast PSIBLAST XML parsing.	*

sort by method 🗘

methods for Bio::Tools::Run::StandAloneBlast			
executable	Bio::Tools::Run::StandAloneBlast	string representing the full path to the exe	my \$exe = \$blastfactory->executable('blasta
finally	Bio::Root::Root	not documented	not documented
io	Bio::Tools::Run::WrapperBase	Bio::Root::IO object	\$obj->io(\$newval)
new	Bio::Tools::Run::StandAloneBlast	Bio::Tools::Run::StandAloneNCBIBlast or StandAloneWUBlast	my \$obj = Bio::Tools::Run::StandAloneBlast
no param checks	Bio::Tools::Run::WrapperBase	value of no_param_checks	<pre>\$obj->no_param_checks(\$newva</pre>
otherwise	Bio::Root::Root	not documented	not documented
outfile_name	Bio::Tools::Run::WrapperBase	string	my \$outfile = \$wrapper->outfile_
program	Bio::Tools::Run::StandAloneBlast	not documented	not documented

doc.bioperl.org

BioPer	1
eleased Cod	9
ficial documentation	for released code is available here:
BioPerl 1.6.0, dow	nload the entire doc set here.
BioPerl 1.5.2, dow	nload the entire doc set here.
BioPerl 1.5.1, dow	nload the entire doc set here.
BioPerl 1.4, downl	bad the entire doc set here.
BioPerl 1.2.3, dow	nload the entire doc set here.
BioPerl 1.2.2, dow	nload the entire doc set here.
BioPerl 1.2, downl	pad the entire doc set here.
BioPerl 1.0.2, dow	nload the entire doc set here.
BioPerl 1.0.1, dow	nload the entire doc set here.
BioPerl 1.0, downl	bad the entire doc set here.
ctive Code	
his documentation re	presents the active development code and is autogenerated daily from the SVN repository:
Module	Description
bioperl-live	BioPerl Core Code
bioperl-corba-serv	er BioPerl BioCORBA Server Toolkit (wraps bioperl objects as BioCORBA objects and runs them in an ORBit ORB)
bioperl-corba-clier	nt Bioperi BioCORBA Client Toolkit (wraps BioCORBA objects as bioperi objects)

All Modules TOC All

Bio SeqIO

bioperl-live		Summary libraries Package Synopsis Description General Methods		
bioperI-live::Bio		libraries variables * * documentation		
bioperl-live::Bio::Align				
bioperl-live::Bio::AlignIO	Ă	Toolbar		
bioperl-	۲	WebCvs		
PhyloNetwork	ô.	Summary		
PrimarySeq		Bio::SeqIO - Handler for SeqIO Formats		
PrimarySeqI				
PullParserI		Package variables		
Range		Privates (from "my" definitions)		
RangeI		%valid_alphabet_cache;		
SearchDist		sentry = 0		
SearchIO		Included modules		
Seq		Included modules		
SegAnalysisParserI		Bio::Factory::FTLocationFactory		
SeqFeatureI		Bio::Seq::SeqBuilder		
Sogi		Bio::Tools::GuessSeqFormat		
Sequ		Symbol		
SeqIO				
SeqUtils	U	Inherit		
SimpleAlign		Bio::Factory::SequenceStreamI Bio::Root::IO Bio::Root::Root		
SimpleAnalysisI	4			
		Synoneie		

Bio::SeqIO module synopsis doc.bioperl.org

Synopsis

```
use Bio::SeqIO;
  $in = Bio::SeqIO->new(-file => "inputfilename" ,
                         -format => 'Fasta');
  $out = Bio::SeqIO->new(-file => ">outputfilename" ,
                         -format => 'EMBL');
 while ( my $seq = $in->next_seq() ) {
          $out->write_seq($seq);
  }
# Now, to actually get at the sequence object, use the standard Bio::Seq
# methods (look at Bio::Seq if you don't know what they are)
  use Bio::SeqIO;
  $in = Bio::SeqIO->new(-file => "inputfilename" ,
                         -format => 'genbank');
 while ( my $seq = $in->next_seq() ) {
     print "Sequence ", $seq->id,
                                   first 10 bases ",
           $seq->subseq(1,10), "\n";
  3
# The SeqIO system does have a filehandle binding. Most people find this
```

Bio::SeqIO module description doc.bioperl.org

Description

Bio::SeqIO is a handler module for the formats in the SeqIO set (eg, Bio::SeqIO::fasta). It is the officially sanctioned way of getting at the format objects, which most people should use. The **Bio::SeqIO** system can be thought of like biological file handles. They are attached to filehandles with smart formatting rules (eg, genbank format, or EMBL format, or binary trace file format) and can either read or write sequence objects (Bio::Seq objects, or more correctly, Bio::SeqI implementing objects, of which Bio::Seq is one such object). If you want to know what to do with a Bio::Seq object, read **Bio::Seq**. The idea is that you request a stream object for a particular format. All the stream objects have a notion of an internal file that is read

from or written to. A particular SeqIO object instance is configured for either input or output. A specific example of a stream object is the Bio::SeqIO::fasta object. Each stream object has functions

\$stream->next_seq();

and

\$stream->write_seq(\$seq);

Bio::SeqIO method list doc.bioperl.org

Methods		
new	Description	Code
newFh	Description	Code
fh	Description	Code
_initialize	No description	Code
next_seq	Description	Code
write_seq	Description	Code
alphabet	Description	Code
_load_format_module	Description	Code
_concatenate_lines	Description	Code
_filehandle	Description	Code
_guess_format	Description	Code
DESTROY	No description	Code
TIEHANDLE	Description	Code
READLINE	No description	Code

Bio::SeqIO new method description doc.bioperl.org

Methods description

new	code		next	Тор
Title : Usage :	new \$stream = Bio:: \$	eqIO->new(-file => ? -format =:	<pre>\$filename, > 'Format')</pre>	
Function: Returns : Args :	Returns a new se A Bio::SeqIO str Named parameters -file => \$file -fh => filehar -format => for	quence stream eam initialised with : mame dle to attach to mat	n the appropriate format	
	Additional argum builders involve these must be pr -seqfactory -locfactory -objbuilder	ents may be used to d in the sequence of ovided, they all hav the Bio::Factory::Se the Bio::Factory::Le the Bio::Factory::O	set factories and oject creation. None of we reasonable defaults. equenceFactoryI object ocationFactoryI object ojectBuilderI object	
See Bio::SeqIO)::Handler			

Manipulation of sequences from a file

Problem:

You have a sequence file and you want to do something to each sequence.

What do you do first? HowTo: http://www.bioperl.org/wiki/HOWTOs


```
seq
                                                 methods:
                                                new()
translate()
length()
                                                     Bio::Seq Object
                  data:
                                   next seq()
                methods:
                  new()
               next seq()
                           Bio::SeqIO Object
#!/usr/bin/perl -w
#file: inFasta loop.pl
use strict;
use Bio::SeqIO;
# get fasta filename from user input
my $file = shift;
# create a SeqIO obj with $file as filename
# $seqIO object contains all the individual sequence
#
         that are in the file named $file
my $seqIO object = Bio::SeqIO->new(
                          -file => $file,
                          -format => `fasta',
                     );
# using while loop and next seq method to "get to"
#
    and create a Seq obj for each individual sequence
    in the SeqIO obj of many sequences
#
while (my $seq object = $seqIO object->next seq) {
         #do stuff to each sequence in the fasta
}
```

 Get a file name from user nput (@ARGV) and stores in file 	#!/usr/bin/perl -w use strict; use Bio::SeqIO;
2. Create a new seqIO object n \$seqIO_object, using ilename \$file and format fasta'	<pre>my \$file = shift; my \$seqIO_object = Bio::SeqIO->new(</pre>
3. Create a second seqIO object in \$out using format fasta'	<pre>my \$out_seqIO_Obj = Bio::SeqIO->new(-format => 'fasta'); while (my \$seq_object = \$seqIO_object->next_seq){ my \$id = \$seq_object->id; </pre>
I. Loop thru each seq object n \$seqIO_object storing nformation from the object in variables.	<pre>my \$desc = \$seq_object->desc; my \$seqString = \$seq_object->seq; my \$revComp = \$seq_object->revcom; my \$alphabet = \$seq_object-> alphabet; my \$translation_seq_obj = \$seq_object-> translate; my \$translation = \$translation seq_obj -> seq;</pre>
5. Print out the stored nformation	my \$seqLen = \$seq_object->length;
3. Print out \$seq_object using he method or tool 'write_ eq()' and the seqIO object Sout.	print "alphapet: \$alphabet\n"; print "seqLen: \$seqLen\n"; #prints to STDOUT
	<pre>\$out_seqIO_Obj->write_seq(\$seq_object); }</pre>

tasta input:

>seqName	seq description is blah blah blah
AGGCTCAA	TTTAGTTTTCCTTGTCCTTATTTTAAAAGGTGTCCAGTG
TGATGTGC	AGCTGGTGGAGTCTGGGGGGGGGGGCTTAGTGCAGCCTGGAG
GGTCCCGG	AAACTCTCCTGTGCAGCCTCTGGATTCACTTTCAGTAGC
TTTGGAAT	GCACTGGGTTCGTCAGGCTCCAGAGAAGGGGGCTGGAGTG
GGTCGCAT	ACATTAGTAGTGGCAGTAGTACCCTCCACTATGCAGACA
CAGTGAAG	GGCCGATTCACCATCTCAAGAGACAATCCCAAGAACACC
CTGTTCCT	GCAAATGACCAGTCTAAGGTCTGAGGACACGGCCATGTA
TTACTGTG	<u>ΑΛΑGΑΤΑGGGTΑΛCΤΑCCCTΤΑCTΑTGCTΑTGGACTACT</u>
GGGGTCAA	translation: RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFTFSSF
	GMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSLRSEDTAM
	YYCARWGNYPYYAMDYWGQGTSVTVSS
- 1 - 1	alphapet: dna
output:	seqLen: 408
	>seqName seq description is blah blah blah
	AGGCTCAATTTAGTTTTCCTTGTCCTTATTTTAAAAGGTGTCCAGTGTGATGTGCAGCTG
	GTGGAGTCTGGGGGGGGGCTTAGTGCAGCCTGGAGGGTCCCGGAAACTCTCCTGTGCAGCC
	TCTGGATTCACTTTCAGTAGCTTTGGAATGCACTGGGTTCGTCAGGCTCCAGAGAAGGGG
	CTGGAGTGGGTCGCATACATTAGTAGTGGCAGTAGTACCCTCCACTATGCAGACACAGTG
	AAGGGCCGATTCACCATCTCAAGAGACAATCCCAAGAACACCCTGTTCCTGCAAATGACC
	AGTCTAAGGTCTGAGGACACGGCCATGTATTACTGTGCAAGATGGGGTAACTACCCTTAC
	TATGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA

Table from http://www.bioperl.org/wiki/HOWTO:Beginners

List of seq object methods

Table 1: Sequence Object Methods			
Name	Returns	Example	Note
new	Sequence object	\$so = Bio::Seq->new(-seq => "MPQRAS")	create a new one, see Bio::Seq for more
seq	sequence string	\$seq = \$so->seq	get or set the sequence
display_id	identifier	\$so->display_id("NP_123456")	get or set an identifier
primary_id	identifier	\$so->primary_id(12345)	get or set an identifier
desc	description	\$so->desc("Example 1")	get or set a description
accession	identifier	\$acc = \$so->accession	get or set an identifier
length	length, a number	\$len = \$so->length	get the length
alphabet	alphabet	\$so->alphabet('dna')	get or set the alphabet ('dna','rna','protein')
subseq	sequence string	<pre>\$string = \$seq_obj->subseq(10,40)</pre>	Arguments are start and end
trunc	Sequence object	\$so2 = \$so1->trunc(10,40)	Arguments are start and end
revcom	Sequence object	\$so2 = \$so1->revcom	Reverse complement
translate	protein Sequence object	<pre>\$prot_obj = \$dna_obj->translate</pre>	See the Bioperl Tutorial 🗗 for more
species	Species object	<pre>\$species_obj = \$so->species</pre>	See Bio::Species for more
	; 	; ;	<i>;</i>

Query a local fasta file

Query a local fasta file

You have a fasta file that contains many records.

You want to retrieve a specific record.

You do not want to loop through all records until you find the correct record.

Use Bio::DB::Fasta.

1					
41					
E					
X	Deobfuscator				
~ 1					
BioPerl	Contents [hide]				
ain links	1 What is the Deobfuscator?				
Getting Started	3 Have a suggestion?				
Downloads	4 Feature requests				
Installation	5 Bugs				
Random page	What is the Deobfuscator?				
ocumentation	The Dephfuscator was written to make it easier to determine the methods that are available from a given BioPerl				
Quick Start	module (a common BioPerl FAQ).				
FAQ	BioPerl is a highly object-oriented 🗗 software package, with often multiple levels of inheritance. Although each				
HOWTOS	individual module is usually well-documented for the methods specific to it, identifying the inherited methods is less				
Scrapbook	straightforward.				
BioPerl Tutorial	Class::Inspector (2), and then presents all of the methods available to each module through a searchable web				
Tutorials Deobfuscator	interface.				
Browse Modules	Where can I find the Deobfuscator?				
ommunity					
News	The Deobfuscator is currently available here A, in lexing <i>bioperl-live</i> .				
Mailing lists					
BioPert Media					
Welcome	to the BioPerl Deobfuscator [bioperl-live]				
Search class n fasta	ss from the list:				
Bio::AlignIO::fasta	fasta MSA Sequence input/output stream				
Bio::AlignIO::largen	nultifasta Largemultifasta MSA Sequence input/output stream				
Bio::AlignIO::metafasta MSA Sequence input/output stream					
Bio::DB::Fasta Fast indexed access to a directory of fasta files					
Bio::DB::Flat::BDB::fasta adaptor for Open-bio standard BDB-indexed flat file					
Bio::Index::Fasta	Interface for indexing (multiple) fasta files				
Bio::Search::HSP::F	FastaHSP HSP object for FASTA specific data				
Bio::Search::Hit::Fa	Hit object specific for Fasta-generated hits				
Bio::SearchIO::fasta	A SearchIO parser for FASTA results				
Bio::Seq::SeqFastas	SpeedFactory Instantiates a new Bio: PrimarySeoI (or derived class) through a factory				
	Instantiates a new pion minaryseq. (or derived class) anough a decory				

	.
Bio::AlignIO::metafasta	Metafasta MSA Sequence input/output stream
Bio::DB::Fasta	Fast indexed access to a directory of fasta files
Bio::DB::Flat::BDB::fasta	fasta adaptor for Open-bio standard BDB-indexed flat file
Bio::Index::Fasta	Interface for indexing (multiple) fasta files
Bio::Search::HSP::FastaHSP	HSP object for FASTA specific data
Bio::Search::Hit::Fasta	Hit object specific for Fasta-generated hits
Bio::SearchIO::fasta	A SearchIO parser for FASTA results
Bio::Seq::SeqFastaSpeedFactory	Instantiates a new Bio::PrimarySeqI (or derived class) through a factory

sort by method 🗘

methods for Bio::DB::Fasta						
Method	Class	Returns	Usage			
alphabet	Bio::DB::Fasta	not documented	not documented			
<u>basename</u>	Bio::DB::Fasta	not documented	not documented			
calculate_offsets	Bio::DB::Fasta	not documented	not documented			
<u>caloffset</u>	Bio::DB::Fasta	not documented	not documented			
carp	Bio::Root::RootI	not documented	not documented			
CLEAR	Bio::DB::Fasta	not documented	not documented			
<u>confess</u>	Bio::Root::RootI	not documented	not documented			
dbmargs	Bio::DB::Fasta	not documented	not documented			
debua	Bio::Root::Root	none	<pre>\$obi->debua("This is debuaaina output"):</pre>			

Other packages	in the module: <u>Bio::DB:</u>	:Fasta Bio::PrimarySeq:	:Fasta	
Summary	Included libraries	Package variables	Synopsis	Description
Toolbar				
WebCvs				
Summary				
Bio::DB::Fasta	a Fast indexed access t	o a directory of fasta file	s	
Package varia	bles			
No package va	riables defined.			
Included modu	ules			
AnyDBM_File	•			
F chu File::Basenam	e gw (basename dirnar	ne)		
IO::File				
Inherit				
Bio::DB::SeqI	Bio::Root::Root			
Synopsis				
use Bio:	:DB::Fasta;			
# create my \$db	database from di = Bio::DB::Fa	rectory of fasta sta->new('/path/	files to/fasta/	files');

doc.bioperl.org

Synopsis

```
use Bio::DB::Fasta;
# create database from directory of fasta files
my $db
           = Bio::DB::Fasta->new('/path/to/fasta/files');
# simple access (for those without Bioperl)
my $seq = $db->seq('CHROMOSOME_I',4_000_000 => 4_100_000);
my $revseq = $db->seq('CHROMOSOME_I',4_100_000 => 4_000_000);
my @ids
            = $db->ids;
my $length = $db->length('CHROMOSOME I');
my $alphabet = $db->alphabet('CHROMOSOME_I');
my $header = $db->header('CHROMOSOME I');
# Bioperl-style access
my $db
            = Bio::DB::Fasta->new('/path/to/fasta/files');
            = $db->get_Seq_by_id('CHROMOSOME_I');
my $obj
         = $obj->seq; # sequence string
my $seq
my $subseq = $obj->subseq(4_000_000 => 4_100_000); # string
my $trunc = $obj->trunc(4_000_000 => 4_100_000); # seq object
my $length = $obj->length;
# (etc)
# Bio::SeqIO-style access
my $stream = Bio::DB::Fasta->new('/path/to/files')->get_PrimarySeq_stream;
while (my $seq = $stream->next_seq) {
  # Bio::PrimarySeqI stuff
```

Bio::DB::fasta module description doc.bioperl.org

Description

last.

Bio::DB::Fasta provides indexed access to one or more Fasta files. It provides random access to each sequence entry, and to subsequences within each entry, allowing you to retrieve portions of very large sequences without bringing the entire sequence into memory. When you initialize the module, you point it at a single fasta file or a directory of multiple such files. The first time it is run, the module generates an index of the contents of the file or directory using the AnyDBM module (Berkeley DB* preferred, followed by GDBM_File, NDBM_File, and SDBM_File). Thereafter it uses the index file to find the file and offset for any requested sequence. If one of the source fasta files is updated, the module reindexes just that one file. (You can also force reindexing manually). For improved performance, the module keeps a cache of open filehandles, closing less-recently used ones when the cache is full. The fasta files may contain any combination of nucleotide and protein sequences; during indexing the module guesses the molecular type. Entries may have any line length up to 65,536 characters, and different line lengths are allowed in the same file. However, within a sequence entry, all lines must be the same length except for the

Creating a sequence record

Creating a sequence record

You have a sequence and want to create a Seq object on the fly.

Use Bio::Seq.

Output

>seq_example this seq is awesome
ATGAATGATGAA
Id: seq_example
Length: 12
Seq: ATGAATGATGAA
Subseq (3..6): GAAT
Translation: MNDE

File format conversions

File format conversions

You have GenBank files and want to extract only the sequence in fasta format.

Use Bio::SeqIO.

Formats

BioPerl's SeqIO system understands lot of formats and can interconvert all of them. Here is a current listing of formats, as of version 1.5.

Name	Description	File extension	Module
abi	ABI tracefile	ab[i1]	Bio::SeqIO::abi
ace	Ace database	ace	Bio::SeqIO::ace
agave	AGAVE XML		Bio::SeqIO::agave
alf	ALF tracefile	alf	Bio::SeqIO::alf
asciitree	write-only, to visualize features		Bio::SeqIO::asciitree
bsml	BSML, using XML::DOM	bsml	Bio::SeqIO::bsmI
bsml_sax	BSML, using XML::SAX		Bio::SeqIO::bsmI_sax
chadoxml	CHADO sequence format		Bio::SeqIO::chadoxml
chaos	CHAOS sequence format		Bio::SeqIO::chaos
chaosxml	Chaos XML		Bio::SeqIO::chaosxml
otf	CTE tracefile	otf	Rio::SoglO::off

Table 1: Bio::SeqIO modules and formats supported

http://www.bioperl.org/wiki/HOWTO:SeqIO

00112	MICTOURNI 400 hr menn linear DOR 27_ADR_1002	1
EFINITION	Mouse Ig active H-chain V-region from MOPC21, subgroup VH-II,	
	mRNA.	
CCESSION	J00522	
ERSION	J00522.1 GI:195052	
EYWORDS .	constant region; immunoglobulin heavy chain; processed gene; variable re-	
ion; varia	ble region subgroup VH-II.	
ORCANTSM	Mus musculus (nouse mouse).	
ORGHNIDH	Eukarvota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;	
	Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;	
	Sciurognathi; Muroidea; Muridae; Murinae; Mus.	
EFERENCE	1 (bases 1 to 408)	
AUTHORS	Bothwell,A.L., Paskind,M., Reth,M., Imanishi-Kari,T., Rajewsky,K. and Baltimore,D.	
TITLE	Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a gamma 2a variable region	
JOURNAL	Cell 24 (3), 625-637 (1981)	
PUBMED	6788376	
OMMENT	Original source text: Mouse C57B1/6 myeloma MOPC21, cDNA to mRNA,	
	NP proteins It is called the b-NP response because this mouse	
	strain carries the b-IgH haplotype. See other entries for b-NP	= (-enBank Format
	response for more comments.	Combanik i onnat
EATURES	Location/Qualifiers	
source	1408	
	/db_xref="taxon:10090"	
	/mol_type="mRNA"	
CDS	/organism="Mus musculus" <1 >408	
000	/db xref="GI:195055"	
	/codon start=1	
	/protein_id="AAD15290.1"	
	/translation="RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT	
	FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSL	
	RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS"	•
sia ne	ntide <1 48	
mat pe	ptide 49>408	
	/product="Ig H-chain V-region from MOPC21 mature peptide"	Easta Format
misc_r	recomb 343344	i asta i ormat
	/note="V-region end/D-region start (+/- 1bp)"	
misc_r	ecomb 356357	
105 0000	/note="D-region end/J-region start"	>MUSIGHBA1 Mouse Ig active H-chain V-region from MOPC21,
ASE COUNT RIGIN	95 a 98 C III g 104 t 57 hp upstream of DuuII site chromosome 12	subgroup VH-II, mRNA.
1 a	ogotteaatt tagttttteet tgteettatt ttaaaaggtg teeagtgtga tgtgeagetg	AGGCTCAATTTAGTTTTCCTTGTCCTTATTTTAAAAGGTGTCCAGTGTGATGTGCAGCTG
61 c	sylggagtetg ggggaggett agtgcageet ggagggteee ggaaaetete etgtgcagee	GTGGAGTCTGGGGGAGGCTTAGTGCAGCCTGGAGGGTCCCGGAAACTCTCCTGTGCAGCC TCTGGATTCACTTTCAGTAGCTTTGGAATGCACTGGGTTCCTCAGGCTCCAGAGAAGGGG
121 t	ctggattca ctttcagtag ctttggaatg cactgggttc gtcaggctcc agagaagggg	CTGGAGTGGGTCGCATACATTAGTAGTGGCAGTAGTACCCTCCACTATGCAGACACAGTG
181 c	tggagtggg tcgcatacat tagtagtggc agtagtaccc tccactatgc agacacagtg	AAGGGCCGATTCACCATCTCAAGAGACAATCCCAAGAACACCCTGTTCCTGCAAATGACC
241 a	agggccgat tcaccatctc aagagacaat cccaagaaca ccctgttcct gcaaatgacc	AGTCTAAGGTCTGAGGACACGGCCATGTATTACTGTGCAAGATGGGGTAACTACCCTTAC
301 a	gtctaaggt ctgaggacac ggccatgtat tactgtgcaa gatggggtaa ctacccttac	INIGUINIGGAUIAUTGGGGTUAAGGAAUUTUAGTUAUUGTUTUUTUA
301 t	argorargy acraergygg teaaggaaee teagteaeeg teteetea	

Convert from GenBank to fasta.

```
#!/usr/bin/perl -w
                                                     #file:convert_genbank2fasta.pl
use strict;
use Bio::SeqIO;
my ($informat,$outformat) = ('genbank','fasta');
my ($infile,$outfile) = @ARGV;
my $in_seqIO_Obj = Bio::SeqIO->new(
          -format => $informat,
          -file => $infile,
          );
my $out_seqIO_Obj = Bio::SeqIO->new(
          -format => $outformat,
          -file => ">$outfile"
          );
while ( my $seqObj = $in_seqIO_Obj->next_seq ) {
     $out_seqIO_Obj->write_seq($seqObj);
}
```

Retrieving annotations

Retrieving annotations

You have GenBank files and want to retrieve annotations.

Use Bio::SeqIO.

Sample Gei	
LOCUS DEFINITION	MUSIGHBA1 408 bp mRNA linear ROD 27-APR-1993 Mouse Ig active H-chain V-region from MOPC21, subgroup VH-II,
ACCESSION VERSION KEYWORDS	mRNA. J00522 J00522.1 GI:195052 constant region: immunoglobulin beavy chain: processed gene: variable re-
gion; vari SOURCE ORGANISM	able region subgroup VH-II. Mus musculus (house mouse). Mus musculus Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
REFERENCE	Mammaila; Eutheria; Eutarchontoglires; Glires; Kodentia; Sciurognathi; Muroidea; Muridae; Murinae; Mus. 1 (bases 1 to 408) Bothwell J. L. Paskind M., Beth. M., Imanishi-Kari T., Bajewsky, K
TITLE	and Baltimore,D. Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a gamma 2a variable region
JOURNAL PUBMED COMMENT	Cell 24 (3), 625-637 (1981) 6788376 Original source text: Mouse C57B1/6 myeloma MOPC21, cDNA to mRNA,
	clone pAB-gamma-1-4. [1] studies the response in C57B1/6 mice to NP proteins. It is called the b-NP response because this mouse strain carries the b-IgH haplotype. See other entries for b-NP
FEATURES	
sourc	e 1.408 /db_xref="taxon:10090" /mol_type="mRNA" /organism="Mus_musculus"
CDS	<li.>408 /db_wref="GI:195055" /codon_start=1 /protein_id="AAD15290.1" /translation="RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSL RSEDTAWYYCARWGNVFYYAMDYWGQGTSVTVSS"</li.>
sig_r mat_r	/note="Ig H-chain V-region from MOPC21" eptide <148 eptide 49>408
misc_	<pre>/product="Ig H-chain V-region from MOPC21 mature peptide" recomb 343344 /note="V-region end/D-region start (+/- lbp)"</pre>
misc_	recomb 356357 /note="D-region end/J-region start"
GASE COUNI ORIGIN 1 aq 121 tc 181 ct 241 aq 301 aq	57 bu postream of PvuII site, chromosome 12. gotcaatt tagttteet tgeettat ttaaaaggtg tecagtgtga tgtgeagetg ggagtgg ttecagtgett agtgeageet ggagggteee ggaaactete etgtgeagee ggagtggg tecaataat tagtagtgge agtagtaece tecaetsteg agacacagtg gggeggat taeccaette aggagacat eccaagacae eccepteer geaastgee tecaagge etgaggacae ggeeatgtat taetgtgeaa gatggggtaa etaecettae

FEATURES	Location/Qualifiers
FLATURES	1 408
source	1400 (db yraf "tayon:10000"
	/ub_kret= tukon.tube
	/mol_type="mkNA"
	/organism="Mus musculus"
CDS	<1>408
	/db_xref="GI:195055"
	/codon_start=1
	/protein_id="AAD15290.1"
	/translation="RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT
	FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSL
	RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS"
	/note="Ig H-chain V-region from MOPC21"
sig_peptide	<148
mat_peptide	49>408
	/product="Ig H-chain V-region from MOPC21 mature peptide"
<pre>misc_recomb</pre>	343344
	/note="V-region end/D-region start (+/- 1bp)"
<pre>misc_recomb</pre>	356357
	/note="D-region end/J-region start"
	▲
primary tag	tag=value
primary_tag	lag-value
use strict;	се аппотацона пош а сепранк ше
use strict; use Bio::SeqIO;	
use strict; use Bio::SeqIO; my \$infile = shift;	Get annotations non a Gendank me #file: get_annot_from_genbank.pl
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->nev	GELAIIIIOLALIOIIS IIOIII A GEIIDAIIK IIIE #file: get_annot_from_genbank.pl
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->nev -file => \$infile, format => 'genback	Get annotations non a Genbank me #file: get_annot_from_genbank.pl
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->nev -file => \$infile, -format => 'genbank);	Get annot_from_genbank.pl
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO -	Get annot_from_genbank.pl #file: get_seqFeature produces an array of
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj ->	Get annot_from_genbank.pl /(/, /, /, /, /, /, /, /, /, /,
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->nev -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$paimeny tag = 0	Get annotations normalized state #file: get_annot_from_genbank.pl #file: get_SeqFeature get_SeqFeature produces an array of Bio::SeqFeaturel objects
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->nev -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = 5 my (\$start, \$end) =	Get annotations not from_genbank.pl #file: get_annot_from_genbank.pl ((', get_SeqFeature > next_seq){ produces an array of Bio::SeqFeaturel objects Sfeature_obj->primary_tag; Sfeature obj->start, \$feature obj->end};
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$range = \$start	<pre>Get annot_from_genbank.pl #file: get_annot_from_genbank.pl ((</pre>
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->nev -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$range = \$start foreach my \$tag (so	<pre>Get annot_from_genbank.pl #file: get_annot_from_genbank.pl (, , , , , , , , , , , , , , , , , ,</pre>
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = 3 my (\$start, \$end) = my \$range = \$start foreach my \$tag (se my @values = my \$value of the second s	<pre>Get annot_from_genbank.pl #file: get_annot_from_genbank.pl (, , , , , , , , , , , , , , , , , ,</pre>
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$range = \$start foreach my \$tag (se my @values = my \$value_str print "\$name(\$	<pre>Get annot_from_genbank.pl #file: get_annot_from_genbank.pl ((</pre>
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$range = \$start foreach my \$tag (se my @values = my \$value_str print "\$name(\$ }	<pre>Get annot_from_genbank.pl #file: get_annot_from_genbank.pl ((</pre>
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->nev -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$range = \$start foreach my \$tag (se my @values = my \$value_str print "\$name(\$ }	<pre>Get annot_from_genbank.pl #file: get_annot_from_genbank.pl ((</pre>
use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$range = \$start foreach my \$tag (so my @values = my \$value_str print "\$name(\$ } }	Get annotations non-from_genbank.pl "#file: get_annot_from_genbank.pl "(",",",",",",",",",",",",",",",",",","
<pre>use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = 3 my (\$start, \$end) = my \$range = \$start foreach my \$tag (se my @values = my \$value_str print "\$name(\$ } } } MUSTIGHBA1(1408)</pre>	<pre>Get annotations norm a Generatik nite #file: get_annot_from_genbank.pl ((get_SeqFeature produces an array of Bio::SeqFeaturel objects (\$seqObj->get_SeqFeature_obj->end); ".". \$end; of \$feature_obj->get_all_tags) { \$feature_obj->get_tag_values(\$tag); =join "," @values; ange))t\$primary_tag(t\$tag:\$value_str\n"; Source_db_xref:taxon:10090 </pre>
<pre>use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my \$start, \$end) = my \$range = \$start foreach my \$tag (so my @values = my \$value_str print "\$name(\$ } } } MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408)</pre>	<pre>Get annot_from_genbank.pl #file: get_annot_from_genbank.pl (, , ,</pre>
<pre>use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my \$start, \$end) = my \$range = \$start foreach my \$tag (so my @values = my \$value_str print "\$name(\$ } } } MUSIGHBA1(1408) MUSIGHBA1(1408) MUSIGHBA1(1408) MUSIGHBA1(1408)</pre>	<pre>Get annot_from_genbank.pl #file: get_annot_from_genbank.pl (, , ,</pre>
<pre>use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->nev -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$value_str print "\$name(\$ } } } MUSIGHBA1(1408) MUSIGHBA1(1408) MUSIGHBA1(1408) MUSIGHBA1(1408)</pre>	Get annotations income depicted on the second of the se
<pre>use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$range = \$start foreach my \$tag (se my @values = my \$value_str print "\$name(\$ } } } MUSIGHBAI (1408) MUSIGHBAI (1408) MUSIGHBAI (1408) MUSIGHBAI (1408) MUSIGHBAI (1408)</pre>	Set annotations income a Generative Market Seq #file: get_annot_from_genbank.pl #file: get_annot_from_genbank.pl get_SeqFeature produces an array of Bio::SeqFeature1obj->get_SeqFeature2); Steature_obj->get_all_tags); \$feature_obj->get_all_tags); \$feature_obj->get_all_tags); \$feature_obj->get_all_tags); \$gource_db_xref:taxon:10090 source_organism:Mus_musculus CDS_codon_start:1 CDS_codon_start:1 CDS_codon_start:1 CDS_codon_start:1 CDS_codon_start:1 CDS_codon_start:1 CDS_codon_start:1 CDS_codon_start:1
<pre>use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$range = \$start foreach my \$tag (se my @values = my \$value_str print "\$name(\$ } } } MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408)</pre>	Set allinotations inorial Generatik ine #file: get_annot_from_genbank.pl /(/, get_SeqFeature produces an array of Bio::SeqFeature! /(get_SeqFeature ////////////////////////////////////
<pre>use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$range = \$start foreach my \$tag (so my @values = my \$value_str print "\$name(\$ } } } MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408) MUSIGHBA1 (1408)</pre>	Get allinoiations non-genbank nile #file: get_annot_from_genbank.pl ((',
<pre>use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = 3 my (\$start, \$end) = my \$range = \$start foreach my \$tag (so my @values = my \$value_str print "\$name(\$ } } } } MUSIGHBA1 (1408) MUSIGHBA1 (1408)</pre>	Get allinoiduloris inoria Getibarik ine #file: get_annot_from_genbank.pl ((',
<pre>use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my \$start, \$end) = my \$start, \$end) = my \$start, \$end) = my \$start, \$end) = my \$value_str print "\$name(\$ } } } MUSIGHBA1 (1408) MUSIGHBA1 (1408)</pre>	Get annotations normagenbank.pl #file: get_annot_from_genbank.pl (>next_seq){ (; >next_seq){ (; (; >next_seq){ (; (; >next_seq){ (; (; (;
<pre>use strict; use Bio::SeqIO; my \$infile = shift; my \$seqIO = Bio::SeqIO->new -file => \$infile, -format => 'genbank); while (my \$seqObj = \$seqIO - my \$name = \$seqObj -> foreach my \$feature_obj my \$primary_tag = \$ my (\$start, \$end) = my \$range = \$start foreach my \$tag (so my @values = my \$value_str print "\$name(\$ } } } MUSIGHBA1 (1408) MUSIGHBA1 (1</pre>	Get annotations normation a Get Dation for genbank.pl #file: get_annot_from_genbank.pl /(get_SeqFeature />,

Manipulating Multiple Alignments

Use Bio::AlignIO

for parsing and writing multiple alignment file formats including:

fasta, phylip, nexus, clustalw, msf, mega, meme, pfam, psi, selex, stockholm.

Parsing BLAST Output

Parsing BLAST reports

Use Bio::SearchIO

Result	<pre>BLASTX 2.2.12 [Aug-07-2005] Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Capped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402. Query= smed-HDAC1-1 (1213 letters)</pre>	NCBI BLAST Report
Hit	Database: swissprot.aa 427,028 sequences; 157,875,145 total letters Searching	
HSP	<pre>>splP56517/HDAC1_CHICK RecName: Full=Histone deacetylase 1; Short=HD1 Length = 480 Score = 535 bits (1379), Expect = e-151 Identities = 255/343 (14%), Fositives = 292/343 (85%), Gaps = 1/343 (0%) Frame = +3 Query: 3 CPVFDGLFEFCQLSAGGSVASAVKLNKNKADIAINWSGGLHHAKKSEASGFCYVNDIVMG 182 CPVFDGLFEFCQLSAGGSVASAVKLNK + DIA+NW+GGLHHAKKSEASGFCYVNDIVMI 159 Query: 183 ILELLKYHERVLYVDIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFFXXXXXXXXXXX 362 ILELLKYHERVLYVDIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFFXXXXXXXXXXXX 362 YAVN+PELRDGIDDESYESIFFRVVEKVESFKFNAIVLQCGADELSGDRLGCFNLSK 542 YAVN+PELRDGIDDESYESIFFRVVEKVESFFFNAIVLQCGADELSGDRLGCFNLSK 542 YAVN+PELRDGIDDESYESIFFRVVEKVEFFFPAAVULQCGSDELSGDRLGCFNLTK 279 Query: 543 GHGKCVEYMRQQPIPLLMLGGGGYTIRNVARCWTYETALALGTTIPNELPYNDYFEYFF 722 GH KCVE+++ +P+LMLGGGGYTIRNVARCWTYETALALGTTIPNELPYNDYFEYFF 339 Query: 723 DFKLHISFSNMTNQNTFEYLERMKQKIFENLRSIFHAPSVQMQDIFEDAMDIDGEQMD 902 DFKLHISFSNMNNQNTFEYLERMKKKFENLEMLFHAPSVQMQDIFEDAMDIDGEQMD 902 QUERY: 903 ADPDKRISILASDKYREHEADLSDEEDEGD-NEKNVDCFKSKR 1028 DPKKHISLASDKYREHEADLSDEEDEGD-NEKNVDCFKSKR 1028 DPLKENGLS SNMTANNTFENLEKKKGREEMEMMDCFKSKR 1028</pre>	Database: /common/data/swissprot.aa Posted date: Oct 4, 2009 2:02 XM Number of letters in database: 157,875,145 Number of sequences in database: 427,028 Lambda K H 0.318 0.134 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of BHz to Db: 281,587,467 Number of sequences better than 1.0e-10: 1 Number of successful extensions: 16223 Number of HBY's bucter than 0.0 without gapzing: 15290 Number of HSP's sthet mether 1.0 wumber of HSP's successfully gapped in prelim test: 0 Number of HSP's sthet rthan 0.0 without gapzing: 15290 Number of HSP's sthet rthan 0.0 without gapzing: 15290 Number of HSP's sthet rthan 0.0 without gapzing: 15290 Number of HSP's sthet rthan 0.0 without gapzing: 15290 Number of HSP's sthet rthan 0.0 without gapzing: 15290 Number of HSP's sthet rthan 0.0 without gapzing: 15290 Number of HSP's sthet rthan 0.0 without gapzing: 15290 Number of HSP's sthet rthan 0.0 without gapzing: 15290 Number of HSP's sthet rthan 0.0 without gapzing: 15290 Number of database: 157,875,145 effective HSP lengthet: 119
	DJUL 355 EDEERIGIRADURIGUEERSDEEDEGEGGRAWRARAR 441	effective search space used: 30404702892 frameshift window, decay const: 40, 0.1 T: 12 A: 40 X1: 16 (7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits)

Bookmark it!!

See

http://www.bioperl.org/wiki/HOWTO:SearchIO

for a GREAT example of a blast report,

code to parse it,

a table of methods,

and the values the methods return.

Result object and methods

#file: sample_Blast_parser_1.pl

program=BLASTX queryName=smed-HDAC1-1 queryDesc=histone deacetylase 1 queryLen=1213

http://www.bioperl.org/wiki/HOWTO:SearchIO

Object	Method	Example	Description			
Result	algorithm	BLASTX	algorithm string			
Result	algorithm_version	2.2.4 [Aug-26-2002]	algorithm version			
Result	query_name	20521485ldbjlAP004641.2	query name			
Result	query_accession	AP004641.2	query accession			
Result	query_length	3059	query length			
Result	query_description	Oryza sativa 977CE9AF checksum.	query description			
Result	database_name	test.fa	database name			
Result	database_letters	1291	number of residues in database			
Result	database_entries	5	number of database entries			
Result	available statistics	effectivespaceused dbletters	statistics used			
Result	available parameters	gapext matrix allowgaps gapopen	parameters used			
Result	num hits	1	number of hits			
Rosult	hite		List of all Bio: Search: Hit: GenericHit object(s) for this Besult			
rtesuit			Pased the internal iterator that dictates where past, hit() is pointing, useful for re-iterating			
Result	rewind		through the list of hits.			
#!/u	usr/bin/perl -w					
USE	e strict;		#file: sample Blast parser 2.pl			
use	e Bio::SearchIO:					
my	\$blast_report = shif	t;				
my \$searchIO_obj = Bio::SearchIO->new(
			from a result object			
<pre>while (my \$result_obj = \$searchIO_obj->next_result) { while (my \$hit_obj = \$result_obj->next_hit){ my \$hitName = \$hit_obj->name; my \$hitAcc = \$hit_obj->accession; my \$hitLen = \$hit_obj->length; my \$hitSig = \$hit_obj->significance; my \$hitScore = \$hit_obj->raw_score;</pre>						
	print "hitNam print "hitSig= }	e=\$hitName\ <mark>thitAcc</mark> \$hitSig\thitScore=\$h	=\$hitAcc\ thitLen= \$hitLen\t"; hitScore\ n ";			
}						

http://www.bioperl.org/wiki/HOWTO:SearchIO

Image:							
Image: 331 Length of Hit Bit sequence Image: Constant 44383 Image: Description Image: Image: Description Image: Description Image: Description Image: Image: Description Image: Description <td>Hit</td> <td>name</td> <td>4438931124775</td> <td>hit name</td> <td></td>	Hit	name	4438931124775	hit name			
Image: Search in the search	Hit	length	331	Length of the Hit sequence			
Image: Securition Just of a securition Image: Securities Bit Securities Image: Securities Bit Secu	Hit	accession	443893	accession (usually when this the part after the <i>gb</i> or <i>emb</i>	s is a genbank formatted id this will be an accession number-		
Image: Section BLASTX Image: Ima	Hit	description	LaForas sequence	hit description			
Image: score B2 Image: score B2 Image: score Image: score B2 Image: score Image: score Image: score Image: score B2 Image: score Image: score Image: score Image: score Image: score	Hit	algorithm	BLASTX	algorithm			
Ht bit significance Ht bits Ht	Hit	raw_score	92	hit raw score			
Image Image <td< td=""><td>Hit</td><td>significance</td><td>2e-022</td><td>hit significance</td><td></td></td<>	Hit	significance	2e-022	hit significance			
Image Image <thimage< th=""> <thimage< th=""> <thim< td=""><td>Hit</td><td>bits</td><td>92.0</td><td>hit bits</td><td></td></thim<></thimage<></thimage<>	Hit	bits	92.0	hit bits			
in jum.hapa in jumber of HSPs in hit int procession_number if 34383 procession_number int procession_number if 34383 procession_number int interval interval interval int interval interval interval int interval interval interval int interval interval interval interval interval inter	Hit	hsps		List of all Bio::Search::HSP:	:GenericHSP object(s) for this Hit		
Image: Search IO_obj = Shit_obj = S	Hit	num hsps	1	number of HSPs in hit			
Image: second provide a state of the second provide state of the second provide a state of the	Hit	locus	124775	locus name			
Intermediation Intermediation Intermediation Prevention Intermediation Prevention Intermediation Prevention Intermediation Prevention Intermediation Prevention Intermediation Intermediation	Hit	accession number	443893	accession number			
<pre>period period peri</pre>				Besets the internal counter t	for next hsn() so that the iterator will begin at the beginning of		
<pre>#useron:per</pre>	Hit	rewind		the list	or next_hsp() so that the iterator will begin at the beginning of		
<pre>my \$blast_report = shift; my \$blast_report = shift; my \$searchIO_obj = Bio::SearchIO->new(</pre>							
<pre>my \$blast_leport = still, my \$searchIO_obj = Bio::SearchIO->new(-file => \$blast_report, -format => 'blast'); while (my \$result_obj = \$searchIO_obj->next_result) { while (my \$hit_obj = \$searchIO_obj->next_nit){ while (my \$hit_obj = \$result_obj->next_hti){ while (my \$hsp_obj = \$hit_obj ->next_hsp){ my \$evalue = \$hsp_obj->evalue; my \$hitString = \$hsp_obj->evalue; my \$hitString = \$hsp_obj->query_string; my \$homologyString = \$hsp_obj->homology_string; print "hsp evalue: \$evalue\n"; print "HIT : ",substr(\$hitString,0,50),"\n"; print "HOMOLOGY: ",substr(\$homologyString,0,50),"\n"; print "QUERY : ",substr(\$queryString,0,50),"\n"; } } </pre>	#!/us use use	sr/pin/peri -w strict; Bio::SearchIO;	กอะ บมุยช	เ สมน เมษม	IUUS #file: sample_Blast_parser.pl		
<pre>my \$searchIO_obj = Bio::SearchIO->new(</pre>	my	/ \$blast_report = shift	3				
<pre>while (my \$result_obj = \$searchIO_obj->next_result) { while (my \$hit_obj = \$result_obj->next_hit){ while (my \$hsp_obj = \$hit_obj ->next_hsp){ my \$evalue = \$hsp_obj->evalue; my \$hitString = \$hsp_obj->evalue; my \$queryString = \$hsp_obj->query_string; my \$homologyString = \$hsp_obj->homology_string; print "hsp evalue: \$evalue\n"; print "HIT : ",substr(\$hitString,0,50),"\n"; print "HOMOLOGY: ",substr(\$homologyString,0,50),"\n"; print "QUERY : ",substr(\$queryString,0,50),"\n"; } Putputt: Partial and the second second</pre>	my	my \$searchIO_obj = Bio::SearchIO->new(
<pre>print "hsp evalue: \$evalue\n"; print "HIT : ",substr(\$hitString,0,50),"\n"; print "HOMOLOGY: ",substr(\$homologyString,0,50),"\n"; print "QUERY : ",substr(\$queryString,0,50),"\n"; }</pre>	<pre>while (my \$result_obj = \$searchIO_obj->next_result) { while (my \$hit_obj = \$result_obj->next_hit){ while (my \$hsp_obj = \$hit_obj ->next_hsp){ my \$evalue = \$hsp_obj->evalue; my \$hitString = \$hsp_obj->hit_string; my \$queryString = \$hsp_obj->query_string; my \$homologyString = \$hsp_obj->homology_string; } }</pre>						
}		print "hsp print "HI print "HC print "QU }	p evalue: \$evalue\n"; T :",substr(\$hitStr)MOLOGY: ",substr(JERY :",substr(\$qu	; ing,0,50),"\n"; \$homologyString eryString,0,50),"	ı,0,50),"\n"; \n";		
<pre>hsp evalue: 1e-151 Couput. hit : CPVFDGLFEFCQLSAGGSVASAVKLNKQQTDIAVNWAGGLHHAKKS HOMOLOGY: CPVFDGLFEFCQLSAGGSVASAVKLNK + DIA+NW+GGLHHAKKS</pre>	1	} h:	an auglus, 1a-151	Out	tput:		

http://www.bioperl.org/wiki/HOWTO:SearchIO

HSP	algorithm	BLA	ASTX		algorithm			
HSP	evalue	2e-(e-022		e-value			
HSP	expect	2e-(022		alias for evalue()			
HSP	frac_identical	0.88	3461538	4615385	Fraction iden	lical		
HSP	frac_conserved	0.92	2307692	23076923	fraction conse (only valid for	action conserved (conservative and identical replacements aka "fraction similar") only valid for Protein alignments will be same as frac_identical)		
HSP	gaps	2			number of ga	ps		
HSP	query_string	DM	GRCSS	G	query string f	rom alignment		
HSP	hit_string	DIV	QNSS .		hit string from	alignment		
HSP	homology string	D+	+ 6600	N	etring from ali	anment		
			HSP	seq_inds('query','conser	rved')	(966,967,969,971,973,974,975,)	conserved or identical positions as array	
HSP	length('total')	52	HSP	seq_inds('hit','identical')		(197,202,203,204,205,)	identical positions as array	
HSP	length('hit')	50		seg inds('hit','conserved	d-			
HSP	length('query')	15	HSP	not-identical')	_	(198,200)	conserved not identical positions as array	
HSP	hsp_length	52	HSP	seq_inds('hit','conserved	d',1)	(197,202-246)	conserved or identical positions as array, with runs of con	
HSP	frame	0	HSP	score		227	score	
HSP	num_conserved	48	HSP	bits		92.0	score in bits	
HSP	num_identical	46	HSP	range('query')		(2896,3051)	start and end as array	
HSP	rank	1	HSP	range('hit')		(197,246)	start and end as array	
HSP	seq_inds('query','identical')	(96	HSP	percent_identity		88.4615384615385	% identical	
HSP	seq_inds('query','conserved-	(96	HSP	strand('hit')		1	strand of the hit	
	not-identicar)		HSP	strand('query')		1	strand of the query	
			HSP	start('query')		2896	start position from alignment	
			HSP	end('query')		3051	end position from alignment	
			HSP	start('hit')		197	start position from alignment	
			HSP	end('hit')		246	end position from alignment	
			HSP	matches('hit')		(46,48)	number of identical and conserved as array	
			HSP	matches('query')		(46,48)	number of identical and conserved as array	
			HSP	get_aln		sequence alignment	Bio::SimpleAlign object	
			HSP	hsp_group		Not available in this report	Group field from WU-BLAST reports run with -topcomboN	
				10		1		

Other Cool Things

Whole set of wrappers for running Bioinformatics tools in bioperl-run

Run BLAST locally or submit remote jobs (through NCBI)

Run PAML - handles setup and take down of temporary files and directories

Run alignment progs through similar interfaces: TCoffee, MUSCLE, Clustalw

Relational Databases for sequence and features

Repository of scripts to do really cool things. (http://www.bioperl.org/wiki/Scripts)

T Home · Authors · Recent · News · Mir
Bio::Search::Result::ResultI
In All + CPAN Search
Results 1 - 10 of 43 Found 1 · 2 · 3 · 4 · 5 · Next >>
Bio::Search::Result::Result
Abstract Interface to Search Result objects BioPerl-1.6.901 - 18 May 2011 - Christopher Fields
Bio::Search::Result::GenericResult Generic Implementation of Bio::Search::Result::ResultI interface applicable to most search re BioPerl-1.6.901 - 18 May 2011 - Christopher Fields
Bio::Search::Result::PullResulti
C P N Home · Authors · Recent
Christopher Fields > BioPerl-1.6.901 > Bio::Search::Result::F
Module Version: 1.006901 Source
NAME SYNOPSIS DESCRIPTION
Mailing Lists Support
Reporting Bugs AUTHOR
COPYRIGHT DISCLAIMER
next_hit sort hits
_default sort_hits query_name
query_accession query_length
query_description database_name database_letters
database_netries


```
Title : next_hsp
Usage : while( $hsp = $obj->next_hsp()) { ... }
Function : Returns the next available High Scoring Pair
Example :
Returns : <Bio::Search::HSP::HSPI> object or null if finished
Args : none
```

hsps

C P N N Home · Authors · Recent · News · Mirr in All ÷ CPAN Search Christopher Fields > BioPerl-1.6.901 > Bio::Search::HSP::HSPI
Module Version: 1.006901 Source
NAME SYNOPSIS DESCRIPTION SEE ALSO FEEDBACK Mailing Lists Support Reporting Bugs AUTHOR - Steve Chervitz, Jason Stajich COPYRIGHT DISCLAIMER APPENDIX algorithm pvalue evalue frac_identical frac_conserved num_identical num_conserved gaps query_string ht_string
Yea!! hit_string returns a string, not an object. Done!!
Title : hit_string Usage : my \$hseq = \$hsp->hit_string; Function: Retrieves the hit sequence of this HSP as a string Returns : string

Args

none

A basic page

<html> <head> <title>My web page title</title> </head> <body> Your HTML content here </body> </html>

Sunday, October 20, 2013

3

 <hr />

•Some tags take attributes

The Onion

•Elements consist of start and end tags flanking content

XHTML tags

http://www.w3schools.com/tags/

Sunday, October 20, 2013

7

Tables							
Column 1 headingColumn 2 headingColumn 3 heading							
Row 2, cell 1Colspan="2">Row 2, cell 2, also spanning Row 2, cell 3Colspan="2">Colspan="2">Row 2, cell 2, also spanning Row 2, cell 3							
ctr> Constant of the system of the							
Row 4, cell 2Row 4, cell 3/tr>							
output:							
Column 1 heading Column 2 heading Column 3 heading							
Row 2, cell 1 Row 2, cell 2, also spanning Row 2, cell 3							
Row 3, cell 1, also spanning Row 4, cell 1 Row 3, cell 2 Row 3, cell 3 Row 4, cell 2 Row 4, cell 3							
http://htmldog.com/guides/htmlintermediate/tables/							

Sunday, October 20, 2013

Forms
<form action="html_form_submit.pl" method="post" name="input"></form>
 POST vs GET GET = Data is in the URL POST = Data is in the message body
Sunday, October 20, 2013 13
Text Fields

	<pre>ame="input" action="handleMyForm.pl" method="get"></pre>
Fir	St name:
 br	/>
Las	t name:
<inj< td=""><td>put type="text" name="lastname" /></td></inj<>	put type="text" name="lastname" />
<inj< td=""><td>put type="submit" value="Submit" /></td></inj<>	put type="submit" value="Submit" />
	output:
	First name:
	Last name:

Γ

	Radi	o Bu	ttons	
<form nar<br=""><inpu <inpu </inpu </inpu </form>	ne="input" action="h t type="radio" name= t type="radio" name=	andleMyForm.pl" ="sex" value="ma ="sex" value="fe	<pre>method="get"> ale"/> Male emale"/> Female</pre>	
<inpu </inpu 	t type="submit" valu	ie="Submit" />		
		Itput: Male Temale		
day, October 20, 2013				
xŀ	HTML	+ CS	SS = Web	
Body- d div (d-"moto"> d div (d-"moto"> div (d-"moto")> div (d-"moto"> div (d-"moto"> div (d-"moto")> div (d	loyout, final loyout≪hl>≺/div>	<pre><styls type="text/css"> body.html { pading:0; color:#800; background:#87090; background:#87090; background:#87090; margin:0; auto; margin:0; auto; background:#990; </styls></pre>	Simple 2 column CSS layout, final layout	

Do Not Reinvent the Wheel
Google "free css templates" Search Advanced Search
Web Show options Results 1 - 10 of about 37,800,000 for "free css templates". (0.31 seconds)
Results 1 - 10 of about 317,000 for "two column css". (0.40 seconds) http://www.freecsstemplates.org
Sunday, October 20, 2013 23

Where does my website go?

- On Mac OS X
 - Personal web: ~/Sites
 - Main web: /Library/Webserver/Documents
- Linux: /var/www/html or /var/apache2/htdocs
- XP Home: C:\Program Files\ApacheGroup \Apache\htdocs
- Could be elsewhere. Don't give up!

Resources: CSS

Cheat sheet:

http://www.addedbytes.com/download/css-cheat-sheet-v2/pdf/

http://westciv.com/wiki/Main_Page

Two column style sheet and tutorial http://www.456bereastreet.com/lab/

developing_with_web_standards/csslayout/2-col/

Sunday, October 20, 2013

27

Scraping • We can parse web pages like any other text.

```
#!/usr/bin/perl
# A quick script to parse PFAM search results
use strict;
use warnings;
my $search = shift;
system ("wget -q -0 pfam_search.txt 'http://pfam.sanger.ac.uk/
search/keyword?query=" . $search . "'");
open (FILE, "<", "pfam_search.txt") or die "Cannot open file: $!
\n";
# create a hash of the ids in our web page
# We use a hash as an easy way to eliminate duplicates
my %pfam_ids;
while (my $line = <FILE>) {
   if ($line =~ /(PF\d+)/) {
       $pfam_ids{$1}++;
   }
}
# Print the IDs on one line
print join ("\t", $search, sort keys %pfam_ids), "\n";
```

Web programming with CGI.pm

Wednesday, October 24, 12

#!/usr/bin/perl
file: plaintext.pl
print "Content-type: text/plain\n\n";
print "When that Aprill with his shoures soote\n";
print "The droghte of March hath perced to the roote,\n";
print "And bathed every veyne in swich licour\n";
print "Of which vertu engendered is the flour...\n";

http://mckay.cshl.edu/cgi-bin/course/plaintext.pl

CGI script can	do anything a Perl script can do, such as opening files and processing them.
ust print your re	esults to STDOUT.
#!/usr/bin/	/perl -w
<pre># file: pro use strict;</pre>	cess_cosmids.pl
my @GENES my \$URL	<pre>= qw/act-1 dpy-5 unc-13 let-653 skn-1 C02D5.1/; = 'http://www.wormbase.org/db/gene/gene?name=';</pre>
print "Cont	<pre>:ent-type: text/html\n\n"; nl>choad>ctitlo>Conosc(titlo>C/hoad>chody>\n";</pre>
print " <h1></h1>	Genes
print " 	`\n";
for my \$gen print qq }	ne (@GENES) { < \$gene\n);
print "	L>\n";
print " <td>ody>\n";</td>	ody>\n";

<in< th=""><th>PUT> Elements</th></in<>	PUT> Elements
Use	d for text fields, buttons, checkboxes, radiobuttons. Attributes:
type	Type of the field. Options: • submit • radio • checkbox • text • password • hidden • file
nam	e Name of the field.
valu	e Starting value of the field. Also used as label for buttons.
size	Length of text fields.
che	≿ked Whether checkbox/radio button is checked.

Creating Fill-Out Forms IV	/
Examples:	
<input name="motif1" type="text" value="TATTAT"/>	TATTAT
<input name="motif2" type="checkbox" value="TATTAT"/>	
<input checked="" name="motif3" type="radio" value="TATTAT"/> <input name="motif3" type="radio" value="GGGGGGG"/>	• •
<input name="settings" type="hidden" value="PRIVACY MODE ON"/>	
<input name="search" type="submit" value="SEARCH!"/>	SEARCH!

	Creating Fill-Out Forms V
<se< th=""><th>LECT> Element</th></se<>	LECT> Element
Used	to create selection lists.
Attrib	utes:
name	e Name the field.
size	Number of options to show simultaneously.
multi	i ple Allow multiple options to be shown simultaneously.
<0P	TION> Element
Conta	ained within a >SELECT> element. Defines an option:
	>option>I am an option
Attrib	utes:
selec	ted Whether option is selected by default.
value	e Give the option a value different from the one displayed.

Creating Thi-Out Toh	115 VII
<textarea> Elements</textarea>	
Used to create big text elements.	
Attributes:	
name name of field	
rows rows of text	
columns of text	
wrap type of word wrapping	
<textarea cols="30" name="sequence" rows="10"> NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</textarea>	NEUMENE HERRINGENEMEN NEUMENENENENEMEN NEUMENENENENEMEN NEUMENENENENEMEN NEUMENENENENEMEN NEUMENENENENEMEN NEUMENENENEMEN
<input name="search" type="submit" value="SEARCH!"/>	SEARCHI

Make HTML CGI.pm defines functions that emit HTML. The pa	Beautiful ge is easier to read and write than raw HTML*
	<pre>#!/usr/bin/perl # Script: vegetables1.pl</pre>
	use CGI ':standard';
<hl> <pre></pre></hl>	<pre>print header, start_html('Vegetables'), h1('Eat Your Vegetables'), ol(li('peas'), li('broccoli'), li('cabbage'), li('peppers', ul(</pre>
* if you speak Perl!	http://mckay.cshl.edu/cgi-bin/course/vegetables.pl

Make HTML Concise
Tag Functions are Distributive
print li('hi','how','are','you')
hi how are you
@items=('hi','how','are','you'); print li(\@items)
hi how are you
print li(['hi','how','are','you'])
hi how are you

# file: final_exam.pl	A Simple Form
use CGI ':standard';	
<pre>print header; print start_html('Your Final Exam'), h1('Your Final Exam'), start_form, "What's your name? ",textfield(-name=>'first_name'), p, "What's the combination?", p, checkbox_group(-name => 'words', -values => ['eenie','meenie','minie','moe'], -defaults => ['eenie','minie']), p, "What's your favorite color? ", poonup menu(-name => 'color'.</pre>	Your Final Exam What's your name? Sheldon What's the combination? Secure in meenie Secure in moe
<pre>-values => ['red','green','blue','chartreuse']), p, submit, end_form, hr;</pre>	What's your favorite color? red
<pre>if (param()) { print "Your name is: ",param('first_name'), p, "The keywords are: ",join(", ",param('words')), p, "Your favorite color is: ",param(color'),</pre>	Tour name is: Sneldon The keywords are: eenie, minie Your favorite color is: red
hr; } print end_html;	

Form Generating Functions II
radio_group(-name=>\$name,-value=>\@values,-default=>\$on) Create a group of radio buttons sharing the same name. @values gives the list of radio values, and \$on indicates which one is on to start with.
popup_menu(-name=>\$name,-value=>\@values,-default=>\$on) Create a popup menu. @values gives the list of items, and \$on indicates which one is initially selected.
scrolling_list(-name=>\$name,-value=>\@values,-default=>\$on) Create a scrolling list. @values gives the list of items, and \$on indicates which one (if any) is initially selected.
submit(-name=>\$name,-value=>\$value) Creates a submit button. \$value optionally sets the button label.

<pre>#!/usr/bin/perl # file: reversec.pl use CGI ':standard';</pre>	A reverse complementation script
print header; print start_html('Reverse Complementation'), h1('Reverse Complementator'), start_form, "Enter your sequence here:",br, textarea(-name=>'sequence',-rows=>5,-cols=>60), submit('Reverse Complement'), end_form, hr;	Reverse Complementator
<pre>if (param) { my \$sequence = param('sequence'); my \$reversec = do_reverse(Ssequence); for the sequence of th</pre>	Reverse Complement
<pre>Sreversec =~ s/(.{60})/\$1\n/g; # do word wrap print h2('Reverse complement'); print pre(\$reversec); }</pre>	Reverse complement
<pre>print end_html; sub do_reverse { my \$seq = shift; Sseq =~ s/s//g; # strip whitespace \$seq =~ tr/gatcGATC/ctagCTAG/; # complement Sseq = reverse \$seq; # and reverse return \$seq; }</pre>	GAGAGAGAAGCACAATCITITT

File Uploading HTML: <input type="FILE"/> CGI.pm: filefield()
Annoying complication: You have to start the form with start_multipart_form() rather than start_form().
Let's modify reversec.pl to support file uploads:
First part (script too big for one page), print the form
<pre>#!/usr/bin/perl # file: sequpload.pl use CGI ':standard'; print header; print star_html('Reverse Complementation'), h1('Reverse Complementator'), start_multipart_form, "Enter your sequence here:",br, textarea(-name=>'sequence',-rows=>5,-cols=>60),br, 'Or upload a sequence here: ',filefield(-name=>'uploaded_sequence'), submit('Reverse Complement'), end_form, hr;</pre>

sequpload.pl continued	
if (param) {	If param() returns true, that means that we
my \$sequence;	have some user input
<pre># look for the uploaded sequence first if (my \$upload = param('uploaded_sequence')) { print h2("Reverse complement of \$upload");</pre>	
<pre>while (my \$line = <\$upload>) { chomp \$line; next unless \$line =~ /^[gatcnGATCN]/; \$sequence .= \$line;</pre>	Reverse Complementator
}	Enter your sequence here:
<pre>} else { # not found, so read it from the text field print h2('Reverse complement'); \$sequence = param('sequence'); }</pre>	Or upload a sequence here: smckay/Desktop/myseq.txt Browse
<pre>\$reversec = do_reverse(\$sequence); \$reversec =~ s/(.{60})/\$1\n/g; # do word wrap print pre(\$reversec);</pre>	Reverse complement of myseq.txt
<i>f</i>	GAGROROATGROADGCACARTCITTITT
print end_html;	
sub do_reverse { my \$seq = shift; \$seq =~ s/s//g; # strip whitespace \$seq =~ tr/gatcGATC/ctagCTAG/; # complement \$seq = reverse \$seq; # and reverse return \$seq; }	http://mckay.cshl.edu/cgi-bin/course/sequpload.pl

Adding Ca	scading Stylesheets
<pre>#!/usr/bin/perl -w # Script: veggies_with_style.pl use CGI ':standard';</pre>	
<pre>my \$css = <<end; <style type="text/css"> li.yellow { color: yellow } li.green { color: green } li.red { color: red } ol {</pre></td><td>Eat Your Vegetables</td></tr><tr><td><pre>background-color: gainsboro; padding: 5px; margin-left: 200px; width: 150px; } ul { background-color: black }</pre></td><td>1. broccoli 2. peas 3. cabbage</td></tr><tr><td></style> END print header, start_html(-title => 'Vegetables', -head => \$css);</end; </pre>	• red • yellow • green
<pre>print h1('Eat Your Vegetables'), ol(li(['broccoli', 'peas', 'cabbage']), li('peppers', ul(</pre>	
<pre>`li({-class => 'red'}, 'red'), li({-class => 'yellow'}, 'yellow' li({-class => 'green'},'green')),</pre>),
hr, end_html; <u>http://mckay.cshl.ec</u>	lu/cgi-bin/course/veggies with style.pl

<pre>#!/usr/bin/perl -w # Script: veggies_with_style.pl use CGI ':standard';</pre>
<pre>my \$css = '/css/veggies.css';</pre>
<pre>print header, start_html(-title => 'Vegetables', -style => \$css);</pre>
<pre>print h1('Eat Your Vegetables'), ol(li(['broccoli', 'peas', 'cabbage']), li('peppers', ul(</pre>
<pre>ll({-class => 'green'},'green'))),), hr,</pre>

CGI Exercises Problem #1

Write a CGI script that prompts the user for his or her name and age. When the user presses the submit button, convert the age into "dog years" (divide by 7) and print the result.

Problem #2

Accept a DNA sequence and break it into codons.

Extra credit: Translate the codons into protein.

Structural variation

Programming for Biology CSH, October 2014

Tomas Marques-Bonet ICREA Research Professor Institut de Biologia Evolutiva

11 years from my 1st CSH!

Who we are?

- Evolutionary genomics
 - Barcelona, Biomedical Research Park

What do we do?

• Natural selection on human evolution

• Transcriptome and Epigenetics in Primates

Canid evolution

Continuum of Genomic Variation

Single *nucleotide* Single base-pair changes

•Cpg Methylation

Small insertions/deletions

Mobile elements

•Large-scale genomic copy number variation (>10 kb)

Local Rearrangements

Chromosome Chromosomal variation

Genomic Structural Variation

- Gene-altering, *e.g.* immune response, drug metabolism
- Abundant: majority of human heterozygosity
- Numerous plausible functional consequences

Types of Structural Variation

Hurles et al. 2008

Why Study Structural Variation?

- Common in "normal" human genomes-major cause of phenotypic variation
- Common in certain diseases, particularly cancer
- Now showing up in rare disease; autism, schizophrenia

Zody et al. Nature Genetics (2008)

Antonacci et al. Nature Genetics (2010)

Challenges of CNV studies

- Often involves repeated regions
- Rearrangements are complex
- Can involve highly repetitive elements

Methods to Find SVs

Experimental approach

ArrayCGH (SNP based and genomic)

Sequence based

Local and *de novo* assembly

Read pair analysis

Read depth analysis

Split read analysis

METHOD 1: Copy Number Variation: Array Comparative Genomic Hybridization

Modified:Feuk et al. Nat Rev Genet 2006
Genome Tiling Arrays

Typical Analysis Procedure

- For each probe, calculate a log2 ratio of test/ reference
 - Log2 serves to center values around 0
 - Hemizygous deletion in test: log2(test/ reference)=log2(1/2)=-1
 - Duplication in test:
 - log2(test/reference)=log2(3/2)=0.59
 - Homozygous duplication:

log2(test/reference)=log2(4/2)=1

Copy Number Variations in the Human Genome

Steemers et al.

SNP Fluorescence-Based Deletion Discovery

Sequencing Methods

•Going Backwards... Sanger, 454, Illumina.....

•CNV and SV are hotspots of research... but reality is:
•Limitations of the methods
•Indirect methods. ALL have problems!!

•What do we want?

•Clone sequencing/Phasing (Moleculo?)

•Finish sequence and better assemblies (PACBIO?)

De novo assemblies

•Theory vs. Reality

•Most assemblies (even with Sanger technology!) are collapsed.

Quality of "old days" assemblies

Quality of assemblies (II)

Incomplete respresentation of human genes

Limitations of NGS assemblies

Alkan et al. Nature Methods 2010

Method 2: End-Sequence Pair (ESP) Analysis

Tuzun et al. (2005)

Method 2: End-Sequence Pair (ESP) Analysis

Tuzun et al. (2005)

What can we find?

Structural variation detection:

Alkan et al. Nature Review Genetics 2011

individual haplotypes

Gaps

Frequency of Validated Sites

Number of individuals (libraries) reporting variant site

261 (15%) sites where reference genome represents a minor allele

Method 3: Sequence Read Depth Analysis

Method 3: Sequence Read Depth Analysis

Sequence coverage and detection power

Validation of copy-number estimations

Alkan et al., Nature Genetics, 2009

Defensin gene cluster + FAM90A7

Associated with psoriasis and Crohn's disease

Alkan et al., Nature Genetics, 2009

Scaling up: 1000 Genomes and more

Histogram of Pilot 1 Illumina effective coverage

Individuals sequenced in Pilot 2

ID	Effective Coverage	Population
NA19240	24	YORUBA
NA19239	19	YORUBA
NA19238	13	YORUBA
NA12891	21	CEPH
NA12892	18	CEPH
NA12878	22	CEPH

Other Genomes

ID	Effective Coverage	Population
YH-1	22	HAN CHINESE°
NA18507	29	YORUBA [#]
NA18506	30	YORUBA *
NA18508	25	YORUBA *
KOREAN	12	KOREAN *

Copy number variation in human populations

Sudmant et al. Science 2010

Deletions

		chr1	3:38,390,00 p12	01-38,407, 	895 q11	q12.12	q1 2.3	q13.3	q14.11	q1	4.2	q21.1	q21.31	q21.33	q22.2	q31.1	q31.2		q32.1	q33.1	q33.3	q34	
	NAME DATA FILE		1	38,392 kb 		38,394 	¦kb	38,396 	5 kb	I	38,398 kb 	- 17 kb	38,400 kb 		38,402 k 	b 	38,404 	l kb		38,406 kb 		38	- -
floquet_gem_no_split. bam Coverage floquet_gem_no_split. bam				њ.њ	∩ <u>. A</u> 1	<u> </u>			IL							<u>Aarbi</u>					nli	ut est till	C
														-									•
RefSeq Genes			~~~~~	~~ ~~				· · · ·			~ · · ·	TRPC4						<u> </u>	<				4
chr13_hg19_repeatmask ed.bed WGAC_WSSD.bed			LINE Sim	ple_repeat	LINE	LINE	LINE	LINE				L	INE			LINE	LINE	LINE	LINE	LINE LIN	E	LINE	
annotated_repeats_SD_S													14										
final_paired_end_clusteri prova_annotated_VH.be d													6			•							

Split-read Analysis

Experimental Validation

Methods to Find SVs

Experimental approach

ArrayCGH (SNP based and genomic)

Based on ratios, Saturate quite fast, poor breakpoint resolution

Sequence based

Read pair analysis

Deletions, small novel insertions, inversions, transposons

Size and breakpoint resolution dependent to insert size

Read depth analysis

Deletions and duplications

Relatively poor breakpoint resolution

Split read analysis

Small novel insertions/deletions, and mobile element insertions

1bp breakpoint resolution

Local and *de novo* assembly

- SV in unique segments
- 1bp breakpoint resolution

Software I

Method	Reference	Language	Control required?	Input format	GC correction	single-end/ pair-end	Methodology characteristics
CNV-seq	[15]	R, perl	Yes	hits	No	single-end	statistical testing
FREEC	[21]	с	Optional	SAM,BAM,bed,etc.	Optional	both	LASSO regression
readDepth	[22]	R	No	bed	Yes	both	CBS, LOESS regression
CNVnator	[23]	с	No	BAM	Yes	both	mean shift algorithm
SegSeq	[14]	Matlab	Yes	bed	No	single-end	statistical testing,CBS
EWT (RDXplorer)	[11]	R, python	No	BAM	Yes	single-end	statistical testing
cnD	[16]	D	No	SAM,BAM	No	both	HMM, Viterbi algorithm
CNVer	[17]	С	No	BAM	Yes	pair-end	maximum-likelihood, graphic flow
CopySeq	[18]	Java	No	BAM	Yes	pair-end	MAP estimator
rSW-seq	[19]	NA	Yes	NA	Yes	single-end	Smith-Waterman algorithm
CNAseg	[20]	R	Yes	BAM	No	pair-end	wavelet transform and HMM
CNAnorm	[24]	R	Yes	SAM,BAM	Yes	both	linear regression or CBS
cn.MOPS	[26]	R, C++	multiple samples	BAM or data matrix	No	both	mixture of Poissons, MAP, EM, CBS
JointSLM	[27]	R, Fortran	multiple samples	data matrix	Yes	both	HMM, ML estimator, Viterbi algorithm

doi:10.1371/journal.pone.0059128.t001

break point position estimation: readDepth = EWT>CNVnator>FREEC>CNV-seq>SegSeq; copy number estimation: CNVnator>CNV-seq>readDepth>FREEC>EWT>SegSeq;

Zhao et al. BMC Bioinformatics 2013 Duan et al. Plos One 2013

NGS Sequence data

Jason Stajich

UC Riverside

jason.stajich[at]ucr.edu

twitter:<u>hyphaltip</u> stajichlab

Lecture available at http://github.com/hyphaltip/CSHL_NGS

NGS sequence data

- Quality control
- Alignment
- Variant calling
 - SNPs
 - Indels

Sanger Long reads, high quality, expensive Illumina Short reads 50-150bp (HiSeq) and up to 250bp (MiSeq) Cheap and Dense read total (HiSeq 200-300M paired-reads for ~\$2k) 454 Longish reads 300-500 bp, some homopolymer seq problems, Expensive (\$10k for 1M reads), recent chemistry problems Going away in <u>3 years</u> PacBio Long reads, but small amount (10k) Low seq quality and not cheap Can help improve assemblies, probably not sufficient for an assembly alone (too expensive to get deep enough coverage)

Sequence data source (cont)

SOLiD

- Short reads, 30-50bp. Reasonably price-point for the density
- $\circ~$ 1/5 as many reads as Illumina HiSeq
- Ion Torrent
 - $\circ~$ Cheaper machine, fast, 100bp reads and reported 100M
 - $\circ~$ Quality okay for some applications

Sequencer comparisons

Glenn TC, "Field guide to next-generation DNA sequencers" DOI:10.1111/j.1755-0998.2011.03024.x

Instrument	Run time ^a	Millions of reads/run	Bases/read ^b	Yield Mb/run	Reagent cost/run ^c	Reagent cost/Mb	Minimum unit cost (% run) ^d
3730xl (capillary)	2 h	0.000096	650	0.06	\$96	\$1500	\$6 (1%)
Ion Torrent - '314'chip	2 h	0.10	100	>10	\$500	<\$50	~\$750 (100%)
454 GS Jr. Titanium	10 h	0.10	400	50	\$1100	\$22	\$1500 (100%)
Starlight*	+	~0.01	>1000	+	+	+	+
PacBio RS	0.5–2 h	0.01	860-1100	5-10	\$110-900	\$11-180	+
454 FLX Titanium	10 h	1	400	500	\$6200	\$12.4	\$2000 (10%)
454 FLX+ ^e	18–20 h	1	700	900	\$6200	\$7	\$2000 (10%)
Ion Torrent – '316'chip*	2 h	1	>100	>100	\$750	<\$7.5	~\$1000 (100%)
Helicos ^f	N/A	800	35	28 000	N/A	NA	\$1100 (2%)
Ion Torrent – '318'chip*	2 h	4-8	>100	>1000	~\$925	~\$0.93	~\$1200 (100%)
Illumina MiSeq*	26 h	3.4	150 + 150	1020	\$750	\$0.74	~\$1000 (100%)
Illumina iScanSQ	8 days	250	100 + 100	50 000	\$10 220	\$0.20	\$3000 (14%)
Illumina GAIIx	14 days	320	150 + 150	96 000	\$11 524	\$0.12	\$3200 (14%)
SOLiD-4	12 days	>840 ^g	50 + 35	71 400	\$8128	<\$0.11	\$2500 (12%)
Illumina HiSeq 1000	8 days	500	100 + 100	100 000	\$10 220	\$0.10	\$3000 (12%)
Illumina HiSeq 2000	8 days	1000	100 + 100	200 000	\$20 120 ^h	\$0.10	\$3000 (6%)
SOLiD - 5500 (PI)*	8 days	>700 ^g	75 + 35	77 000	\$6101	<\$0.08	\$2000 (12%)
SOLiD – 5500xl (4hq)*	8 days	>1410 ^g	75 + 35	155 100	\$10 503 ^h	<\$0.07	\$2000 (12%)
Illumina HiSeq 2000 – v3 ⁱ *	10 days	≤3000	100 + 100	≤600 000	\$23 470 ^h	≥\$0.04	~\$3500 (6%)

File formats

<u>FASTQ</u>

@SRR527545.1 1 length=76 GTCGATGATGCCTGCTAAACTGCAGCTTGACGTACTGCGGACCCTGCAGTCCAGCGCTCGTCATGGAACGCAAACG

НННННННННННБGHHHHHFHHGHHHGHGHEEHHHHHEFFHHHFHHHBBHHEHFHAH?CEDCBFEFFFAFDF9

FASTA format

>SRR527545.1 1 length=76 GTCGATGATGCTGCTAAACTGCAGCTTGACGTACTGCGGACCCTGCAGTCCAGCGCTCGTCATGGAACGCAAACG

<u>SFF</u> - Standard Flowgram Format - binary format for 454 reads

Colorspace (SOLiD) - CSFASTQ

@0711.1 2_34_121_F3 T11332321002210131011131332200002000120000200001000

64;;9:;>+0*&:*.*1-.5:\$2\$3&\$570*\$575&\$9966\$5835'665

Read naming

ID is usually the machine ID followed by flowcell number column, row, cell of the read.

Paired-End naming can exist because data are in two file, first read in file 1 is paired with first read in file 2, etc. This is how data come from the sequence base calling pipeline. The trailing /1 and /2 indicate they are the read-pair 1 or 2.

In this case #CTTGTA indicates the barcode sequence since this was part of a multiplexed run.

File: Project1_lane6_1_sequence.txt

@HWI-ST397_0000:2:1:2248:2126#CTTGTA/1
TTGGATCTGAAAGATGAATGTAGAGAGACACAATCCAAGTCATCTCTCATG
+HWI-ST397_0000:2:1:2248:2126#CTTGTA/1
eeee\dZddaddddddeeeeeedaae_ec_ab_\NSRNRcdddc[_c^d

File: Project1_lane6_2_sequence.txt

@HWI-ST397_0000:2:1:2248:2126#CTTGTA/2 CTGGCATTTTCACCCAAATTGCTTTTAACCCTTGGGATCGTGATTCACAA +HWI-ST397_0000:2:1:2248:2126#CTTGTA/2]YYY_\[[][da_da_aa_a_b_Y]Z]ZS[]L[\ddccbdYc\ecacX
Paired-end reads

These files can be interleaved, several simple tools exist, see velvet package for shuffleSequences scripts which can interleave them for you.

Interleaved was requried for some assemblers, but now many support keeping them separate. However the order of the reads must be the same for the pairing to work since many tools ignore the IDs (since this requires additional memory to track these) and instead assume in same order in both files.

Orientation of the reads depends on the library type. Whether they are

----> <---- Paired End (Forward Reverse) <---- ---> Mate Pair (Reverse Forward)

Data QC

- Trimming
 - Adaptive or a hard cutoff
 - sickle, FASTX_toolkit, SeqPrep
- Additional considerations for Paired-end data
- Evaluating quality info with reports

FASTX toolkit

- Useful for trimming, converting and filtering FASTQ and FASTA data
- One gotcha Illumina quality score changes from 64 to 33 offset
- Default offset is 64, so to read with offset 33 data you need to use -Q 33 option
- fastx_quality_trimmer
- fastx_splitter to split out barcodes
- fastq_quality_formatter reformat quality scores (from 33 to 64 or)
- fastq_to_fasta to strip off quality and return a fasta file
- fastx_collapser to collapse identical reads. Header includes count of number in the bin

FASTX - fastx_quality_trimmer

- Filter so that X% of the reads have quality of at least quality of N
- Trim reads by quality from the end so that low quality bases are removed (since that is where errors tend to be)
- Typically we use Phred of 20 as a cutoff and 70% of the read, but you may want other settings
- This is adaptive trimming as it starts from end and removes bases
- Can also require a minimum length read after the trimming is complete

FASTX toolkit - fastx_trimmer

- · Hard cutoff in length is sometimes better
- Sometimes genome assembly behaves better if last 10-15% of reads are trimmed off
- Adaptive quality trimming doesn't always pick up the low quality bases
- With MiSeq 250 bp reads, but last 25-30 often low quality and HiSeq with 150 bp often last 20-30 not good quality
- · Removing this potential noise can help the assembler perform better

Trimming paired data

- When trimming and filtering data that is paired, we want the data to remain paired.
- This means when removing one sequence from a paired-file, store the other in a separate file
- When finished will have new File_1 and File_2 (filtered & trimmed) and a separate file File_unpaired.
- Usually so much data, not a bad thing to have agressive filtering

Trimming adaptors

- A little more tricky, for smallRNA data will have an adaptor on 3' end (usually)
- To trim needs to be a matched against the adaptor library some nuances to make this work for all cases.
 - $\circ\;$ What if adaptor has low quality base? Indel? Must be able to tolerate mismatch
- Important to get right as the length of the smallRNAs will be calculated from these data
- Similar approach to matching for vector sequence so a library of adaptors and vector could be used to match against
- Sometimes will have adaptors in genomic NGS sequence if the library prep did not have a tight size distribution.

Trimming adaptors - tools

- cutadapt Too to matching with alignment. Can search with multiple adaptors but is pipelining each one so will take 5X as long if you match for 5 adaptors.
- SeqPrep Preserves paired-end data and also quality filtering along with adaptor matching

FASTQC for quality control

- Looking at distribution of quality scores across all sequences helpful to judge quality of run
- Overrepresented Kmers also helpful to examine for bias in sequence
- Overrepresented sequences can often identify untrimmed primers/adaptors

FASTQC - per base quality

Sequence	Count	Obs/Exp Overall	Obs/Exp Max	Max Obs/Exp Position
CTGTC	33437120	7.1755667	14.170156	50-54
ATCTG	33814270	7.064167	15.138542	65-69
GTCTC	32389760	6.950804	14.348899	50-54
GCTGC	29340155	6.9267426	16.531528	70-74
CGCTG	29089270	6.8675127	16.455105	70-74
TGTCT	33183170	6.6351447	13.49372	50-54
CTCTT	33408740	6.5170074	13.125135	50-54
TCTCT	33224365	6.4810414	13.289863	50-54
GCCGA	26214755	6.4660773	16.517157	75-79
GACGC	26117475	6.442083	16.140318	65-69
ATACA	30984490	6.422781	13.738384	55-59
ACATC	30017510	6.3917494	14.464595	60-64
ACACA	28701480	6.3852487	14.690713	60-64
TGCCG	27026655	6.3805614	15.88847	70-74
TACAC	29248425	6.227985	13.874619	60-64
CATCT	30438105	6.203463	13.795571	60-64
TGACG	26974620	6.1994843	15.338736	65-69
CTGAC	27494840	6.1646304	15.06331	65-69
CACAT	28919350	6.1579137	14.247532	60-64

Getting ready to align sequence

Sequence aligners

Short read aligners

Strategy requires faster searching than BLAST or FASTA approach. Some approaches have been developed to make this fast enough for Millions of sequences. <u>maq</u> – one of the first aligners Burrows–Wheeler Transform is a speed up that is accomplished through a transformation of the data. Require indexing of the search database (typically the genome). BWA, Bowtie ?LASTZ? BFAST

Workflow for variant detection

- Trim
- Check quality
- · Re-trim if needed
- Align
- Possible realign around variants
- Call variants SNPs or Indels
- Possibly calibrate or optimize with gold standard (possible in some species like Human)

NGS Alignment for DNA

- Short reads (30-200bp)
 - \circ Bowtie and BWA implemented with the BWT algorithm, very easy to setup and run
 - $\circ~$ SSAHA also useful, uses fair amount of memory
 - $\circ~$ BFAST also good for DNA, supports Bisulfide seq,color-space but more complicated to run
- Longer reads (e.g. PacBio, 454, Sanger reads)
 - BWA has A mode using does a Smith-Waterman to place reads. Can tolerate large indels much better than standard BWA algorithm but slower. BWA-MEM is the currently reccomended mode
 – BWA-SW was the earlier implementation and may be more tested, BWA-MEM is the successor.
 - $\circ~$ LAST for long reads

BWA alignment choices

From BWA manual

On 350–1000bp reads, BWA–SW is several to tens of times faster than the existing programs. Its accuracy is comparable to SSAHA2, more accurate than BLAT. Like BLAT, BWA–SW also finds chimera which may pose a challenge to SSAHA2. On 10–100kbp queries where chimera detection is important, BWA–SW is over 10X faster than BLAT while being more sensitive.

BWA-SW can also be used to align \sim 100bp reads, but it is slower than the short-read algorithm. Its sensitivity and accuracy is lower than SSAHA2 especially when the sequencing error rate is above 2%. This is the trade-off of the 30X speed up in comparison to SSAHA2's -454 mode.

When running BWA you will also need to choose an appropriate indexing method - read the manual. This applies when your genome is very large with long chromosomes.

Colorspace alignment

• For SOLiD data, need to either convert sequences into FASTQ or run with colorspace aware aligner

• BWA, SHRiMP, BFAST can do color-space alignment

Realignment for variant identification

- Typical aligners are optimized for speed, find best place for the read.
- For calling SNP and Indel positions, important to have optimal alignment
- · Realignment around variable positions to insure best placement of read alignment
 - $\circ\;$ Stampy applies this with fast BWA alignment followed by full Smith-Waterman alignment around the variable position
 - Picard + GATK employs a realignment approach which is only run for reads which span a variable position. Increases accuracy reducing False positive SNPs.

Alignment data format

- SAM format and its Binary Brother, BAM
- Good to keep it sorted by chromosome position or by read name
- BAM format can be indexed allowing for fast random access
 - $\circ~$ e.g. give me the number of reads that overlap bases 3311 to 8006 on chr2

Manipulating SAM/BAM

- <u>SAMtools</u>
 - One of the first tools written. C code with Perl bindings Bio::DB::Sam (Lincoln Stein FTW!) with simple Perl and OO-BioPerl interface
 - Convert SAM <-> BAM
 - Generate Variant information, statistics about number of reads mapping
 - Index BAM files and retrieve alignment slices of chromosome regions
- Picard java library for manipulation of SAM/BAM files
- BEDTools C tools for interval query in BED,GFF and many other format fiels
 - $\circ~$ Can generate per-base or per-window coverage from BAM files with GenomeGraph
- BAMTools C++ tools for BAM manipulation and statistics

index genome before we can align (only need to do this once) \$ bwa index genome/Saccharomyces.fa # -t # of threads # -q quality trimming # -f output file # for each set of FASTQ files you want to process these are steps \$ bwa aln -q 20 -t 16 -f W303_1.sai Saccharomyces W303_1.fastq \$ bwa aln -q 20 -t 16 -f W303_2.sai Saccharomyces W303_2.fastq # do Paired-End alignment and create SAM file \$ bwa sampe -f W303.sam genome/Saccharomyces.fa W303_1.sai W303_2.sai \ W303_1.fastq W303_2.fastq # generate BAM file with samtools \$ samtools view -b -5 W303.sam > W303.unsrt.bam # will create W303.bam which is sorted (by chrom position) \$ samtools sort W303.usrt.bam # build index \$ samtools index W303.sorted.bam

New BWA options

Some recent improvements to bwa for 70-100bp reads is the bwa mem alignment algorithm. All in one step now to create the sam file.

\$ bwa mem -t 32 -M genome/Saccharomyces.fa W303_1.fastq W303_2.fastq > W303.sam

can even use samtools an pipe it to bam on the fly

wa mem -t 32 -M genome/Saccharomyces.fa W303_1.fastq $\$ W303_2.fastq I samtools view -bS > W303.unsrt.bam

BAM using Picard tools

Can also convert and sort all in one go with Picard

\$ java -Xmx2g -jar SortSam.jar IN=W303.sam OUT=W303.sorted.bam \
SORT_ORDER=coordinate VALIDATION_STRINGENCY=SILENT CREATE_INDEX=true

Or if you already created a bam file, but need to sort it, the input can also be a nam file

\$ java -Xmx2g -jar SortSam.jar IN=W303.unsrt.bam OUT=W303.sorted.bam \
SORT_ORDER=coordinate VALIDATION_STRINGENCY=SILENT CREATE_INDEX=true

Lots of other resources for SAM/BAM manipulation in Picard documentation on the web http://picard.sourceforge.net/command-line-overview.shtml.

View header from BAM file

\$ samtools view -h W303.sorted.bam | more @HD VN:1.0 G0:none S0:coordinate @SQ SN:chrI LN:230218 UR:file:genome/Saccharomyces.fa M5:6681ac2f62509cfc220d78751b8dc524 @SQ SN:chrII LN:813184 UR:file:genome/Saccharomyces.fa M5:97a317c689cbdd7e92a5c159acd290d2 \$ samtools view -bS W303.sam > W303.unsrt.bam \$ samtools sort W303.unsrt.bam W303.sorted # this will produce W303.sorted.bam \$ samtools index W303.sorted.bam \$ samtools view -h @SQ SN:chrVI LN:576874 @SQ SN:chrVI LN:270161 @SQ SN:chrVII LN:1090940 @SQ SN:chrVII LN:1090940 @SQ SN:chrIX LN:439888 @SQ SN:chrIX LN:439888 @SQ SN:chrIX LN:439888 @SQ SN:chrXI LN:666816 @SQ SN:chrXII LN:078177 @SQ SN:chrXII LN:078177 @SQ SN:chrXII LN:078177 @SQ SN:chrXII LN:1078177 @SQ SN:chrXII LN:1048177 @SQ SN:chrXII LN:924431 @SQ SN:chrXII LN:948066 @S

	Field	Type	Regexp/Range	Brief description	
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME	
2	FLAG	Int	[0,2 ¹⁶ -1]	bitwise FLAG	
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME	
4	POS	Int	[0,2 ²⁹ -1]	1-based leftmost mapping POSition	
5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality	
6	CIGAR	String	<pre>* ([0-9]+[MIDNSHPX=])+</pre>	CIGAR string	
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next segment	
8	PNEXT	Int	[0,2 ²⁹ -1]	Position of the mate/next segment	
9	TLEN	Int	[-2 ²⁹ +1,2 ²⁹ -1]	observed Template LENgth	
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence	
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33	

Read Groups

One component of SAM files is the idea of processing multiple files, but that these track back to specific samples or replicates.

This can be coded in the header of the SAM file

@RG ID:Strain124 PL:Illumina PU:Genomic LB:Strain124 CN:Broad

It can also be encoded on a per-read basis so that multiple SAM files can be combined together into a single SAM file and that the origin of the reads can still be preserved. This is really useful when you want to call SNPs across multiple samples.

The AddOrReplaceReadGroups.jar command set in Picard is really useful for manipulating these.

samtools flagstat

4505078 + 0 in total (QC-passed reads + QC-failed reads) 0 + 0 duplicates 4103621 + 0 mapped (91.09%:-nan%) 4505078 + 0 paired in sequencing 2252539 + 0 read1 2252539 + 0 read2 3774290 + 0 properly paired (83.78%:-nan%) 4055725 + 0 with itself and mate mapped 47896 + 0 singletons (1.06%:-nan%) 17769 + 0 with mate mapped to a different chr 6069 + 0 with mate mapped to a different chr (mapQ>=5)

Section 2012 Se

SAMtools and VCFtools to call SNPs

\$ samtools mpileup -D -S -gu -f genome/Saccharomyces.fa ABC.bam | \
bcftools view -bvcg - > ABC.raw.bcf \$ bcftools view ABC.raw.bcf | vcfutils.pl varFilter -D100 > ABC.filter.vcf

GATK to call SNPs

run GATK with 4 threads (-nt)

- # call SNPs only (-glm, would specific INDEL for Indels or can ask for BOTH)
 \$ java -Xmx3g -jar GenomeAnalysisTK.jar -T UnifiedGenotyper \
 -glm SNP -I W303.realign.bam -R genome/Saccharomyces.fa \
 -o W303.GATK.vcf -nt 4

GATK to call INDELs

run GATK with 4 threads (-nt)

- # call SNPs only (-glm, would specific INDEL for Indels or can ask for BOTH)
- \$ java -jar GenomeAnalysisTK.jar -T UnifiedGenotyper\
 - -glm INDEL -I W303.realign.bam \
 - -R genome/Saccharomyces.fa -o W303.GATK_INDEL.vcf -nt 4

VCF Files

Variant Call Format - A standardized format for representing variations. Tab delimited but with specific ways to encode more information in each column.

##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref and alt alleles in the c
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with b
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=GT,Number=1,Type=Integer,Description="Genotype">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GT,String,Description="Genotype"
##FORMAT=<ID=GT,String,Description="Genotype">
##FORMAT=<ID=GT,String,Description="Genotype">
##FORMAT=<ID=GT,String,Description="Genotype"
##FORMATE<ID=GT,String,Description="Genotype">
##FORMATE<ID=GT,String,Description="Genotype"
##FORMATE<ID=GT,String,Description="Genotype">
##FORMATE<ID=GT,String,Description="Genotype"
##FORMATE<ID=GT,String,Description="Genotype"
##FORMATE<ID=GT,String,Description="Genotype"
##FORMATE<ID=GT,Str

##FORWAT=<ID=PL,Number=6,Type=Integer,Description="Normalized, Phred-scaled likelihoods for genotypes ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in th ##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same orde</pre>

 #CHROM
 POS ID
 REF ALT
 QUAL
 FILTER
 INFO
 FORMAT
 W303

 chrI
 141
 C
 T
 47.01
 .
 AC=1;AF=0.500;AN=2;BaseQRankSum=-0.203;DP=23;Dels=0.00;

 FS=5.679;HaplotypeScore=3.4127;MLEAC=1;MLEAF=0.500;MQ=53.10;MQ0=0;MQRankSum=-2.474;QD=2.04;ReadPosRank
 SB=-2.201e+01
 GT:AD:DP:GQ:PL
 0/1:19,4:23:77:77,0,565

chrI 286. A T 47.01 . AC=1;AF=0.500;AN=2;BaseQRankSum=-0.883;DP=35;Dels=0.00; FS=5.750;HaplotypeScore=0.0000;MLEAC=1;MLEAF=0.500;MQ=46.14;MQ0=0;MQRankSum=-5.017;QD=1.34;ReadPosRank SB=-6.519e-03 GT:AD:DP:GQ:PL 0/1:20,15:35:77:77,0,713

Filtering Variants

GATK best Practices <u>http://www.broadinstitute.org/gatk/guide/topic?name=best-practices</u> emphasizes need to filter variants after they have been called to removed biased regions.

These refer to many combinations of information. Mapping quality (MQ), Homopolymer run length (HRun), Quality Score of variant, strand bias (too many reads from only one strand), etc.

-T VariantFiltration -o STRAINS.filtered.vcf --variant W303.raw.vcf \ --clusterWindowSize 10 -filter "QD<8.0" -filterName QualByDepth \ -filter "MQ>=30.0" -filterName MapQual \ -filter "HRun>=4" -filterName HomopolymerRun \ -filter "UQAL<100" -filterName QScore \ -filter "MQ0>=10 && ((MQ0 / (1.0 * DP)) > 0.1)" -filterName MapQualRatio \ -filter "FS>60.0" -filterName FisherStrandBias \ -filter "HaplotypeScore > 13.0" -filterName HaplotypeScore \ -filter "MQRankSum < -12.5" -filterName ReadPosRankSum >& output.filter.log

VCFtools to evaluate and manipulate

\$ vcftools --vcf W303.GATK.vcf --diff W303.filter.vcf N_combined_individuals: 1 N_individuals_common_to_both_files: 1 N_individuals_unique_to_file1: 0 N_individuals_unique_to_file2: 0 Comparing sites in VCF files... Non-matching REF at chrI:126808 C/CTTTTTTTTTTTT. Diff results may be unreliable. Non-matching REF at chrI:266129 A/AAC. Diff results may be unreliable. Non-matching REF at chrI:266404 A/ATTGTTGTTGTTGTTGT. Diff results may be unreliable. Non-matching REF at chrIV:390546 A/ATTGTTGTTGTTGTTGT. Diff results may be unreliable. Non-matching REF at chrIV:390546 A/ATTGTTGTTGTTGTT. Diff results may be unreliable. Non-matching REF at chrIV:390546 A/ATTGTTGTTGTTGTT. Diff results may be unreliable. Found 8604 SNPs common to both files. Found 1281 SNPs only in main file. Found 968 SNPs only in second file.

calculate Tajima's D in binsizes of 1000 bp [if you have multiple individuals]
\$ vcftools --vcf Sacch_strains.vcf --TajimaD 1000

Summary

- Reads should be trimmed, quality controlled before use. Preserving Paired-End info is important
- Alignment of reads with several tools possible, BWA outlined here
- SAMTools and Picard to manipulate SAM/BAM files
- Genotyping with SAMtools and GATK
- Summarizing and manipulating VCF files with VCFtools

VAAST Variant Annotation Analysis and Search Tool

CSHL Programming for Biology Oct 2014

Barry Moore Director, Science & Research USTAR Center for Genetic Discovery Department of Human Genetics University of Utah

Outline

Historical Perspective

Variant Calling (Follow the Probabilities)

- VAAST
 - o VAT
 - o VST
 - o VAAST 2.0

Rare Disease Applications

- Common Disease Applications
- Future Directions

Motivation

- Billions of years of evolution have fine tuned our DNA sequence.
- Genetic alterations to that sequence can cause disease.
- Knowing which mutations provides clues to understanding the disease.
- What are the mutations developing technology.
- Which mutation developing analysis methodolgies.

A Very Breif History of Medical Genetics

Cytogenetics

o Downs Syndrome - 1959

Linkage Mapping

• HTT (Huntington's Disease) gene mapped – 1983

Positional Cloning

o CFTR (Cystic Fibrosis) gene discovered - 1989

Sequencing, microarrays and GWAS

• ARMD, CD, MI, IBD – 2005-2006

Next generation sequencing – personalized genomics
Charact Maria Tooth, Millor Syndroma, Orden Syndroma 2010, 20

o Charcot-Marie-Tooth, Miller Syndrome, Ogden Syndrome 2010-2011

Genome Wide Association

VAAST Overview

- Probabilistic tool for disease gene discovery
- Aggragative variant analysis feature based
- Both allele and AAAS frequencies
- Conservation-controlled AAS
- Impliments numerous filters
- Standardized ontology based formats
- Modular and flexible in design

Outline

Historical Perspective

Variant Calling (Follow the Probabilities)

- VAAST
 - o VAT
 - o VST
 - o VAAST 2.0

Rare Disease Applications

- Common Disease Applications
- Future Directions

NGS Data Analysis

- Trillions of glowing DNA fragments produce base calls (reads).
- 100s of millions of sequence reads produce alignments.
- 10s of millions of variant sites produce variant calls.
- 10s of thousands of variants analyzed for association with disease.
- 1 gene causes disease.

Follow the Probabilities

- Base calling Bayesian inference
- Base quality score recalibration Covariant analysis
- Mapping quality Pseudo-probabilistic
- Variant calling Bayesian inference
- Variant quality score recalibration LOD ratio based on a trained Gaussian mixture model

VAAST - CLRT

Variant calling - Individual

- What is the probability that this site is reference vs. variant given the reads aligned at this site.
- What is the probability that this site has homozygous reference genotype vs. heterozygous genotype given the reads aligned at this site.
Variant calling - Population

 What is the probability that this site is reference (FOR THE POPULATION) given:

• The reads aligned at this site FOR THE POPULATION

- What is the probability that the genotype is homoygous reference (FOR THE INDIVIDUAL) given:
 - The reads aligned at this site FOR THE INDIVIDUAL
 - The probability that this site is variant FOR THE POPULATION

Variant calling - Population

Reference Sequence

TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA

	TGCCTGTAC <mark>A</mark> GCTCGTTTTCTACAAGATTC
ual	AACTGAACTCCTGCCTGTAC <mark>G</mark> GCTCGT
livid	TGAACTCCTGCCTGTAC <mark>G</mark> GCTCGTTTTCTA
Inc	TGTAC <mark>A</mark> GCTCGTTTTCTACAAGATTCCAGA
	CTCCTGCCTGTAC <mark>G</mark> GCTCGTTTTCTACAAG
	ACTCCTGCCTGTAC <mark>G</mark> GCTCGTTTTCTACAA
Population	GCCTGTAC <mark>G</mark> GCTCGTTTTCTACAAGATTCC
	TGCCTGTAC <mark>A</mark> GCTCGTTTTCTACAAGATTC
	AACTGAACTCCTGCCTGTAC <mark>G</mark> GCTCGT
	TGAACTCCTGCCTGTAC <mark>A</mark> GCTCGTTTTCTA

Missing data

- Low/no sequence coverage
- Low base qualities
- Variant callers typically emit only variant sites
- What happens when we don't distinguish between missing data and reference sites
- Annotating no-calls can help solve this problem
- Population based variant calling provides this

Missing data

Variant Calling Format (VCF)

##f ##F ##F ##I ##C	<pre>##fileformat=VCFv4.1 ##FILTER=<id=lowqual,description="low quality"=""> ##FORMAT=<id=gq,number=1,type=integer,description="genotype quality"=""> ##INF0=<id=dp,number=1,type=integer,description="approximate depth"="" read=""> ##contig=<id=1,length=249250621></id=1,length=249250621></id=dp,number=1,type=integer,description="approximate></id=gq,number=1,type=integer,description="genotype></id=lowqual,description="low></pre>									
1	745370		TA	Т	1310.90	PASS	DP=210;	GT:GQ	0/1:99	0/1:99
1	749592	•	G	Α	20	LowQual	DP=7;	GT:GQ	./.	1/1:6
1	749683	•	C	Т	602.40	PASS	DP=69;	GT:GQ	./.	1/1:13
1	749856	•	C	Т	261.37	PASS	DP=79;	GT:GQ	1/1:9	0/1:99
1	749899	•	G	Α	302.28	PASS	DP=53;	GT:GQ	0/0:9	0/1:99
1	752566	•	G	Α	1047.91	PASS	DP=47;	GT:GQ	1/1:30	0/1:29
1	752721	•	Α	G	7625.90	PASS	DP=360;	GT:GQ	1/1:99	0/1:99
CHROM	POS	D	REF	ALT	QAUL	FILTER	INFO	FORMAT	INDIVIDUAL	INDIVIDUAL

VAAST

A tool for identifying disease genes and variants

Collaboratatively developed

- Mark Yandell (University of Utah)
- Chad Huff (MD Anderson)
- Martin Reese (Omicia Inc.)

Inputs

- Target genome variant files
- Background genome variant files
- Genomic features (gene models)
- Genomic sequence

- Outputs a prioritized list of features (genes/ transcripts) associated with the disease genomes.
 - VAAST Score
 - o P-value
 - Confidence interval

Variant **A**nnotation Tool Variant **S**election Tool Variant **A**nnotation **A**nalysis Search Tool

VAAST File Types

Input

- o Fasta Genome
- o GFF3 Genes
- o GVF Variants

Output

- GVF Annotated Variants
- CDR Population Variants
- VAAST Prioritized gene list

Fasta

>chr1 TAACAAAATAAGATCCAGAAACTTTCCATTAGCGTGGGGGTGACCATGAA ATGCCTGGTCAAAAACCCGGGCACTGATTGTCATAACCATTATGCAACTG GTGTTGCGTCCATCAGAATCTAGTTTAAGAATACTCTTCTCTCTATAGGA GTCTTCGCGGCAGACCTAGCCTGCTCTGTGTCCTCCTGAAATGAAGGAAT GTTCTCTCCCATTATTTCTTCTAACAGCTTGGTTAGCAAGCTCCGCCCTC TTCTTTATCTGACCTTCTAACGACCTCACCAGATGTGTGAAGCAGCCCGG CTCCATGTGTATCAGgcacgcacgcacacacgcacgcacacCAACCTGCA AAGGAAATAACGGGGCAGCCCTGCAGTGTGAAAGCAATGGGATTTTGTG GGTTCCACCTCCTCACCTAAGCATCCCTGGTCTACGCTATGTCACGACCC TCTGCTGAACCACGTCAGGGTGAACCCCNNNNNNNNNN

Welcome to the Sequence Ontology

This is the home page of the Sequence Ontology (SO). SO is a collaborative ontology project for the definition of sequence features used in biological sequence annotation. SO was initially developed by the Gene Ontology Consortium. Contributors to SO include the GMOD community, model organism database groups such as WormBase, FlyBase, Mouse Genome Informatics group, and institutes such as the Sanger Institute and the EBI. Input to SO is welcomed from the sequence annotation community. SO is also part of the Open Biomedical Ontologies library. Our aim is to develop an ontology suitable for describing the features of biological sequences. For questions, please send mail to the SO developers mailing list. For new term suggestions, please use the Term Tracker.

Introduction

The Sequence Ontology is a set of terms and relationships used to describe the features and attributes of biological sequence. SO includes different kinds of features which can be located on the sequence. Biological features are those which are defined by their disposition to be involved in a biological process. Examples are **binding_site** and **exon**. Biomaterial features are those which are intended for use in an experiment such as aptamer and PCR_product. There are also experimental features which are the result of an experiment. SO also provides a rich set of attributes to describe these features such as "polycistronic" and "maternally imprinted".

News

October 2013 GVF was used in the clinical

annotation of a whole genome, for precision medicine. Integrating precision medicine in the study and clinical treatment of a severely mentally ill person

September 2013 The SO development team and the Monarch Initiative held a collaborative workshop in Portland to align the SO and the GENO ontologies for better annotation of phenotypes. This meeting was partially funded by the Phenotype RCN .

Variants, Features and Effects

Variant Type

- •sequence_alteration
- •deletion
- •insertion
- duplication
- •inversion
- •substitution

•<u>SNV</u>

- •MNP
- •complex substitution
- •translocation

Feature Type •sequence_feature

- •gene
- •mRNA
- •exon
- •<u>CDS</u>
- •splice site
- •ncRNA

Variant Effect sequence variant •gene variant •five_prime_UTR_variant •three_prime_UTR_variant •exon variant •splice_region_variant •splice_donor_variant splice acceptor variant •intron variant •coding_sequence_variant stop retained •stop lost stop gained •synonymous_variant missense variant amino_acid_substitution •frameshift_variant •inframe variant

Sequence Ontology

Generic Feature Format (GFF3)

##gff-version 3 ##sequence-region chr1 1 1497228									
##Seque	:n	ce-re	gion d	curr 1	L.	143)/.	228	
chr1	•	gene	1000	9000	•	+	•	ID=gene00001;Name=EDEN 3	
chr1	•	mRNA	1050	9000	•	+	•	<pre>ID=mRNA00001;Parent=gene00001;Name=EDEN.1</pre>	
chr1	•	mRNA	1050	9000	•	+	•	<pre>ID=mRNA00002;Parent=gene00001;Name=EDEN.2</pre>	
chr1		mRNA	1300	9000	•	+	•	<pre>ID=mRNA00003;Parent=gene00001;Name=EDEN.3</pre>	
chr1	•	exon	1300	1500	•	+	•	ID=exon00001;Parent=mRNA00003	
chr1		exon	1050	1500	•	+	•	ID=exon00002;Parent=mRNA000001,mRNA00002	
chr1		exon	3000	3902	•	+	•	ID=exon00003;Parent=mRNA00001,mRNA00003	
chr1		exon	5000	5500	•	+	•	<pre>ID=exon00004;Parent=mRNA00001,mRNAchr1 mRNA00003</pre>	
chr1	•	exon	7000	9000	•	+	•	ID=exon00005;Parent=mRNA00001,mRNA00002,mRNA00003	

Seqid	source	Type	Start	End	score Strand Phase	Attributes
S	S	μ.	S	Ш	ഗഗപ	< <p>✓</p>

Genome Variation Format

##gvf-version 1.06 ##genome-build GRCh37.1 ##sequence-region chr16 1 88827254										
chr16	UG	SNV	291141	291141	33 + .	<pre>ID=ID_1;Variant_seq=A,G;Reference_seq=G;</pre>				
chr16	UG	SNV	291360	291360	17 + .	ID=ID_2;Variant_seq=G;Reference_seq=C;				
chr16	UG	SNV	302125	302125	67 + .	<pre>ID=ID_3;Variant_seq=T,C;Reference_seq=C;</pre>				
chr16	UG	SNV	302365	302365	43 + .	<pre>ID=ID_4;Variant_seq=G,C;Reference_seq=C;</pre>				
chr16	UG	SNV	302700	302700	75 + .	<pre>ID=ID_5;Variant_seq=T;Reference_seq=C;</pre>				
chr16	UG	SNV	303084	303084	16 + .	<pre>ID=ID_6;Variant_seq=G,T;Reference_seq=T;</pre>				
chr16	UG	SNV	303156	303156	90 + .	<pre>ID=ID_7;Variant_seq=T,C;Reference_seq=C;</pre>				
chr16	UG	SNV	303427	303427	52 + .	<pre>ID=ID_8;Variant_seq=T,C;Reference_seq=C;</pre>				
chr16	UG	SNV	303596	303596	66 + .	ID=ID_9;Variant_seq=T,C;Reference_seq=C;				
Seqid	Source	Type	Start	End	Score Strand Phase	Attributes				

Variant Annotation Tool (VAT)

- Adds functional annotation of the effect of sequence alterations (SNV, insertion, deletion) on sequence features (genes, mRNA)
- Takes as input a reference sequence (Fasta file), and set of gene models (GFF3 file) and a set of variants (GVF)
- Produces an annotated GVF file as output

VAT -a genome.fasta -f gene.gff3 variants.gvf > variants.vat.gvf

Variant_effect attribute

Describes the effect of a sequence alteration on a sequence feature

- The sequence_variant (the effect)
- The Variant_seq allele index (which allele causes this effect)
- The sequence_feature (what type of feature is affected)
- The feature IDs (which features are affected

Variant_seq=A,T; Variant_effect=missense_variant 0 mRNA NM_001160184 NM_032129;

Variant Selection Tool (VST)

- Applies complex set operations (intersection, union etc) to GVF files and produces a condensed representation of the genotypes.
- Takes as input a description of the set operation and a group of GVF files.
- Outputs population genotypes in CDR format.

VST -o 'I(0,1)' exome1.gvf exome2.gvf > affected.cdr

VST -o 'C(0,U(1,2))' kid.gvf mom.gvf dad.gvf > denovo.cdr

VST set operations

(U)nion: All variants in all files.

- **(I)ntersection**: Variants shared by all files.
- **(C)omplement**: The left relative complement or variants unique to the first file (set).
- (D)ifference: The symetric difference or variants unique to any one file (set).
- (S)hared: Variants shared by n files. S(n,0..2); 'S(">2",0..2)').
 - = Exactly n files share the variant.
 - > Greater than n files share the variant.
 - \circ < Less than n files share the variant.

VAAST Condenser File (CDR)

Seqid	Start	End	Type	Effect	Reference	Genotypes	
chr1	877831	877831	SNV	missense_variant	TIW	0-3 C:C R:R	
chr1	881627	881627	SNV	synonymous_variant	GIL	0,2-3 A:A L:L	1 A:G L:L
chr1	881918	881918	SNV	missense_variant	G S	2 A:G L:S	
chr1	887801	887801	SNV	synonymous_variant	AIT	1 A:G T:T	0,2-3 G:G T:T
chr1	888639	888639	SNV	synonymous_variant	ΤĮΕ	0 C:C E:E	1 C:T E:E
chr1	888659	888659	SNV	missense_variant	TII	0,1-2 C:C V:V	3 C:T V:I
chr1	889238	889238	SNV	missense_variant	G A	1 A:G V:A	
chr1	897325	897325	SNV	synonymous_variant	GA	0,2 C:C A:A	1 C:G A:A
chr1	897738	897738	SNV	synonymous_variant	CIL	1 C:T L:L	
chr1	900505	900505	SNV	synonymous_variant	G V	3 C:C V:V	2 C:G V:V
chr1	900972	900972	SNV	3_prime_UTR_variant	Т	0,2 G:G	1 G:T
chr1	901023	901023	SNV	3_prime_UTR_variant	Т	0,2-3 C:C	1 C:T
##	GENOM	E-LENGTH	91	4121104			
##	GENOM	E-COUNT	7				
##	GENDE	R F:0-1	, 3	M:2			
##	FILE-	INDEX	Θ	A12.vat.gvf			
##	FILE-	INDEX	1	B34.vat.gvf			
##	FILE-	INDEX	2	C56.vat.gvf			
##	FILE-	INDEX	2	D78.vat.gvf			

VAAST

- Scores and prioritizes features in a probabalistic fashion for their likelihood of being associated with a disease phenotype.
- Takes as input a set of gene models (GFF3), a set of variants for background/healthy genomes (CDR) and a set of variants for target/disease genomes (CDR).

VAAST -m lrt -o Output_name genes.gff3 background.cdr target.cdr

VAAST Uses Variant Frequencies in a Probabilistic Fashion

Composite Likelihood Ratio Test

$$\lambda = \ln \left(\begin{array}{c} L_{Null} \\ L_{Alt} \end{array} \right)$$

Maximum Likelihood of the Null Model (*No Difference*)

Maximum Likelihood of the Alternate Model (*There is Difference*)

VAAST Uses Variant Frequencies in a Probabilistic Fashion

- B/T: Backgroud/Target Allele Counts
- X/Y: Minor/Major Allele

Conservation-controlled amino acid scoring matrix – CASM

- The amino acid severity parameter is adjusted to account for the degree of phylogenetic conservation at a site.
- Conservation data comes from PhastCons scores which estimate a probability of a site being under negative selection (conserved).
- Each AAS type is scored at all sites with a PhastCons score of 0 and 1 (the two extremes).
- The AAS severity parameter at any PhastCons score is then lineraly interpolated between those extremes.
- The effect is that the AAS severity paremeter dimishes with diminishing conservation.

VAAST Uses Variant Frequencies in a Probabilistic Fashion

- VAAST gives us the likelihood of the composite genotype of a given gene in the target given the background.
- Do allele and AAS frequencies differ between background and target genomes within a given gene or feature?
- Composite likelihood calculation assumes independence across sites. To control for LD, statistical significance is estimated by permutation test.
- Multiple test correction for number of features (~20,000) is two orders of magnitude better than for the number of variants (~3,500,000).

VAAST: highly accurate variant prioritization

		Percent Judged Deleterious										
	Dream tool	SIFT ²	ANNOVAR ³	PolyPhen2	Mutation Taster	VAAST						
Disease alleles ^A	100%	58%	71%	84%	84%	99%						
Healthy alleles ^B	0%	12%	1%	16%	16%	10%						

Accuracy (Sn + Sp)/2 1	100% 80	9% 88%	86%	86%	95%
---------------------------	---------	--------	-----	-----	-----

^A1454 high quality, published disease-causing/predisposing OMIM alleles¹

^B1454 Variants randomly selected from 5 different healthy CEU individuals' genomes

VAAST Filters

Inheritance model

- Dominant: Only score one allele per feature
- Recessive: Only score two alleles per feature

Locus heterogeneity

• Require all affected individuals to have a scoring allele

Complete penetrance

 Don't score a feature if anyone in the background shares it's scoring alleles.

Rate/PAR

• Hold the MAF in the background/target below the given value.

Dangers of filtering

- Filters are binary you either pass or fail.
- Filters (usually) don't consider missing data.
- Filters aren't able to incoporate multiple factors into the equation.

Alleles Responsible for Miller Syndrome in Utah Kindred

•Ng *et al,* Nature Genetics 42, 30–35, 2010 •Roach, *et al*, Science 328 636, 2010

Schematic of VAAST Analysis of Utah Miller Kindred Using a Single Quartet

chr1		chr13	
chr2		chr14	
chr3		chr15	
chr4			DHODH
		chr16	
	DNAH5	chr17	
chr6		chr18	
chr7		chr19	
-las Q		chr20	=
Chiro		chr21	
chr9		chr22	
chr10			
chr11		chrX	
chr12		chrY	

A rare X-linked mendelian disorder

- A Utah family coming to the University Hospital for 20+ years
- About half of the male offspring die around 1 year of age
- Aged appearance
- Craniofacial anomalies
- Hypotonia
- Global developmental delays
- Cardiac arrhythmias

Four Affected Boys over Two Generations

Identifying Candidate Genes

VAAST identified NAA10 as candidate gene

- Run entire pipeline in an afternoon
- 3 candidate genes (NAA10 ranked 2) proband only
- 1 candidate gene (NAA10) with pedigree

chrX

VAAST benchmark – 100 OMIM diseases

Randomly choose known disease genes from OMIM

- Randomly insert one or more published disease causing variants for that gene into a personal exome
- Assay the ability of VAAST, SIFT1 and ANNOVAR2 to identify the disease gene in a genome-wide screen
- Repeat for 100 different genes under a variety of different scenarios, e.g. dominant, recessive, various case cohort sizes etc.

VAAST benchmark – 100 OMIM Diseases

Hu et al. Genet Epidemiol. 2013
VAAST benchmark – common disease

Hu et al. Genet Epidemiol. 2013

VAAST in non-human organisms

Peak crest

Shell crest

Mane

Hood

Shapiro et al. Science. 2013

pVAAST for pedigree analyses

Extends VAAST to incorporate family data (pedigrees)

- PVAAST performs linkage analysis by calculating a genebased LOD designed for NGS
- The LOD score at each locus is incorporated directly into the CLRT.
- In large-scale simulation studies and re-analysis of known disease pedigress, pVAAST had significantly higher statistical power compared other tools – including VAAST.

VAAST 1.0 cardiac septal defect

Hu et al submitted, Original study: Garg et al. Nature. 2003

pVAAST - cardiac septal defect

Location along the genome Run time: 4 hours on 42 CPUs

Phevor

Candidate Gene Ranking

Omicia - Opal

Development supported by NIH SBIR grants 1R4HG003667 to Omicia/Yandell, SBIR 1R44HG002991 to Omicia

VAAST in Opal

VAAST in Summary

- Probabilistic Disease Gene Finder
- Feature Based
- Both Allele and AAS Frequencies
- Considers the Inheritance Model
- As few as 1-2 target genomes can be sufficient to identify causative gene.
- Complete analysis pipeline
- Many parameters allow fine-grained control of analysis
- pVAAST and Phevor on the way for otherwise underpowered analyses.

(andell L		Y	andell Lab -	· Variant A	Annotation, Ana	lysis and	Search	1001			
and chi z	ab - Varia	nt Annotatio	+								
•	🕽 😽 ht	ttp://www .yan	dell-lab.org/	/software/	vaast.html 🌱	7▼ C (🛃 - illu	mina sec	quenciiQ		•
lost Visi	ted 👻 🗋	Barry's Wiki	Yandell	Lab Home	Yandbeck V	Viki 😒	The Sequ	ence O		» 📘 Bo	okmarks
Ya Depart	nd ment of	ell L Human Ger	_ab netics - Un	iversity	of Utah						
Home	People	Research	Software	MWAS	Publications	About	Links	Utah	Contact	Internal	
and (AAS	ST (the Va their disea S) and agg	ariant Annotatio ase-causing va pregative appro	on, Analysis a riants in perso aches to vari	and Search onal genon iant prioritiz	Tool) is a probat ne sequences. V zation, combining	bilistic sea AAST build g elements	rch tool fo ds upon e of both in	or identify existing a nto a sing	ring damage mino acid s gle unified lil	ed genes ubstitution kelihood-	
VAA and (AA: fram eas) type rare use	ST (the Va their disea S) and agg nework tha y-to-use fa es of varian and comm than any e blication	ariant Annotation ase-causing va gregative appro- t allows users shion. VAAST its simultaneou non variants to existing methoo s	on, Analysis a riants in perso baches to vari to identify dar can score bo usly. VAAST o identify gene dology.	and Search onal genon iant prioritiz maged gen th coding a can identify as responsi	Tool) is a probation ne sequences. Vization, combining les and deleteriou and non-coding vizing rare variants cauble for common of	bilistic sea AAST build elements us variants ariants, ev using rare diseases. V	rch tool fo ds upon e of both in with gre aluating t genetic d VAAST th	or identify existing a nto a sing ater accu he cumul iseases, us has a	ring damage mino acid s gle unified lil rracy, and in lative impac and it can a much great	ed genes ubstitution kelihood- n an ct of both also use bo ter scope o	th f
VAA and (AA: fram easy type rare use Put Yan Ge	ST (the Va their disea S) and agg nework tha y-to-use fa e and comm than any e blication	ariant Annotation ase-causing va gregative appro- t allows users is shion. VAAST its simultaneou non variants to existing method sisting method c disease-gene CD Hu H Single . 2011 Jul	on, Analysis a riants in perso paches to vari to identify dar can score bo isly. VAAST o identify gene dology.	and Search onal genon iant prioritiz maged gen th coding a can identify es responsi	omes omes de L Reese MG	bilistic sea AAST build gelements us variants ariants, ev using rare diseases.	rch tool fo ds upon e of both in s with gre aluating t genetic d VAAST th	or identify existing a nto a sing ater accu he cumul iseases, us has a	ring damage mino acid s gle unified lil rracy, and in lative impac and it can a much great	ed genes ubstitution kelihood- n an ct of both also use bo ter scope o	th f
VAA and (AA: fram easy type rare use Pul Yan Ge	AST (the Va their disea S) and agg nework that y-to-use fa es of varian e and comm than any e blication blication blication probabilistic modell M Huff enome Res ing VAAST ficiency pe AF Wang Jiang T Sci Yandell M A	ariant Annotatio ase-causing va gregative appro- t allows users i shion. VAAST its simultaneou- non variants to existing method is <u>c disease-gene</u> <u>c CD Hu H Single</u> . 2011 Jul <u>to Identify an</u> <i>g K Evjenth R Xii</i> hank C Fain HD Arnesen T Lyon	on, Analysis a riants in perso paches to vari to identify dar can score bo usly. VAAST o identify gene dology. <u>a finder for pe</u> <u>aton M Moore E</u> <u>X-Linked Dis</u> <i>Robison R Da</i> <i>GJ</i>	and Search onal genon iant prioritiz maged gen th coding a can identify es responsi ersonal gen 3 Xing J Jord order Resu JJ Swensen Iley B Chin S	o Tool) is a probab ne sequences. Wi zation, combining ues and deleteriou and non-coding va rare variants cau ble for common of omes de L Reese MG	in Male Inf	fants Due for Bird I bergenetic d	to N-Ter	ring damage mino acid si gle unified lil iracy, and in lative impace and it can a much great much great <u>minal Acety</u> JC Opitz JM lehaug JR Bio	ed genes ubstitution kelihood- n an ot of both also use bo ter scope of ter scope of ditransferas	th f

Acknowledgements

VAAST Development

- •Chad Huff
- •Нао Ни
- •Lynn Jorde
- •Edward Kirulata
- •Marco Falcioni
- •Barry Moore
- •Martin Reese
- •Jinchuan Xing
- •Mark Yandell

Sequence Ontology

- •Mike Bada
- •Colin Batchelor
- •Karen Eilbeck
- •Barry Moore
- •Shawn Reynearson

Yandell Lab

- •Michael Campbell
- •Daniel Ence
- •Steven Flygare
- •Carson Holt
- •Brett Kennedy
- •Zev Kronenberg
- •Qing Li
- •Gordon Lemmon
- •Barry Moore
- •EJ Osbourne
- •Scott Watkins
- •Mark Yandell

Omicia

- •Marco Falcioni
- •Edward Kirulata
- •Martin Reese
- •Jeff Rule
- •Charlene Rigby
- •Andrew Gao

Funding •NHGRI

Acknowledgements

Base Quality Score

- Base-calling considers many possible sources of error in the sequencing process:
 - Mixed clusters
 - Out of phase clusters
 - Overlapping emission spectra
- The base quality score (BQS) is based on the probability that the base was called wrong.
- The quality score is "Phred scaled" o -10 * log₁₀(probability of miscall)

FastQC Report

Quality scores across all bases (Sanger / Illumina 1.9 encoding)

Sequence Alignment

- BLAST
 - Fast (at least we used to think so)
 - Accurate Smith-Waterman algorithm guaruntees optiomal alignment.
 - Seed and extend (SW dynamic)
- Short-read aligners
 - o Fast
 - Sort of accurate Many hueristics
 - Seeding and extension (hueristics terminate unlikely extensions).

- QNAME: Query Name (which read)
- FLAG: Bit Flag (Categorical details of the alignment)
- RNAME: Reference Name (which chromosome)
- POS: Position (The starting location of the alignment)
- MAPQ: Mapping Quality (How well did the sequence map)
- (CIGAR, PNEXT, RNEXT, TLEN)
- SEQ: Sequence
- QUAL: Base qualities

Challenges for short-read aligners

- Repetative regions
 - Multiple algnments with the same score
 - How many of multiple alignments to score
 - o Which SNV should I choose
- Insertions and deletions
 - Aligners hate to open gaps
 - Working one read doesn't allow context
 - Indel edges are inconsistent
 - A halo of bogus SNVs can be induced

Multi-mapping reads

Challenges for short-read aligners

- Repetative regions
 - Multiple algnments with the same score
 - How many of multiple alignments to score
 - o Which SNV should I choose
- Insertions and deletions
 - Aligners hate to open gaps
 - Working one read at a time doesn't allow context
 - Indel placements are inconsistent
 - A halo of bogus SNVs can be induced

Indel alignment

Reference Sequence

TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA

TGCCTGTACAGCTCGTT-TCTACAAGATTC AACTGAACTCCTGCCTGTACAGCTCGT TGAACTCCTGCCTGTACAGCTCG-TTTCTA TGTACAGCTCGTTT-CTACAAGATTCCAGA CTCCTGCCTGTACAGCTCGTTTTCTACAAG ACTCCTGCCTGTACAGCTCGTTTC-TACAA GCCTGTACAGCTCGT-TTCTACAAGATTCC

Polishing Alignments

- Base quality recalibration covariant analysis
 - Readgroup
 - o Cycle
 - Sequence context
- Local re-alignment around indels (Local assembly)
 - Improves indel calls
 - Reduces SNV fales positive

Covariant based BQS recalibration

Reference Sequence

TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA

TGCCTGTACAGCTCGTTTTCTACGAGATTC

AACTGAACTCCTGCCTGTACAGCTCGT

TGAACTCCTGCCTGTACAGCTCGTTTTCTA

TGTACAGCTCGTTTTCTAC<mark>G</mark>AGATTCCAGA

CTCCTGCCTGTACAGCTCGTTTTCTACGAG

ACTCCTGCCTGTACAGCTCGTTTTCTAC

GCCTGTACAGCTCGTTTTCTAC<mark>G</mark>AGATTCC

Polishing Alignments

- Base quality recalibration Covariant analysis
 - Readgroup
 - o Cycle
 - Sequence context
- Local re-alignment around indels (Local assembly)
 - Improves indel calls
 - Reduces SNV fales positive

Indel alignment

Reference Sequence

TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA

TGCCTGTACAGCTCGTT-TCTACAAGATTC AACTGAACTCCTGCCTGTACAGCTCGT TGAACTCCTGCCTGTACAGCTCG-TTTCTA TGTACAGCTCGTTT-CTACAAGATTCCAGA CTCCTGCCTGTACAGCTCGTTTTCTACAAG ACTCCTGCCTGTACAGCTCGTTTC-TACAA GCCTGTACAGCTCGT-TTCTACAAGATTCC

Indel alignment

Reference Sequence

TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA

TGCCTGTACAGCTCGTT - TCTACAAGATTC AACTGAACTCCTGCCTGTACAGCTCGT TGAACTCCTGCCTGTACAGCTCGTT - TCTA TGTACAGCTCGTT - TCTACAAGATTCCAGA CTCCTGCCTGTACAGCTCGTT - TCTACAAG ACTCCTGCCTGTACAGCTCGTT - TCTACAA GCCTGTACAGCTCGTT - TCTACAAGATTCC

Variant Calling

Reference Sequence

TACAGCTGAACTGAACTCCTGCCTGTACAGCTCGTTTTCTACAAGATTCCAGACCTGGAA

TGCCTGTACAGCTCGTTTTCTACAAGATTC AACTGAACTCCTGCCTGTAC G GCTCGT TGAACTCCTGCCTGTAC A GCTCGTTTTCTA TGTAC A GCTCGTTTTCTACAAGATTCCAGA CTCCTGCCTGTAC G GCTCGTTTTCTACAAG ACTCCTGCCTGTAC A GCTCGTTTTCTACAA GCCTGTAC G GCTCGTTTTCTACAAGATTCC

Bayes Theorem

 $P(Ref|Data) = \frac{P(Data|Ref) * P(Ref)}{P(Data)}$

- Incorporates the probability of our data given the hypotyhesis
- Incorporates prior information the probability this site is reference.
- Incorporates the probability of the data under all hypotheses
- Provides a probability of belief in the hypothesis

Variant quality score

- The probability that the site was incorrectly called
- Phred scaled so its more intuitive
- Can be used to filter low quality sites

Genotype quality score

- The probability that the site was incorrectly genotyped.
- Is similar to VQS when calling single individual's variants – but not when calling population variants.
- Can be used to filter low quality sites on an individual basis when calling variants on a population.
- This is the value that you want to use to evaluate the quality of an variant.

Variant filtering and recalibration

- Filtering on VQS or GQS is so yesterday!
- Population based variant calling allows population based covariant analysis of VQS
- Variant calling programs are implimenting these recalibrations
 - o GATK VQSR
 - o Real Time Genomics AVR Score
 - FreeBayes

VQSR

- Considering only high-quality sites (HapMap3 concordant) build a mixture model considering various co-varying parameters
 - Allele Balance (ref/alt in hets)
 - Homopolymer run
 - o MAPQ score
 - o Strand Bias
 - Depth of coverage
- Apply that model to all variants until a given number of known sites have been recovered.

VQSR

DePreisto et al, Nature Genetics 2011

Evaluating variant call sets

- Variant counts (~3.5-4M WGS, ~50K capture, ~20K coding, ~10K missense)
- Ti/Tv Ratio (~2.1-2.8)
- Concordance with known sites (HapMap3)
- NIST/GCAT Tool for comparing pipelines

 http://www.bioplanet.com/gcat

Establishing homology from statistically significant similarity Why BLAST works

- For most proteins, homologs are easily found over long evolutionary distances (500 My – 2 By) using standard approaches (BLAST, FASTA)
- Difficult for distant relationships or very short domains
- Most default search parameters are optimized for distant relationships and work well

expect	+ %_id	+ alen	+ E coli descr	+ Human descr	sp_name
2.7e-206	 53.8	 944	glycine decarboxylase, P	Glvcine dehvdrogenase [de	GCSP HUMAI
1.2e-176	59.5	706	methylmalonyl-CoA mutase	Methylmalonyl-CoA mutase,	MUTA HUMAI
3.8e-176	50.6	803	glycogen phosphorylase [E	Glycogen phosphorylase,]	PHS1 HUMAI
9.9e-173	55.6	1222	B12-dependent homocystein	5-methvltetrahvdrofolate-	METH HUMAI
1.8e-165	41.8	1031	carbamoyl-phosphate synth	Carbamoyl-phosphate synth	CPSM HUMAI
5.6e-159	65.7	542	glucosephosphate isomeras	Glucose-6-phosphate isome	G6PI HUMAI
8.1e-143	53.7	855	aconitate hydrase 1 [Esch	Iron-responsive element b	IRE1 HUMAI
2.5e-134	73.0	459	membrane-bound ATP syntha	ATP synthase beta chain,	ATPB HUMAI
3.3e-121	55.8	550	succinate dehvdrogenase,	Succinate dehvdrogenase [DHSA HUMAI
1.5e-113	60.6	401	putative aminotransferase	Cysteine desulfurase, mit	NFS1 HUMAN
4.4e-111	60.9	460	fumarase C= fumarate hydr	Fumarate hydratase, mitoc	FUMH HUMAI
1.5e-109	56.1	474	succinate-semialdehyde de	Succinate semialdehyde de	SSDH HUMAN
3.6e-106	44.7	789	maltodextrin phosphorylas	Glycogen phosphorylase, m	PHS2 HUMAI
1.4e-102	53.1	484	NAD+-dependent betaine al	Aldehyde dehydrogenase, E	DHAG HUMAI
3.8e-98	53.0	449	pyridine nucleotide trans	NAD(P) transhydrogenase,	NNTM HUMAI
5.8e-96	49.9	489	glycerol kinase [Escheric	Glycerol kinase, testis s	GKP2 HUMAI
2.1e-95	66.8	328	glyceraldehyde-3-phosphat	Glyceraldehyde 3-phosphat	G3P2 HUMAI
5.0e-91	62.5	368	alcohol dehydrogenase cla	Alcohol dehydrogenase cla	ADHX_HUMAI
6.7e-91	56.5	393	protein chain elongation	Elongation factor Tu, mit	EFTU HUMAI
9.5e-91	56.6	392	protein chain elongation	Elongation factor Tu, mit	EFTU_HUMAI
2.2e-89	59.1	369	methionine adenosyltransf	S-adenosylmethionine synt	METK_HUMAI
6.5e-88	53.3	422	enolase [Escherichia coli	Alpha enolase (2-phospho-	ENOA HUMAI
9.2e-88	43.3	536	NAD-linked malate dehydro	NADP-dependent malic enzy	MAOX_HUMAI
7.3e-86	55.5	389	2-amino-3-ketobutyrate Co	2-amino-3-ketobutyrate co	KBL_HUMAN
5.2e-83	44.4	543	degrades sigma32, integra	AFG3-like protein 2 (Para	AF32 HUMAI

Inferring Homology from Statistical Significance

- Real UNRELATED sequences have similarity scores that are indistinguishable from RANDOM sequences
- If a similarity is NOT *RANDOM*, then it must be NOT *UNRELATED*
- Therefore, NOT *RANDOM* (statistically significant) similarity must reflect *RELATED* sequences

		Query: atp6_human.aa ATP sy Library: 5190103 residues	7nt Ln	hase: 13351	a cha L sequ	ain - 2 Mences	26 aa			
The	o boet a		,	lon	G _14	hite I	2/13351)	8 10	9 cim	alon
sn sn		ATP6 HIMAN ATP synthese a chain (AT	\hat{i}	226)	1400	325 8	5 80-90	1 000	1 000	226
sp	P00847	ATP6 BOVIN ATP synthase a chain (AT	ì	226)	1157	270 5	2 56-73	0 779	0 951	226
sp en	00047	ATTR MOUSE ATTR synthase a chain (AT		220)	1119	261 7	1 20-70	0 757	0.016	226
sp	P00849	ATP6 VENLA ATP synthase a chain (AT	ì	226)	745	176 8	4 00-45	0.533	0.910	220
sp en	D00851	ATTR DECKA ATTR synchuse a chain (AT		220)	173	115 0	1 70-26	0.378	0.721	222
sp	P00854	ATP6 VEAST ATP synthase a chain pre	ì	259)	428	104 7	2 30-23	0 353	0 694	232
sp	P00852	ATP6 EMENT ATP synthase a chain pre	ì	256)	365	90 4	4 80-19	0 304	0 691	230
sp en	D14862	ATTO_DIDNI ATT Synchuse a chain pre		250)	353	87 7	3 20-18	0.304	0.650	214
sp	P68526	ATP6 TRITI ATP synthase a chain (AT	\hat{i}	386)	309	77.6	5.1e=15	0.289	0.651	235
sp	P05499	ATTP6 TOBAC ATP synthase a chain (AT	\hat{i}	395)	309	77 6	5 20-15	0.283	0.635	233
sp	P07925	ATP6 MAIZE ATP synthase a chain (AT	\hat{i}	291)	283	71 7	2 30-13	0.203	0.655	180
sp	POAB98	ATP6 FCOLL ATP synthase a chain (AT	(271)	178	47 9	3 20-06	0.233	0.585	236
en en	POC2V5	ATTEL OBYSA Chloroplast ATP supth (A	(247)	144	40 1	0.00063	0.242	0.580	231
sp	P06452	ATPI PEA Chloroplast ATP synthase a	\hat{i}	247)	143	39.9	0.00072	0.250	0.586	232
sp	P27178	ATP6 SYNY3 ATP synthase a chain (AT	ì	276)	142	39.7	0.00095	0.265	0.571	170
sp	P06451	ATT SPIOL Chloroplast ATP synthese	\hat{i}	247)	138	38.8	0 0016	0 242	0 580	231
sp	P08444	ATTP6 SVNP6 ATP synthase a chain (AT	\hat{i}	261)	127	36 3	0.0010	0.242	0.500	167
sp en	D60371	ATPT ATPRE Chloroplast ATP synthese		247)	126	36.0	0.0095	0.203	0.557	231
sp	P06289	ATPT MARPO Chloroplast ATP synthase		247)	120	36.0	0.01	0.221	0.575	167
sp	P30391	ATPI FUGGE Chloroplast ATP synthase	\hat{i}	251)	123	35.4	0.017	0.240	0.579	214
зÞ	11 20221	AITI_EOGGK CHIOTOPIASC AIT Synchase	(231)	125	55.4	0.017	0.257	0.575	214
en	D10568	TICA PICPP ADD ATD carrier protein	,	1081	122	35 0	0 043	0 2/3	0 570	152
ap ap	121066	CVR MAXMA Cutochrome b	;	270)	112	22.0	0.045	0.243	0.575	152
sp	P03892	NU2M BOVIN NADH-ubiquipone oxidored	(347)	107	33.0	0.13	0.234	0.332	211
SD SD	P68092	CVB STEAT Cytochrome b	(379)	104	31 0	0.54	0 277	0 547	137
sp en	003801	NU2M HUMAN NADH-ubiguinone oxidored		347)	103	30 8	0.59	0.201	0.537	140
sp en	D00156	CVB HUMAN Cutochrome b		380)	102	30.5	0.30	0.268	0.585	205
ap ap	D15002	APOD FCOLL Aromatic amino acid tr	;	457)	102	20.7	0.74	0.200	0.505	111
sp	D2/065	CVP TRANA Cutochrome b	(370)	103	30.7	0.70	0.234	0.022	158
sp	D20631	CVB DOMTE Cytochrome b		308)	101	20.3	0.07	0.234	0.584	113
sp	D24052	CVP CAPUT Cytochrome b		270)	33	29.9	1 2	0.274	0.564	140
sp	F 2 4 9 5 5	CIB_CAPRI Cylochiolle D	(379)	99	29.0	1.2	0.230	0.304	140
										18
										10

Alberts is wrong about sequence similarity (three times in three claims)

"With such a large number of proteins in the database, the search programs find *many nonsignificant matches*, resulting in a background noise level that makes it very difficult to pick out all but the closest relatives. Generally speaking, *one requires a 30% identity* in sequence to consider that two proteins match. However, we know the function of many short signature sequences ("fingerprints"), and *these are widely used to find more distant relationships.*"

- Alberts, Molecular Biology of the Cell (5th ed) p. 139

- Sequences producing statistically significant alignments ALWAYS share a common structure
- Many significant alignments share < 30% identity (<25% identity is routine, and <20% identity can be significant)
- In the absence of significant similarity, "fingerprints" should never be trusted.

a=w U	DC • 1/0	-ccoro.	/ I X / D11	-c. 17 0 F	() 3 20-0	6			
Smith-	Waterman :	score: 17	8; 23.3%	identity (58.5% simi	o lar) in 2	36 aa ov	erlap (8	-222:45-264)
					10	20	30		40
human				MNE	NLFASFIAPT	ILGLPAAVL	IILFPPLL	IPTSKYLI	NNRLITTQQ
T coli	NMEDODVT				:	.:::			:
F COII	10	20	JURITSLVD 30	PONPPATEWT. 40	INIDSMFFSV 50	VLGLLF	60	70	PGRFQTAIE 80
	10	20		10	50				
	50	60	70	80		90		100	110
human	WLIKLTSK	OWMTMHNTK	GRTWSLMLV	SLIIFIATTN	LLGLLP	HSF-	TF	TTQLSMNL	AMAIPLWAG
	.:	: :				• •	.:		.::
E coli	LVIGFVNG	SVKDMYHGK	SKLIAPLAL	TIFVWVFLMN	LMDLLPIDLL	PYIAEHVLG	LPALRVVF	SADVNVTL	SMALGVF
		90	100	110	120	130	140	150	
		90	100	110	120	130	140	150	
	12	90 J 1	100	110	120	130	140	150	180
human	12	90 0 1	100 30 1 POCTPTPL	110 140	120 150	130 160	140 17	150 0	180 PLAMSTINI
human	12 TVIMGFRSI	90 0 1 KIKNALAHF	100 30 LPQGTPTPL	110 140 IPMLV	120 150 IIETISLLIQ	130 160 PMALAVRLT	140 17 ANITAGHI	150 0 LMHLIGSA	180 TLAMSTINL
human	12 TVIMGFRSI	90 1 KIKNALAHF	100 30 LPQGTPTPL- .::.	110 140 IPMLV ::	120 150 IIETISLLIQ :.: .::: .	130 160 PMALAVRLT. ::.:	140 17 ANITAGHI .:. ::.:	150 0 LMHLIGSA	180 FLAMSTINL : :
human E coli	12 TVIMGFRSI :: -ILILFYS	90 1 KIKNALAHF : IKMKGIGGF	100 30 LPQGTPTPL- : :. TKELTLQPFI	110 140 IPMLV :: NHWAFIPVNL	120 150 IIETISLLIQ :.: .:: . ILEGVSLLSK	130 160 PMALAVRLT PVSLGLRLF	140 17 ANITAGHI .:. :: GNMYAGEL	150 0 LMHLIGSA :: IFILIAGL	180 FLAMSTINL : : LPWWSQWIL
human E coli	12 TVIMGFRSI : : -ILILFYS 160	90 0 1 KIKNALAHF : IKMKGIGGF 170	100 30 LPQGTPTPL. .: :. TKELTLQPF1 180	110 140 IPMLV :: NHWAFIPVNL 190	120 150 IIETISLLIQ :.: .::: . ILEGVSLLSK 200	130 160 PMALAVRLT. ::.: PVSLGLRLF 210	140 17 ANITAGHI .:. :: GNMYAGEL 220	150 0 LMHLIGSA IFILIAGL	180 TLAMSTINL : : LPWWSQWIL 30
human E coli	12 TVIMGFRSI ::: -ILILFYS 160	90 0 1 KIKNALAHF : IKMKGIGGF 170	100 30 LPQGTPTPL. : :. TKELTLQPFI 180 210	110 140 IPMLV :: NHWAFIPVNL 190 220	120 150 IIETISLLIQ :.: .::: . ILEGVSLLSK 200	130 160 PMALAVRLT. ::.: PVSLGLRLF 210	140 17 ANITAGHI .:. ::.: GNMYAGEI 220	150 0 LMHLIGSA IFILIAGLI 2	180 TLAMSTINL : : LPWWSQWIL 30
human E coli	120 TVIMGFRS1 ::: -ILILFYS1 160 190	90 1 KIKNALAHF : IKMKGIGGF 170 200	100 30 LPQGTPTPL. : :. TKELTLQPFI 180 210	110 140 IPMLV :: NHWAFIPVNL 190 220	120 150 IIETISLLIQ :.: .::: . ILEGVSLLSK 200	130 160 PMALAVRLT ::. PVSLGLRLF 210	140 17 ANITAGHI .:. ::.: GNMYAGEI 220	150 0 LMHLIGSA : IFILIAGL 2	180 TLAMSTINL : : LPWWSQWIL 30
human E coli human	12 TVIMGFRS :: -ILILFYS 160 190 PSTLIIFT	90 1 KIKNALAHF : : IKMKGIGGF 170 200 ILILLTILE	100 30 LPQGTPTPL : : : TKELTLQPFI 180 210 IAVALIQAY	110 140 IPMLV: :: NHWAFIPVNL: 190 220 VFTLLVSLYLI	120 150 IIETISLLIQ :.: .::: . ILEGVSLLSK 200 HDNT	130 160 PMALAVRLT. ::.: PVSLGLRLF 210	140 17 ANITAGHI .:. :: GNMYAGEL 220	150 0 LMHLIGSA : IFILIAGL 2	180 FLAMSTINL : : LPWWSQWIL 30
human E coli human	12 TVIMGFRSJ :: -ILILFYS 160 190 PSTLIIFT ::	90 1 KIKNALAHF : IKMKGIGGF 170 200 ILILLTILE :::	100 30 LPQGTPTPL- .::. TKELTLQPFI 180 210 IAVALIQAY .::.	110 140 IPMLV NHWAFIPVNL 190 220 VFTLLVSLYLI 	120 150 IIETISLLIQ IIEGVSLLSK 200 HDNT	130 160 PMALAVRLT. ::.: PVSLGLRLF 210	140 17 ANITAGHI .:. ::.: GNMYAGEL 220	150 0 LMHLIGSA :: IFILIAGL 2	180 TLAMSTINL : : LPWWSQWIL 30
human E coli human E coli	12 TVIMGFRSJ :: -ILILFYS 160 190 PSTLIIFT :: NVPWAIFH	90 1 KIKNALAHF : IKMKGIGGF 170 200 ILILLTILE :::. ILIIT	100 30 LPQGTPTPL- .::. TKELTLQPFI 180 210 IAVALIQAY .::. LQAF	110 140 	120 150 IIETISLLIQ ILEGVSLLSK 200 HDNT SMASEEH	130 160 PMALAVRLT. ::.: PVSLGLRLF 210	140 17 ANITAGHI .:. :: GNMYAGEI 220	150 0 LMHLIGSA : IFILIAGL 2	180 FLAMSTINL : : LPWWSQWIL 30
human E coli human E coli	12: TVIMGFRS: :: -ILILFYS 160 190 PSTLIIFT :: NVPWAIFH 240	90 1 KIKNALAHF : IKMKGIGGF 170 200 ILILLTILE :::. ILIIT 250	100 30 LPQGTPTPL. .::. TKELTLQPFI 180 210 IAVALIQAY .::. LQAF:	110 140 IPMLV: NHWAFIPVNL: 190 220 VFTLLVSLYLI 	120 150 IIETISLLIQ :.::: 200 HDNT SMASEEH 270	130 160 PMALAVRLT. :: PVSLGLRLF 210	140 17 ANITAGHI .:. ::.: GNMYAGEI 220	150 0 LMHLIGSA :: IFILIAGL 2	180 TLAMSTINL : : LPWWSQWIL 30
human E coli human E coli	12 TVIMGFRSJ :: -ILILFYS 160 190 PSTLIIFT :: NVPWAIFH 240	90 1 KIKNALAHF : IKMKGIGGF 170 200 ILILLTILE :::. ILIIT 250	100 30 LPQGTPTPL. .::. TKELTLQPFI 180 210 IAVALIQAY .::. LQAF:	110 140 IPMLV: NHWAFIPVNL: 190 220 VFTLLVSLYLL: : IFMVLTIVYL: 260	120 150 IIETISLLIQ ::: . 200 HDNT SMASEEH 270	130 160 PMALAVRLT. ::.: PVSLGLRLF 210	140 17 ANITAGHI .:. :: GNMYAGEI 220	150 0 LMHLIGSA :: IFILIAGL 2	180 TLAMSTINL : : LPWWSQWIL 30
human E coli human E coli	12 TVIMGFRSJ :: -ILILFYSJ 160 PSTLIFFT :: NVPWAIFH 240	90 1 KIKNALAHF : IKMKGIGGF 170 200 ILILLTILE :::. ILIIT 250	100 30 LPQGTPTPL- .::. TKELTLQPFI 180 210 IAVALIQAY .::. LQAF	110 140 IPMLV: NHWAFIPVNL: 190 220 VFTLLVSLYL! : IFMVLTIVYL: 260	120 150 IIETISLLIQ :.:: 200 HDNT SMASEEH 270	130 160 PMALAVRLT. :: PVSLGLRLF 210	140 17 ANITAGHI .:. :: GNMYAGEI 220	150 0 LMHLIGSA :: IFILIAGL 2	180 PLAMSTINL : : LPWWSQWIL 30

	-								
The best scores are		. (len)	s-w	bits H	E(13351)	%_id	%_sim	alen
SP P00846 ATP6_HUMA	N ATP synthase a chain (A'	: (226)	1400	325.8	5.8e-90	1.000	1.000	226
sp P00847 ATP6_BOV1	N ATP synthase a chain (AT	: (226)	1157	270.5	2.5e-/3	0.779	0.951	226
SP P00848 ATP6_MOUS	E ATP synthase a chain (AT	: (226)	1118	201.7	1.2e-70	0.757	0.916	226
SP P00849 ATP6_XENI	A ATP synthase a chain (A	: (226)	/45	1/6.8	4.0e-45	0.533	0.847	229
sp P00851 ATP6_DROY	A ATP synthase a chain (A'	: (224)	473	115.0	1.7e-26	0.378	0.721	222
sp P00854 ATP6_YEAS	T ATP synthase a chain pre) (259)	428	104.7	2.3e-23	0.353	0.694	232
SP P00852 ATP6_EMEN	II ATP synthase a chain pre	; (250)	305	90.4	4.80-19	0.304	0.091	230
ppp14862 ATP6_COCH	E ATP Synthase a chain (An	: (257)	200	77 6	5.2e-10	0.313	0.050	214
p P00520 ATP0_TRI1	ATP Synthase a chain (An	: (300)	309	77.0	5.1e-15	0.209	0.031	235
PIPOS499 ATP6_TOBA	C ATP Synthase a chain (An	: (395)	209	77.0	5.2e-15	0.203	0.035	233
PUT925 ATP6_MAIZ	L ATP Synthase a Chain (An	: (291)	203	/1./	2.3e-13 3.2e-06	0.311	0.007	236
DOC2VE AUDI ODVC	A Chloroplast AMD supth (A		2/1)	144	47.9	0.00062	0.233	0.505	220
p POCZIJ AIPI_ORIS	Chloroplast ATP synth (F	<u> (</u>	247)	144	30 0	0.00002	0.242	0.586	231
D 27178 ATT SVNV	3 ATP synthese a chain (AT	. (. /	276)	143	39.9	0.00072	0.250	0.571	170
DIRGASI ATRI SPIC	Chloroplast ATP sunthase		247)	138	38 8	0.0016	0.242	0.580	231
D POSAAA ATP6 SVNE	6 ATP synthese a chain (AT		261)	127	36.3	0 0095	0.242	0.557	167
D P69371 ATPT ATP	E Chloroplast ATP synthase		247)	126	36.0	0 01	0 221	0 571	231
D P06289 ATPT MARE	O Chloroplast ATP synthase		248)	126	36.0	0.011	0.240	0.575	167
D P30391 ATPT EUGO	R Chloroplast ATP synthase	\dot{i}	251)	123	35.4	0.017	0.257	0.579	214
		. (201)	120					
p P19568 TLCA RICE	R ADP, ATP carrier protein	(498)	122	35.0	0.043	0.243	0.579	152
p P24966 CYB TAYTA	Cvtochrome b	ì	379)	113	33.0	0.13	0.234	0.532	158
p P03892 NU2M BOVI	N NADH-ubiquinone oxidored	iì	347)	107	31.7	0.31	0.261	0.479	211
p P68092 CYB STEAT	Cytochrome b	ì	379)	104	31.0	0.54	0.277	0.547	137
p P03891 NU2M HUMA	N NADH-ubiquinone oxidored	i	347)	103	30.8	0.58	0.201	0.537	149
p P00156 CYB HUMAN	Cytochrome b	ì	380)	102	30.5	0.74	0.268	0.585	205
p P15993 AROP ECOL	I Aromatic amino acid tr	ì	457)	103	30.7	0.78	0.234	0.622	111
p P24965 CYB TRANA	Cytochrome b	ì	379)	101	30.3	0.87	0.234	0.563	158
p P29631 CYB POMTE	Cytochrome b	ì	308)	99	29.9	0.95	0.274	0.584	113
p P24953 CYB CAPHI	Cytochrome b	i	379)	99	29.8	1.2	0.236	0.564	140

		Query: atp6_ecoli.aa ATP synthase a - 271 aa Library: 5190103 residues in 13351 sequences	
Th	e best s	scores are: (len) s-w bits E(13351) %_id %_sim ale	en
sp	P0AB98	ATP6_ECOLI ATP synthase a chain (AT (271) 1774 416.8 3.e-117 1.000 1.000 271	
sp	P06451	ATPI_SPIOL Chloroplast ATP synthase (247) 274 70.4 5.8e-13 0.270 0.616 211	
sp	P69371	ATPI_ATRBE Chloroplast ATP synthase (247) 271 69.7 9.3e-13 0.270 0.607 211	
sp	P08444	ATP6_SYNP6 ATP synthase a chain (AT (261) 271 69.7 9.9e-13 0.267 0.600 240)
sp	P06452	ATPI_PEA Chloroplast ATP synthase a (247) 266 68.5 2.1e-12 0.274 0.614 223	3
sp	P30391	ATPI_EUGGR Chloroplast ATP synthase (251) 265 68.3 2.5e-12 0.298 0.596 225	5
sp	POC2Y5	ATPI_ORYSA Chloroplast ATP synthase (247) 260 67.2 5.4e-12 0.259 0.603 239)
sp	P27178	ATP6_SYNY3 ATP synthase a chain (AT (276) 260 67.1 6.1e-12 0.264 0.578 258	3
sp	P06289	ATPI_MARPO Chloroplast ATP synthase (248) 250 64.8 2.7e-11 0.261 0.621 211	
sp	P07925	ATP6_MAIZE ATP synthase a chain (AT (291) 215 56.7 8.7e-09 0.259 0.578 232	2
sp	P68526	ATP6_TRITI ATP synthase a chain (AT (386) 209 55.3 3.1e-08 0.259 0.603 239)
sp	P00854	ATP6_YEAST ATP synthase a chain pre (259) 204 54.2 4.5e-08 0.235 0.578 277	
sp	P05499	ATP6_TOBAC ATP synthase a chain (AT (395) 189 50.7 7.8e-07 0.220 0.582 268	3
sp	P00846	ATP6_HUMAN ATP synthase a chain (AT (226) 178 48.2 2.5e-06 0.237 0.589 236	5
sp	P00852	ATP6_EMENI ATP synthase a chain pre (256) 178 48.2 2.8e-06 0.209 0.590 244	l.
sp	P00849	ATP6_XENLA ATP synthase a chain (AT (226) 173 47.1 5.5e-06 0.261 0.630 165	5
sp	P00847	ATP6_BOVIN ATP synthase a chain (AT (226) 172 46.8 6.5e-06 0.233 0.581 236	5
sp	P14862	ATP6_COCHE ATP synthase a chain (AT (257) 171 46.6 8.7e-06 0.204 0.608 265	5
sp	P00848	ATP6_MOUSE ATP synthase a chain (AT (226) 166 45.5 1.7e-05 0.259 0.617 193	3
sp	P00851	ATP6_DROYA ATP synthase a chain (AT (224) 139 39.2 0.0013 0.225 0.549 253	3
sp	P24962	CYB_STELO Cytochrome b (379) 125 35.9 0.021 0.223 0.575 193	3
sp	P09716	US17_HCMVA Hypothetical protein HVL (293) 109 32.3 0.21 0.260 0.565 131	L
sp	P68092	CYB_STEAT Cytochrome b (379) 109 32.2 0.27 0.211 0.562 194	ł
sp	P24960	CYB_ODOHE Cytochrome b (379) 104 31.1 0.61 0.210 0.555 200)
sp	P03887	NU1M_BOVIN NADH-ubiquinone oxidored (318) 98 29.7 1.3 0.287 0.545 167	,
sp	P24992	CYB_ANTAM Cytochrome b (379) 99 29.9 1.4 0.192 0.565 193	3
			04

The best scores	are:	DNA E(188,018)	tfastx3 E(187,524)	prot. E(331,956)
DMGST	D.meianogaster G511-1	-1.3e-104 2. 77	4.10-109	1.0: 76
IDGST1	M.domestica GS1-1 gene	2e-77	3.0e-95	1.9e-76
UCGLTR	Lucilia cuprina GST	1.5e-72	5.2e-91	3.3e-73
DGSTZA	M.domesticus GS1-2 mRNA	9.3e-53	1.4e-//	1.6e-62
DNF 1	M.domestica nf1 gene. 10	4.66-51	2.8e-77	2.2e-62
IDNF 0	M. domestica nio gene. 10	2.8e-51	4.2e-77	5.1e-02
IDNF /	M.domestica nf/ gene. 10	6.1e-47	9.2e-77	6./e-62
AGGST15	A.gambiae GST mKNA	3.1e-58	4.2e-76	4.3e-61
VU8/958	Culicoides GST	1.8e-41	4.0e-73	3.66-58
GG3GST11	A.gambiae GS11-1 mRNA	1.5e-46	2.8e-55	1.1e-43
M06502	Bombyx mori GST mKINA	1.1e-25	8.8e-50	5.7e-40
GSUGST12	A gambiae GS11-1 gene	2.3e-16	4.5e-46	5.1e-37
IOTGLUSTRA	Manduca sexta GST	5./e-0/	2.5e-30	8.0e-25
RLGSTARGN	R.legominosarum gstA	0.0029	3.2e-13	1.4e-10
IUMGSTTZA	H. sapiens GST12	0.32	3.3e-10	2.0e-09
ISGSTTI	H sapiens GS111 mRNA	1.2	8.4e-13	3.6e-10
SCAE000319	E. coli nypothet. prot.	_	4./e-10	1.1e-09
IYMDCMA	Methyl. dichlorometh. DH		1.1e-09	6.9e-07
30019883	Burkholderla maleylacetate re	a.—	1.2e-09	1.1e-08
NF-043126	Naegleria fowleri GSI	_	3.2e-07	0.0056
SP505GST	Sphingomonas paucim	_	1.8e-06	0.0002
IN1838	H. sapiens maleylaceto. iso.	_	2.1e-06	5.9e-06
ISU86529	Human GSTZ1	_	3.0e-06	8.0e-06
YCCPNC	Synechocystis GST	_	1.2e-05	9.5e-06
SEF1GMR	H sapiens EF1g mRNA	_	9.0e-05	0.00065

Computer lab: fasta.bioch.virginia.edu/mol_evol

- Significant hits are homologous
- Non-significant hits? Homologous or not?
- Are *all* aligned residues homologous
- Are *unaligned* residues non-homologous
- Are domains really missing?

Practical search strategies

Bill Pearson wrp@virginia.edu

Similarity Searching II

- 1. What question to ask?
- 2. What program to use?
- 3. What database to search?
- 4. How to avoid mistakes (what to look out for)
- 5. When to do something different
- 6. More sensitive methods (PSI-BLAST, HMMER)

	NCBI BI AST Server				
blast.ncbi.nlm.nih.gov					
Basic BLAST	program to run.				
nucleotide blast	Search a nucleotide dalabase using a nucleotide query Algorithms: blastn, megablast, discontiguous megablast				
protein blast	Search protein database using a protein query Algorithms: blasto, psi-blast, phi-blast				
blastx	Search protein database using a translated nucleotide query				
tblastn	Search translated nucleotide database using a protein query				
tblastx	Search translated nucleotide database using a translated nucleotide query				
What <mark>Always</mark>	is wrong with this picture? compare protein sequences				

	BLAST Home Rec	Basic Local Alignment Search Tool ant Results Saved Strategies Help	M 8]
	NCBI/ BLAST/ blast	o suite	
NCBI	blastn blastp bla	astx tblastn tblastx	
	Enter Query S	BLASTP programs search protein databases using a protein query. more	Res
BLAST	Enter accession	number, gl, or FASTA sequence 🕢 <u>Clear</u> Query subrange 🛞	
Server		From	
	Or, upload file Job Title	Choose File no file selected Enter a descriptive title for your BLAST search	
	Align two or me	sre sequences 🥪	
	Choose Searc	ch Set	
	Organism Optional	Non-redundant protein sequences (nr)	
	Entrez Query Optional	Enter an Entrez query to limit exact limit exact limit and limit and limit and limit and limit and limit exact lin	
	Program Sele	ction	
	Algorithm	O blastp (protein-protein BLAST) O PSI-BLAST (Position-Specific Iterated BLAST) O PHI-BLAST (Pattern Hit Initiated BLAST) Choose a BLAST algorithm	
	BLAST	Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST)	
	Algorithm param	eters	

FAST IAVSSEARCH/GGGSEARCH/GGLSEARCH - Protein Similarity Search rovides sequence similarity searching against protein databases using the FASTA and SSEARCH orgonalist in SEARCH orgonalist protein databases protein or DNA sequence to a sequence database protein or DNA sequence to a sequence database protein or DNA sequence to a sequence database or compares a protein or DNA sequence to a sequence database protein or DNA sequence to a sequence database of the sequence in the sequence is the sequence of the
PROGRAM DATABASES RESULTS SEARCH TITLE YOUR EM SSEARCH + Protein + interactive + Sequence - UniPot Knowledgebase + - - - - - UniPot Clusters 100% (SG filer) EXPECTATION EXPECTATION EXPECTATION EXPECTATION MATRIX GAP OPEN GAP EXTEND UPER VALUE LOWER VALUE BLOSUMSC + -10 -2 + 10.0 + default SCORES ALIGNMENTS RANGE FILTER STATISTIC SCORES ALIGNMENTS START-END START-END none + Regress Enter or Paste a PROTEIN + Sequence in any format: Help - -
SSEARCH ÷ Protein interactive ÷ Sequence UniPot Knowledgebase UniPot Riswiss-Pot UniPot Clusters 100% (SEG filter) EXPECTATION EXPECTATION MATRIX GAP OPEN GAP EXTEND UPER VALUE LOWER VALUE BLOSUMSG ÷ -10 ÷ 2 10.0 € SCORES ALIGNMENTS RANGE FILTER STATISTIC SO ÷ 50 • START-END START-END none € Enter or Paste a PROTEIN * Sequence in any format: Help
MATRIX GAP OPEN GAP EXTEND EXPECTATION EXPECTATION EXPECTATION BLOSUMSC 1; -10 -2 10.0 UPPER VALUE LOWER VALUE SCORES ALIGNMENTS SEQUENCE DATABASE STATISTIC SO< 1;
BLOSOMSU • • • • • • • • • • • • • • • • • • •
50 \$ \$ \$ \$ Regress Enter or Paste a PROTEIN \$ Sequence in any format: Help
Enter or Paste a PROTEIN : Sequence in any format: Help

NCBI -	- selectina seque	nces w	ith Entrez
NCBI/ BLAST/ blast	n suite		
blastn blastp bl	lastx tblastn tblastx		
Enter Query	BLASTP programs search p	rotein databases usin	ig a protein query. <u>more</u>
Enter accession	number, al. or FASTA sequence (A)	Clear	Query subrance 😡
			From
			From
			То
Or upload file			//
Job Title	Choose File ho file selected		
	Enter a descriptive title for your BLAST search 😡		
Align two or m	ore sequences 🛞		
Choose Sear	ch Set		
Database	Reference proteins (refseg protein)	0	
Organism			
Optional	human (taxid:9606)	nh 20 ton taxa will be	Exclude +
Entrez Query	Ches organism common mane, birtonilal, or tax ld. O		
Optional	Enter an Entrez query to limit search 😡		

	BLOSUM50-10/-2 E(320363) f_id	2 BLOSUM62-11/-1 d E(320363) f_id	VT40 -21/-4 E(320363) f_id	VT10 -23/-4 E(320363) f_id
GSTM1_ GSTM4_ GSTM2_ GSTM2_ GSTM2_ GSTM2_ GSTM4_ GSTM4_ GSTM4_ GSTM4_ GSTM4_ GSTM3_	HUMAN 1.3e-101 1.00 HUMAN 1.9e-89 0.867 MOUSE 3.0e-87 0.839 HUMAN 4.9e-87 0.876 HUMAN 8.2e-87 0.844 MOUSE 7.0e-83 0.780 MOUSE 1.9e-82 0.775 MOUSE 8.7e-82 0.762 MOUSE 6.9e-73 0.727 HUMAN 8.2e-73 0.731	5.1e-132 1.000 1.1e-115 0.867 3.6e-113 0.839 6.9e-114 0.876 8.2e-113 0.844 2.5e-107 0.780 1.0e-106 0.775 4.7e-105 0.769 3.5e-94 0.727 6.7e-95 0.731	0 1.000 2.2e-188 0.867 1.4e-184 0.847 4.7e-187 0.876 2.6e-182 0.844 4.7e-169 0.780 5.1e-168 0.779 7.7e-166 0.769 1.3e-142 0.727 3.4e-143 0.731	0 1.000 1.9e-193 0.867 2.5e-187 0.847 7.2e-195 0.912 1.3e-184 0.844 1.5e-162 0.780 1.3e-161 0.779 2.1e-158 0.769 3.7e-128 0.727 8.2e-129 0.731
GSTM2_0 GST26_1 GSTM1_1 GSTM1_3	CHICK 9.8e-65 0.656 FASHE 2.9e-44 0.495 DERPT 5.2e-42 0.467 SCHMA 2.4e-37 0.467	4.7e-84 0.656 1.3e-56 0.491 1.6e-53 0.487 9.5e-49 0.458	3.0e-117 0.656 2.7e-59 0.502 5.1e-57 0.505 4.7e-42 0.470	1.4e-93 0.675 3.2e-18 0.510 2.4e-29 0.651 5.1e-20 0.607
GSTF1_ Class-pi GSTF2_T GSTF1_ GSTF1_ GSTF1_ GSTF1_ GSTF1_	PIG 2.9e-20 0.327 XENLA 5.2e-19 0.333 MOUSE 8.0e-17 0.294 CAEEL 1.1e-16 0.324 HUMAN 3.0e-16 0.284 BUFBU 1.2e-14 0.285 CAEEL 1.1e-13 0.298	1.2e-25 0.327 6.0e-24 0.330 1.3e-20 0.294 4.3e-21 0.319 2.2e-20 0.284 7.2e-18 0.272 2.8e-17 0.284	0.00034 0.409 0.12 0.464 1.1 0.395 1.1 0.706 0.29 0.467 9.7 0.588 0.002 0.400	
PTGD2_ PTGD2_ PTGD2_ PTGD2_ GSTF2_ GSTF2_ GST_U GST1_DJ	MOUSE 4.8e-12 0.302 RAT 4.8e-12 0.302 HUMAN 1.1e-11 0.292 CHICK 9.8e-11 0.304 BUFBU 2.0e-10 0.288 SDO 5.8e-09 0.257 ROME 1.0e-08 0.255	2.6e-14 0.293 1.5e-14 0.293 4.0e-13 0.281 6.9e-13 0.302 2.2e-12 0.307 2.3e-11 0.251 2.9e-10 0.237		
GSTA1 1 Class- GSTA5 alpha GSTA3 GSTA3 GSTA1 GSTA7 GSTA7 GSTA7	MOUSE 1.5e-08 0.279 HUMAN 6.6e-08 0.286 HUMAN 7.8e-08 0.275 MOUSE 1.1e-07 0.269 MOUSE 1.3e-07 0.278 HUMAN 3.0e-07 0.272 CAEEL 3.3e-07 0.256 GHICK 4.2e-07 0.279	4.9e-11 0.264 1.2e-08 0.273 1.2e-08 0.259 9.9e-10 0.255 8.9e-09 0.258 8.0e-08 0.259 1.1e-08 0.266		

Empirical matrix performance (median results from random alignments)			
VT160 -12/-2	23.8	0.26	192
BLOSUM50 -10/-2	25.3	0.23	217
BLOSUM62* -11/-1	28.9	0.45	111
VT120 -11/-1	27.4	1.03	48
VT80 -11/-1	51.9	1.55	32
PAM70* -10/-1	33.8	0.64	78
PAM30* -9/-1	45.5	1.06	47
VT40 -12/-1	72.7	2.76	18
VT20 -15/-2	84.6	3.62	13
VT10 /16/-2	90.9	4.32	12
Н	IMMs can be	e very "deep"	

Gene function annotation

Paul D. Thomas, Ph.D. University of Southern California October 2014

What is function annotation?

- The formal answer to the question: what does this gene do?
- The association between: a description of biological function, in electronic form, with a biological sequence (gene or gene product e.g. protein or functional RNA)
In this lecture

- Introduction to databases of gene function
- Methods and online information sources for function annotation
 - Understand what you are getting from each source so you can use it wisely
 - Gene Ontology
 - Pathway databases
- Emphasis on understanding "computationally predicted" function annotations (homology)
 - These make up the bulk of available annotations

Ontologies

- A formal structuring of knowledge
- Consists of concepts and relations
- Concept (entity, class, term): a class of things in the real world
 - Continuant (thing that exists)
 - Occurrent (process)
- Relation: a type of relationship between concepts
 - E.g. is_a, part_of

Entrez Gene: INSR

Process	Evidence Code	Pubs
G-protein coupled receptor signaling pathway	IDA	PubMed
activation of MAPK activity	IMP	PubMed
activation of protein kinase B activity	IDA	PubMed
activation of protein kinase activity	IMP	PubMed
carbohydrate metabolic process	IEA	
cellular response to growth factor stimulus	IEA	
cellular response to insulin stimulus	IDA	PubMed
epidermis development	IEA	
exocrine pancreas development	IEA	
glucose homeostasis	IMP	PubMed
heart morphogenesis	IMP	PubMed
insulin receptor signaling pathway	IDA	PubMed
insulin receptor signaling pathway	TAS	
male sex determination	IEA	
peptidyl-tyrosine autophosphorylation	IEA	
peptidyl-tyrosine phosphorylation	IDA	PubMed

Gene function annotation sources

- Gene Ontology (GO)
- Pathway databases
 - Reactome
 - PANTHER
 - BioCyc
 - KEGG (kind of)

Thomas PD, Lewis SE, Mi H, Ontology annotation: mapping genomic regions to biological function, Curr. Opin. Biol. Chem.11:1-8 (2007)

Gene Ontology

- Formal representation of biology knowledge domain, as it relates to genes and gene products (mostly proteins)
- Three knowledge domains:
 - Molecular function: what a gene product does with its direct physical interaction partners, e.g. protein kinase
 - Cellular component: where the protein is located when the function is carried out, e.g. plasma membrane
 - Biological process: "system" function carried out by multiple molecular functions working together in a regulated manner, e.g. pathways, cellular processes, organ functions, organism behavior
- Concepts are joined together by directional Relations: is_a, part_of, regulates

Entrez Gene: INSR

Process		Evidence Code	Pubs
G-protein coupled receptor signaling pathway		IDA	PubMed
activation of MAPK activity	is a	IMP	PubMed
activation of protein kinase B activity	relations	IDA	PubMed
activation of protein kinase activity		IMP	PubMed
carbohydrate metabolic process	from the	IEA	
cellular response to growth factor stimulus	GO are	IEA	
cellular response to insulin stimulus	NOT	IDA	PubMed
epidermis development	shown by	IEA	
exocrine pancreas development	Shown by	IEA	
glucose homeostasis	Entrez	IMP	PubMed
heart morphogenesis		IMP	PubMed
insulin receptor signaling pathway		IDA	PubMed
insulin receptor signaling pathway		TAS	
male sex determination		IEA	
peptidyl-tyrosine autophosphorylation		IEA	
peptidyl-tyrosine phosphorylation		IDA	PubMed

Pathway representations

- Point of view from the molecular reaction
 - Generalized to include covalent and noncovalent (e.g. binding) reactions
- Concepts are reaction, molecule classes
- Relations are between molecule classes and reactions
 - Catalyst
 - Reactant
 - Product
- Top level structure provided by SBML, BioPAX
 - Systems modeling community vs. Genomics community

Notch signaling pathway in GO

Relations to more general classes

Relations to more specific classes

GO:0007219 Notch signaling pathway

- GO:0045746 negative regulation of Notch signaling pathway
- CO:0035333 Notch receptor processing, ligand-dependent
- GO:0061314 Notch signaling involved in heart development
- GO:0060853 Notch signaling pathway involved in arterial endothelial cell fate commitment
- GO:0060227 Notch signaling pathway involved in camera-type eye photoreceptor fate corr
- GO:0021876 Notch signaling pathway involved in forebrain neuroblast division
- GO:0021880 Notch signaling pathway involved in forebrain neuron fate commitment
- GO:0003137 Notch signaling pathway involved in heart induction
- GO:2000796 Notch signaling pathway involved in negative regulation of venous endothelial
- GO:0003270 Notch signaling pathway involved in regulation of secondary heart field cardic
- GO:1902359 Notch signaling pathway involved in somitogenesis
- GO:0045747 positive regulation of Notch signaling pathway
- P GO:0007221 positive regulation of transcription of Notch receptor target
- GO:0008593 regulation of Notch signaling pathway

Notch signaling in Reactome

Notch signaling in KEGG

GO vs. pathway representations

- GO is a simpler representation of molecular events, but has more biological context
- Pathway representations are more detailed at the molecular level, and can capture dependencies and temporal series

GO annotations know what you're getting

- Annotation is an association between
 - A gene/gene product
 - A Gene Ontology term

Annotation 1: INSR performs_function 'receptor activity' Annotation 2: INSR located_in 'plasma membrane' Annotation 3: INSR involved_in 'insulin receptor signaling pathway'

- But there is more information
 - Qualifier
 - Evidence code and evidence

Common qualifiers

- · NOT
 - This is really important, it means that the gene product does NOT have a particular function
- contributes_to
 - This is usually used when a gene product is part of a complex that has a particular molecular function, but it is not the active subunit

Evidence

- GO annotations are based on evidence, which is given a type (evidence code) and a reference (usually a PubMed identifier)
- Evidence types
 - Curated from the primary literature
 - EXP, IDA, IEP, IGI IMP, IPI
 - Curated from "secondary sources"
 - TAS, NAS, IC
 - Curated from homology inference
 - ISS, IBA
 - Uncurated
 - IEA, RCA

IDA tends to be more "direct" than IMP, which can be a downstream causal effect

Process	Evidence Code
G-protein coupled receptor signaling pathway	IDA
activation of MAPK activity	IMP
activation of protein kinase B activity	IDA
activation of protein kinase activity	IMP
carbohydrate metabolic process	IEA
cellular response to growth factor stimulus	IEA
cellular response to insulin stimulus	IDA
epidermis development	IEA
exocrine pancreas development	IEA
glucose homeostasis	IMP
heart morphogenesis	IMP
Insulin receptor signaling pathway	IDA
insulin receptor signaling pathway	TAS
male sex determination	IFA

Experimental evidence codes

- Expert biologist reads a paper, and selects GO terms that best describe functions that are experimentally demonstrated in the paper
- GO database currently includes annotations from over 100,000 scientific papers
- Reference field links to paper and allows you to verify the annotation

Direct, literature-based annotation

- Function annotation inference based on direct evidence in the scientific literature
 - Experiment performed on that gene product itself
- Text mining and management (Textpresso)
 - Very active area of research
- Curator reads abstract or article and manually enters annotation
- GO annotation is performed at 12 different "model organism databases" and UniProt
- Two types:
 - Primary source: experimental paper (Evidence codes: IMP, IGI, IDA, IEP, IPI)
 - Secondary source: review article, introduction to another article, curator inference (TAS, NAS, IC)

GO experimental annotations cover a few major "model organisms"

Mouse	72183
C. elegans (worm)	59453
Human	59064
A. thaliana (plant)	41805
D. melanogaster (fruit fly)	34296
S. cerevisiae (yeast)	34003
Rat	28724
C. albicans (yeast)	18766
S. pombe (fission yeast)	16931
Zebrafish	14134
A. nidulans (fungus)	7982
M. tuberculosis	6001
D. discoideum (slime mold)	5107
E. coli	2013

Experimental evidence types

- "Experimental" evidence codes
 - IDA: inferred from direct assay
 - IGI: inferred from genetic interaction
 - IPI: inferred from protein interaction
 - IMP: inferred from mutant phenotype
 - IEP: inferred from expression pattern
 - EXP: inferred from experimental evidence
- Important distinctions
 - IDA, IGI, IPI: usually the most direct
 - IMP, IEP: can be indirect, downstream effects
 - IEP is used very cautiously by curators

"Secondary" source annotations from literature

- TAS: traceable author statement
 - The author referenced another paper; these are being traced and replaced by primary annotations
- NAS: nontraceable author statement
 - The author did not reference another paper; these are no longer commonly used as evidence
- IC: inferred by curator
 - For example, a paper demonstrates transcription factor activity in a human cell; curator infers that it must function in the nucleus

"Electronic" evidence

- Important distinction: degree of manual review
 - RCA: no systematic review, mostly "guilt by association" methods
 - ISO: no review, but conservative rules for function inference for some 1:1 orthologs
 - ISS: review of pairwise homology and function, but no consistent rules
 - IEA: review of large lists of homologous proteins and selection of which terms to infer
 - IBA: review of ALL experimental annotations for each gene family and selection of which terms to infer by constructing explicit evolutionary model

Most GO annotations are based on homology (except for some yeasts)

Curr Opin Chem Biol. 2007 Feb;11(1):4-11. Epub 2007 Jan 5.

Ontology annotation: mapping genomic regions to biological function.

Thomas PD, Mi H, Lewis S.

Evolutionary Systems Biology Group, Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA. paul.thomas@sri.com

Homology is still the most informative predictor of function

- Many "guilt by association" methods, e.g. protein interaction network analysis, gene co-expression, etc.
- In recent function prediction experiment (CAFA), homology still found to be major component of informative predictions
 - See BMC Bioinformatics 14:suppl 3 (2013), e.g. Hamp et al., Gillis et al.

Homology-based annotation

- "traditional" pairwise view
 - If two sequences are similar, they are likely to share some functions in common
 - So if I know the function of one gene, I can make inferences about the function of another gene
 - "transitive annotation" (ISS evidence code in GO)
 - Very commonly applied, in database search algorithms like BLAST, FASTA (e.g. Blast2GO)
 - This success has led to overinterpretation of its meaning by many casual users
 - A class of database search has become a metaphor, implying that "genes have similar functions because they have similar sequences"

ISS is based on pairwise sequence comparison: example BLAST results for human MTHFR vs. SwissProt database

Understanding what homology inference really is

- Two sequences are similar **because** they are homologous (at least for relatively long, non-repetitive sequences, i.e. almost all genes)
- More properly, transitive annotation of function is inheritance!
- "related genes have a common function **because** their common ancestor had that function, which was inherited by its descendants"
- not just an inference about one gene. It is also making inferences about
 - The most recent common ancestor (MRCA)
 - Continuous inheritance since the MRCA
 - Potential inheritance by other descendants of the MRCA

Fundamental challenge in using sequence similarity to annotate function (1): SEQUENCES of different genes (proteins) evolve at different rates

- Sequence divergence (e.g. BLAST score or Evalue) cannot be simply converted to an evolutionary relationship
 - Score depends on time, selective constraints, length of gene/protein sequence, sequence composition
- Problem can be addressed using phylogenetic trees

Fundamental challenge in using sequence similarity to annotate function (2): Different GO functions in same protein family evolve at different rates

- Enzyme mechanism (1-3) evolves more slowly than substrate specificity (4)
- In general, no pairwise similarity threshold to reliably predict all different functions!
- Problem can be addressed by treating different functions independently

PLoS Comput Biol. 2012;8(3):e1002403. Epub 2012 Mar 1.

Exploring the evolution of novel enzyme functions within structurally defined protein superfamilies.

Furnham N, Sillitoe I, Holliday GL, Cuff AL, Laskowski RA, Orengo CA, Thornton JM.

EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom. nickf@ebi.ac.uk

Using trees to get relationships between genes

- ISO: inferred from sequence orthology
 - From Ensembl Compara
 - Function annotations are NOT REVIEWED
 - For vertebrates: infers that all experimental annotations in any vertebrate are true of all vertebrates IF there is one-to-one gene orthology
 - For plants: infers that all experimental annotations in any plant are true of all plants IF orthology AND sequence identity > 60%.

Understanding ISO: Concept of orthologs

- The term "orthologs" is often used to denote "the same gene" in different organisms but this is not techically correct, and can lead to confusion
- Defined by J. Fitch (Syst Zool 19:99, 1970)
- Orthologs share a MRCA immediately preceding a speciation event
 - i.e. they can be traced to a single gene in the most recent common ancestor population/species
- Paralogs share a MRCA immediately preceding a gene duplication event
 - i.e. they can be traced to a gene duplication event in the most recent common ancestor population/species, and can be traced to **distinct** ancestral genes in that species

Why orthology is confusing

- It is a statement about an evolutionary relationship and not about gene function
 - Orthologs may be doing different things in their respective species
- It is a pairwise definition, yet "ortholog group" or "ortholog cluster" are common terms
 - Orthology is NOT TRANSITIVE
 - An ortholog cluster may contain pairs that are paralogs!
- Proposed solutions are also complicated
 - One solution is to ignore any cases except "one-to-one orthologs" where no gene duplication occurs, but this misses many functionally similar genes
 - All current ISO annotations are from one-to-one orthology
 - Another solution is to allow "close paralogs" ("inparalogs", Sonnhammer) into the cluster.

Orthology only defined for PAIRS of genes

Two genes are orthologs if their LCA was a speciation event

Paralogy only defined for PAIRS of genes

Two genes are paralogs if their LCA was a duplication event

Orthology is simple when there are no duplications following speciation

Orthology gets more complicated when there are duplications following speciation

H.s. MTHFR has two orthologs in yeast And these two orthologs are paralogs of each other
These genes are "in paralogs" with respect to each other when comparing to animal genomes

H.s. MTHFR has two orthologs in yeast And these two orthologs are paralogs of each other But these same genes are "out paralogs" with respect to each other when comparing fungal genomes

H.s. MTHFR has two orthologs in yeast And these two orthologs are paralogs of each other

- OrthoMCL in red; PhiGs in blue; InParanoid in green
- An "ortholog cluster" is made by one or more "slices" through the protein family tree

IEA annotations have multiple sources

- IEA annotations far outnumber any other type
- Two major sources
 - Swiss-Prot keywords, mapped to GO terms
 - Assigned manually, or by unreviewed sequence similarity
 - No evidence trail
 - InterPro models, mapped to GO terms manually
 - Assigned manually to families of related sequences, not to individual sequences

IEA annotations: InterPro

- InterproScan is among most highly-used automatic method
- Combines most popular web resources into one package
- Most of these are homology-based, searching a library of Hidden Markov Models (HMMs)
- Two distinct types of model
 - Domain-based (e.g. Pfam, SMART, Superfamily)
 - Model divergent groups usually with relatively ancient common ancestor
 - Domain shuffling has often occurred since this ancestor
 - Useful for seeing modular architecture
 - Will often predict only very general function, conserved since MRCA of module
 - Subfamily-based (e.g. PANTHER, TIGRFAMs, PRINTS)
 - Model groups that are more closely related (relatively recent ancestor or less divergent phylogenetic groups)
 - Domain shuffling has generally not occurred since this ancestor
 - Can predict much more specific functions

HMM: "generative model", first-order, learn "hidden" states and probabilities

QCNSNFMGFNCGECRFGFSGPNCAERR.MRM.RRSIFQL RCRGNFMGFNCGECKFGFSGQNCTERR.LRT.RRNIFQL PFTGVDDRE PFSGVDDRED CRCRGNFMGFNCGECKFGFSGQNCTERR.LRT.RRNIFQL PFSGVDDREDWPSVFY RGNFMGFNCGECKFGFSGQNCTERR.LRT PFSGVDDRED .RRNIFOL PFSGVDDREDWPSVF RGNEM GFNCGECKFGFS CONCTERR. LRT. RRNIFOL SGNEMGFNCGDCKFGFI PFSKVDDREDWPS RRSIFDL GPN CLERK.LLL SGNEN GFNCG PFSRVDDREEWPS DCKFGFI GPNCLERR.LLV RSIFDL PFIGVDDRESWPS SGNEMGFDCGNCREGLG GPSCTERR.MLV RNIFDL PFTGVDDRESWPSVF SGNFMGFSCGNCKFGYL GPNCTEKR.VLV RRNIFDL PFTGVDDRESWPSY SG<mark>NF</mark>MGFSCGSCKFGYR RNIFDL GPN SQKR.VLV PFKGVDDRESWPS SGNEN GFNCGNCKFGFGGSNCTEKR.LLI RRNIFDL PFKGVDDRESWPS CSGNEMGFNCGNCKFGFGGPNCTEKR.VLI RNIFDL PFKGVDDRESWPSVF SGNEM GFNCGNCKFGFGGPNCTEKR.VLI RRNIFDL PFKGVDDRESWPSV SGNFMGFNCGNCKFGFG GPN RRNIFDL PFKGVDDRESWPSV SGNEN GFNCGNCKFGFGGPNCTEKR.VLI RNIFDL PFKGVDDRESWPS CSGNEMGFNCGNCKFGFGGPNCTEKR RNIFDL 'PFKGV<mark>DDRE</mark>SWPSVF SGNEM GFNCGNCKFGFGGPNCTEKR.VLI RRNIFDL PFKGVDDRESWPSV SGNEM **IGFNCGNSKFG**FG GPNCTEKR RNIFDL PFTGMDDRESWPTVFY CQCSGNFMGFDCGNCRFGFGGPNCEETR .FLV. RRNIFDL PFTGVDDRESWPTVF CSSNEMEFDCGNCRFGFGGPNCAERR.FLV RRNIFDL 'PFKGVDDRESWPSVFYNRTCQCSGNFMGFNCGXCKFGFRGPNCTERR.FLV 'PFKGVDDRESWPSVFYNRTCQCSGNFMGFNCGNCKFGFRGPNCTERK.FLV .RKNIFDL CPNCTERK FLV RKNIFDL

Mammalian tyrosinases excerpted from an alignment spanning vertebrates

Profile-based annotation

- Define a group of homologous sequences
 - Family/domain (e.g. Pfam)
 - Subfamily (e.g. PANTHER)
- For most methods, build an HMM to recognize members of the homologous group
- Annotate the group with functions/processes all known members have in common

PANTHER: A Library of Protein Families and Subfamilies Indexed by Function

Paul D. Thomas, Michael J. Campbell, Anish Kejariwal, et al.

Genome Res. 2003 13: 2129-2141

Database (Oxford). 2012 Feb 1;2012:bar068. Print 2012.

Manual GO annotation of predictive protein signatures: the InterPro approach to GO curation.

Burge S, Kelly E, Lonsdale D, Mutowo-Muellenet P, McAnulla C, Mitchell A, Sangrador-Vegas A, Yong SY, Mulder N, Hunter S.

EMBL-EBI, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK.

Profile-based annotation

- Driven by sequence relationships first, function later
 - Generally works well for molecular function
 - Sometimes loses specificity, depending on the approach
 - Loses specificity especially for biological process largely because of
 - co-option into new processes during evolution
 - Domain shuffling

IEA: keywords are more reliable than InterPro

PLoS Comput Biol. 2012 May;8(5):e1002533. Epub 2012 May 31.

Quality of computationally inferred gene ontology annotations.

Biologica process Skunc

Skunca N, Altenhoff A, Dessimoz C.

Ruđer Bošković Institute, Division of Electronics, Zagreb, Croatia.

1.0

0.8

IEAs have become more specific and more reliable

IEA is more reliable than ISS+IC

IBA: inferred annotations using manually annotated ancestral genes

- New effort within GO Consortium
 - Currently covers ~10% of genes in 85 genomes, growing daily
- Review ALL experimental annotations for ALL genes in a gene family
- Build explicit models of function evolution
 - Use "evolutionary reasoning": descendants generally share a character because they inherited it from a common ancestor
 - Infer the function of an ancestor from knowledge about its descendants
 - Infer the function of uncharacterized descendants from inference about its ancestor
 - Create a model of evolution of function for every gene family
 - Gains of function
 - Losses of function

"Phylogenomic" function annotation

- View known data in the context of phylogenetic tree
- Infer subfamilies that share function

Nucleic Acids Res. 1998 Sep 15;26(18):4291-300.

A phylogenomic study of the MutS family of proteins.

Eisen JA.

IBA: Use multiple pieces of evidence in a phylogenetic tree

MSH2	В		MSH2
MACMU_ENSMMUP00000001311			MACMU_ENSMMUP00000001311
& Msh2			Msh2
🖓 Msh2		1	Msh2
人员 MSH2		4	MSH2
05SBJ2_CANFA			Q5SBJ2_CANFA
人口 MONDO_ENSMODP00000030934			MONDO_ENSMODP00000030934 ************************************
/ Y MONDO_ENSMODP0000001308			MONDO_ENSMODP0000001308
ornan_e		با ام ا	ORNAN E
「 」 CRNAN_ENSOANP00000021201			ORNAN_ENSOANP00000021201
MSH2			MSH2
		∳:	XENTR_ENSXETP00000048949
FUGRU_ENSTRUP0000009237			FUGRU_ENSTRUP0000009237
			nsh2
CIOIN_ENSCINP00000012990	Г	CI	IOIN_ENSCINP00000012990
msh-2			msh-2
spel1		7.	spel1
ANOGA_AGAP010282-PA	J		ANOGA_AGAP010282-PA
MSH2	IT		MSH2
Q752H0_ASHGO			Q752H0_ASHGO
L Q5B374_EMENI			25B374_EMENI
~~~~~ msh-2		🖣 🚡 m	ish-2
msh2		ms	sh2
B1N4L6_ENTHI		ē B	31N4L6_ENTHI
Lo T EHI_172750	- 4	ΨE	EHI_172750
msh2		msh2	
	MSH2 MACMU_ENSMMUP0000001311 Msh2 Msh2 MSh2 Q5SBJ2_CANFA GSSBJ2_CANFA MONDO_ENSMODP00000030934 MONDO_ENSMODP0000001308 ORNAN_E ORNAN_ENSOANP00000021201 MSH2 XENTR_ENSXETP00000048949 FUGRU_ENSTRUP00000009237 msh2 CIOIN_ENSCINP00000012990 msh-2 Spel1 ANOGA_AGAP010282-PA MSH2 Q752H0_ASHGO Q5B374_EMENI msh-2 msh2 B1N4L6_ENTHI EHI_172750 msh2	MSH2         B           MACMU_ENSMMUP0000001311         Msh2           Msh2         Msh2           MSH2         GSSBJ2_CANFA           GSSBJ2_CANFA         MONDO_ENSMODP00000030934           MONDO_ENSMODP0000001308         ORNAN_E           ORNAN_ENSOANP00000021201         MSH2           XENTR_ENSXETP00000048949         FUGRU_ENSTRUP000000237           MSH2         XENTR_ENSCINP00000012990           MSH2         Spel1           ANOGA_AGAP010282-PA         MSH2           Q752H0_ASHGO         Q5B374_EMENI           msh-2         msh2           B1N4L6_ENTHI         EHI_172750           msh2         Msh2	MSH2         B           MACMU_ENSMMUP00000001311         Msh2           Msh2         Msh2           MSH2         Q5SBJ2_CANFA           GSSBJ2_CANFA         MONDO_ENSMODP00000030934           MONDO_ENSMODP0000001308         ORNAN_E           ORNAN_ENSOANP00000021201         MSH2           XENTR_ENSXETP00000048949         FUGRU_ENSTRUP00000002377           MSH2         XENTR_ENSCINP00000012990           CIOIN_ENSCINP00000012990         MSH2           Q752H0_ASHGO         Q5B374_EMENI           Msh2         Msh2           MSH2<

Integration of experimental GO annotations from different models (curated)

Inheritance of inferred ancestral annotations to annotate extant genes (automatic)

## Example annotation: maintenance of DNA repeat elements



# IBA: software-assisted manual annotation

- Need to view tree, annotations and additional relevant information
- Need to annotate trees with function gain and loss events



## Integration of multiple types of biological knowledge

- GO annotations (from literature)
- Sequence feature annotations
  - Domains
  - Active sites
  - Modification sites
- Tree branch lengths



## Evidence from specific protein sites

Tree		Table MSA				
		Accession		6751	1 1	
占 PGM52_HUMAN		A6NIQ7	TAeho	pggpg.gef <mark>gvk</mark>	D.ADGDR	
PANTR_ENSPTRG00000029		895	<u> </u>	· · · · · · · · · · · · · · · · · · ·	D.ADGDR	
	1,		TAeho	pggpg.gef <mark>gvk</mark>	D.ADGDR	
	)		TAeho	pggpg.gefgvk	·····	
		• p787	TAeho	bååbå a et å v k 📅		
J Pgm5	_	Q8BZF8	TAeho	pggpg.gefgvk	D.ADGDR	
Q RAI_1584213		XP_001080072	TAeno	cpggpg.geigvk	D ADGDR	
RAT_130/909		AF_5/4644	TABHC	pggpg.gergvk	D ADGDR	
CANEA ENSCAEGOOOD001930		ENSCAF P0000002837	TAebo	paapa aefayk	D.ADGDR	
		ENSMODP0000003818	TAeho	paapa.aefavk	D.ADGDR	
ORNAN ENSOANG0000012517		ENSOANP00000019797	TAeho	paapa.gefavk	D.ADGDR	
β- PGM5		XP_424802	TAehe	pggpg.gefgvk	D.ADGDR	
XENTR_ENSXETG00000001670		ENSXETP0000003519	TAehr	pggpg.gdfgik	D.ADGDR	
5 FUGRU_ENSTRUG00000014040		ENSTRUP00000035914	TAehe	pggpv.gdfgik	D.ADGDR	
Lanre_ensdarg00000060745		ENSDARP00000080329	TA e h e	• <mark>p</mark> ggpg.gdfgik	D.ADGDR	
중 PGM1		P36871	TAehr	npggpn.gdfgik	D.GDGDR	
A PANTR_ENSPTRG0000000820		ENSPTRP0000001415	TAehr	n <mark>p</mark> ggpn.gdfgik	D.GDGDR	
↓↓ MACMU_ENSMMUG00000020049		ENSMMUP00000026373	TAehr	npggpn.gdfgik	D.GDGDR	
TA MOUSE_MGI:97565		NP_082408	TAehr	pggpn.gdfgik	D.GDGDR	<b>a</b>
		P38652	TAehr	npggpn.gdfgik	D.GDGDR	Curated
		ENGCAEPOODOO27564	TAehr	npggpn.gargik	D GDGDR	ourarea
		021/2R2	TAehr	nggpn.gdfgik	D.GDGDR	active site
		O6NVJ0	TAehr	pagpn.adfaik	D.GDGDR	ucrive site
		ENSTRUP0000003811	TAehr	pggpe.gdfgik	D.GDGDR	information
		ENSTRUP00000047441	TAehr	pggpn.gdfgik	D.GDGDR	int or manor
		Q78XW7	TAehr	npggpn.gdfgik	D.GDGDR	
L CIOIN_ENSCINGODDO SUDTAMILY		ENSCINP0000002112	T A e h r	n <mark>p</mark> ggpn.adfgik	D.GDGDR	trom CDD
LOC575075		XP_001177674	T A e h r	n <mark>p</mark> ggpn.gdfgik	D.GDGDR	
Q21742_CAEEL		Q21742	TAehr	n <mark>p</mark> ggpk.gdfgik	D.GDGDR	(cd03085)
Ц ^т СВG02267		XP_001679896	TAehr	pggpk.gdfgik	D.GDGDR	(cubscus)
Lộ Pgm		Q9VUY9	TAehr	npggpe.ndfgik	D.GDGDR	
0 ANOGA_AGAP005860		AGAP005860-PA	TAehr	npggpe.ndfgik	D.GDGDR	
		P37012	TAehr	pggpe.ndmgik	D.GDGDR	
		P33401	TAehr	npggpe.ndlgik	D GDGDR	
		099931	TABHI TAshr	npggpa.nargik	D.GDGDR	
		0780J9	TAebr	pagpa.nargik	D.GDGDR	
		074374	TAehr	aggpk.ndfgik	D.GDGDR	
EHI 110120		XP_657021	TAehr	pagkehgdfglk	D.GDGDR	
pgmA		Q23919	TAehr	pggpn.gdfgik	D.GDGDR	

## Phosphoglucomutase activity LOSS phosphoglucomutase activity (PGM5 subfamily)

#### IBA: Loss of function can be annotated





Nucleic Acids Res. 2007;35(22):7591-603. Epub 2007 Oct 26.

Keck School of Medicine of USC The origins and early evolution of DNA mismatch repair genes--multiple horizontal gene transfers and co-evolution.

<u>Lin Z, Nei M, Ma H</u>.



#### IBA vs ISO for SOD family Only most informative annotations are propagated Inferences can be made from non-vertebrate homologs

		Compara	PAINT
SOD1	MF	SOD activity, chaperone binding	SOD activity, zinc ion binding, copper ion binding
	CC	Nucleus, cytoplasm, mitochondrion, neuronal cell body	Nucleus, cytosol, mitochondrion, extracellular region
	BP	Activation of MAPK activity, response to reactive oxygen species, ovarian follicle development, myeloid cell homeostasis, retina homeostasis, anti-apoptosis, spermatogenesis, aging, locomotory behavior, response to drug, 31 others	Removal of superoxide radicals
CCS	MF		SOD copper chaperone activity, zinc ion binding, copper ion binding, NOT SOD activity
	CC		Cytosol, mitochondrion, nucleus
	BP		Removal of superoxide radicals, intracellular copper ion transport

### IBA vs IEA (InterPro) for SOD family Higher specificity

SOD1	MF	Metal ion binding	SOD activity, zinc ion binding, copper ion binding
	СС		Nucleus, cytosol, mitochondrion, extracellular region
	BP	Superoxide metabolic process, oxidation-reduction process,	Removal of superoxide radicals
CCS	MF	Metal ion binding	SOD copper chaperone activity, zinc ion binding, copper ion binding, NOT SOD activity
	CC		Cytosol, mitochondrion, nucleus
	BP	Superoxide metabolic process, oxidation-reduction process, metal ion transport	Removal of superoxide radicals, intracellular copper ion transport

### IBA vs IEA (InterPro) for PGM family Higher specificity Fewer false positive predictions

PGM1	MF	Magnesium ion binding, intramolecular transferase activity, phosphotransferases	Phosphoglucomutase activity
	CC		Cytosol
	BP	Carbohydrate metabolic process	Glycogen biosynthetic process, glucose-1-phosphate metabolic process
PGM5	MF	Magnesium ion binding, intramolecular transferase activity, phosphotransferases	NOT phosphoglucomutase activity
	СС		Cytosol, spot adherens junction, Z disc, stress fiber, focal adhesion, intercalated disc
	BP	Carbohydrate metabolic process	NOT glycogen biosynthetic process, NOT glucose-1-phosphate metabolic process

-

## Bottom line

- Experimental evidence codes remain the "gold standard"
  - BUT only available for a small subset of wellstudied organisms
  - NOTE: be aware of indirect effects annotated from IMP and IEP, you may want to filter these for some applications
- The next most reliable and specific tier is IBA, followed by IEA, then followed by ISS and IC
- If you want a more concise "summary" list of GO annotations, use IBA

## Where to get the data

- GO annotations
  - Gene Ontology website
- Pathway data in SBML format
  - Pathway Commons website
- For any analysis, make sure you note the version number and download date, as these resources are always being updated and analysis results may change from version to version

## Introduction to NGS Visualization with the Integrative Genomics Viewer (IGV)

## Programming for Biology 2014 Cold Spring Harbor Jim Robinson





## Agenda



- Introduction
- Using IGV: The Basics
- Data Tracks and File Formats
- NGS Alignments
  - SNPs
  - Structural Events
  - RNA-seq
- igvtools
- Exercises



## What is IGV



A desktop application for integrated visualization of multiple data types and annotations in the context of the genome.



BROAD INSTITUTE

## Installing IGV



### http://www.broadinstitute.org/igv



## **Installing IGV**







## Launch IGV



www.broadins	titute.org/igv/download		값 ess 🖾 🧪 🕯	Ø ₹
	Home > Downloads			
ive cs	Downloads			
		NR (10) 0 ( 1 0	0)	Apr
	Integrative Genomic	s viewer (IGV) (version 2.	3)	- 1 Y P
	Install IGV			dou
	Options for installing and rur	nning IGV:		uou
	<ol> <li>(Mac only) Download at</li> <li>(All systems) Use the Ja</li> <li>(All systems) Download</li> </ol>	nd run the Mac applcation; or ava Web Start buttons (Mac users: the binary distribution and run IGV	see below for limitations); or from the command line.	
	1. Mac Application			
	Download and unzip the M application can be moved 7. Mac users with Java 6 Web Start buttons below	tac App archive, then double-citck to to the "Applications" folder, or any ( <i>JRE 1.6</i> ) should use the binary /.	the IGV application to run it. If where else. Note: This require distribution archive or the J	10 Download 95 Java Iava Mac App
	2. Java Web Start			
	The buttons below use Java	Web Start (JWS) to install and lau	nch IGV directly from our web	site.
	*Mac Users: The Java Web set Gatekeeper security to it	Start option is not recommended f s lowest level, and it is possible that	or Mac OSX Mountain Lion or at even this will not be enough.	higher. Using it requires that
	Chrome: Chrome does not a download a "inlp" file. This s	automatically launch the Java Web hould appear in the lower left corne	start files by default. Instead, t or of the browser. Double-click	he launch buttons below will the downloaded file to run.
	Windows users: To run with include 64-bit Java by defa with 32-bit Java will result in	h more than 1.2 GB of memory you ault, even if the operating system the error "could not create virtual r	n must install 64-bit Java. <b>Mos</b> <b>is 64-bit</b> . Attempting to use the transforme of the second	t Windows installs do not he 2GB or greater launch op
	لے Launch	الله Launch	🔮 Launch	لِي Launch
	Launch with 750 MB	Launch with 1.2 GB	Launch with 2 GB	Launch with 10 GB
		Maximum usable memory for Windows OS with 32-bit	Maximum usable memory for 32-bit MacOS.	For large memory machines with 64-bit Jav

#### Download the Mac App bundle and double-click to unzip it.



## **Using IGV: The Basics**





## Using IGV: the basics



Hands-on exercise

- Launch IGV
- Select a reference genome
- Load data
- Navigate through the data



## Select the reference genome



Integrative

Genomics Viewer


Human hg18       1       2       Co       If I       <	000											IGV			4.40.00										
	Human hg18	ŧ	All		÷						Go	Ê		►	Ø		X				—				+
Berg genes       Image: designed and the set of																									
1       2       3       6       7       0       10       11       12       13       14       15       16       17       10       12       22       X       Y         -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -																									-11
			1		2		3	4	5	;	6	7		8	9	10		11	13	15	5 1 16	7 1	9 21	22 X	v
				1		Ι				1	-	I	Ι	-		1	I			<u> </u>					ц.
Seq genes     Image: Seq genes		╡╎┞╴																							
Sorg genes         March & Sorg - 101 &																									
Seq genes																									
Seq genes																									
Seq genes         Image: Seq genes																									
Seq genes         Image: Seq genes																									
Seq genes         Image: And and a second a second and a second																									
Seq genes         Image: Seq genes																									
Seq genes																									
	RefSeq genes		1							1.1								1		1.416	يا م ا ا		A		
115M of 183M							- Hereite	. La Millio, sa	بلوج ه						العب ال					a Rand B dia			الد, الألبالير		
																								115M of 183	M
BROAI																							$\mathbf{X}$	RK(	JA.



If **Human hg19** is not in the menu, then click on *More...* 



Integrative

Genomics Viewer

IGV

 $\bigcirc \bigcirc \bigcirc$ 

More...

Human hg18

File



Rat (rn5)

Dog (canFam2) Dog (canFam3) Rabbit (oryCun2.0) Cow (bosTau7)

OK

Cancel

Integrative

Genomics







#### Select Human hg18





#### Load data



#### Select File > Load from Server...





### Load data







🛒 IGV	File	Genomes	View	Tracks	Regi	ons	Tools	GenomeSpa	ce Help	Met
					6					
Fuman ng16		All			GO			, A Care Exome		
						_			40 45 43	
	NAME DATA TYPE DATA FILE		2 I	4	6	,	8 	10 ¹¹ 12	13 15 17 14 16	18 20 22 Y
GM12878 H3K27ac								_		
GM12878 H3K27me3										
GM12878 H3K36me3										
GM12878 H3K4me1			· · · · · · · · · · · · · · · · · · ·							
RefSeq genes		March Branchaster	and the later of the second	tille an anna an Anna an Anna		فالمتعيين	ي المانيسيني	allen and the desired of the set	فرابي اراميط فيحد وريب	al an de la compañía a dala.
6 tracks	*									140M of 304M



















Integrative Genomics





Integrative Genomics



000	5.16.6			IC	V			
Human hg18	÷	chr1 ‡	chr1	Go	1 · Þ	📘 💥 🦵 Exome		
GM12878 H3K27ac           GM12878 H3K27ac           GM12878 H3K27me3           GM12878 H3K36me3           GM12878 H3K4me1	NAME DATA TYPE	chr1 +	chr1	Go 1	21.2 p13.2 q11	□ X L Exome q12 q21.1 q23.1 q24.2 140 mb 160 mb 160 mb 140 mb 160 mb	 q25.3 q31.3 q32.2 q41 180 mb 200 mb 220 	42.2 q44
RefSeq genes		28269 PDPN E2F2 L	CK REF FAFT NEIX NE	GRIM TILLI ORI II	NPC3 NRAS	NR_033189 CDTD TIPRE	TOR3A RGS18 RABIE NSLT D	SPT KCNKT ADSS
6 tracks 🔀 ch	nr1:27,	078,527						146M of 304M



Integrative Genomics Viewer







				IGV			
Human hg18	\$	chr1	<pre>chr1:39,985,114-60,230,7</pre>	'40  Go 👚 🖣	Þ 🛷 🗖 🗙 🟳		+
GM12878 H3K27ac GM12878 H3K27me3 GM12878 H3K36me3 GM12878 H3K4me1		p36.23 p36. mb 42 [0-25] [0-25] [0-25]	12     p34.3     p33     p32.1       2 mb     44 mb     46       1     1     1	p31.1 p22.2 p21.2	p13.2 q11 q12 q21.1 q23.1 q2 	24.2 q25.3 q31.3 q32.2 q41	q42.2 q44
RefSeq genes				P FAAH TALI SKINTL	AGBL4 DMRTA2 EPS15 ORC1 CPT	Z ^H COCP2 USP24 PPAP28 DAB	T OMA1 FGGY
6 tracks	chr1:46,056	,729					131M of 317M





























Human hg18	chr1 \$ NRAS 60 124.2 q25.3 q31.3 q32.2 q41 q42.2 q44
GM12878 H3K27ac	p36.23 p36.12 p34.3 p33 p32.1 p31.1 p22.2
GM12878 H3K27me3 GM12878 H3K36me3 GM12878 H3K4me1	Type gene name or other RefSeq
RefSeq genes	MAST2 TSPANT
6 tracks	hr1:43,131,019 145M of 317M

















00					IGV				
Human hg18	\$	chr1	¢ chr1:115,054,795-	115,054,835 Go	1 ◄ ►	🧼 🖪 🛪	( 🟳	[	=
GM12878 H3K27ac GM12878 H3K27me3 GM12878 H3K36me3 GM12878 H3K4me1		p36.23       p36.23       p36.23       p       (0 - 25)       (0 - 25)       (0 - 25)       (0 - 25)	115,054,800 bp	1 p31.1 p22.2 115,054,81 We've whole base	num e mov e gene pair r	zoon /ed fi	115,054,820 bp	q25.3 q31.	3 q32.2 q41 q42.2 q44
Sequence RefSeq genes	→	A T G	T A G C C C T	A T T A A C	TTGT	A G T A	<b>TTTT</b>	GCTT , , , , ,	T T T T C T A C
			1						
6 tracks	chr1:115,0	054,814							203M of 317M



## Viewing multiple regions



Search box

Enter multiple loci or features in the search box



#### Regions > Gene Lists...

Select from a number of pre-defined gene lists, or Create your own persistent list



## **Viewing multiple regions**



Integrative Genomics Viewer

# Viewing multiple regions



To go back to the standard, single-region view:

- *double-click* on a region label or –
- right-click and select "Switch to standard view"

0 0			IGV	
Human hg18	A Y	chr16 🗘	Co 🕋 🔺 🕨 🤣 🖪 🛪 🖵	-
		chr12	chr12	chr16
	ME TA TYPE TA BILE	chr12:40739052-41147391	chr12:52642358-52648797	chr16:8121350-13070296
	A A A	[0 - 25]	[0 - 25]	[0 - 25]
GM12878 H3K27me3		alana an ang atao atao atao atao atao atao atao ata		and the second s
GM12878 H3K36me3		المرابط القرائل ويراب المرابط	[0-25]	
GM12878 H3K4me1		[0 - 25]	[0 - 25]	
		[0-25]	[0 - 25]	[0-25]
GM12878 H3K4me2		and the second second second second second second		ار بارين بالالالان الدينة بين بين الله الله بين المراكل بابين المراكل

## File formats and track types



- The file format defines the track type.
- The track type determines the display options



# File formats and track types

- The file format defines the track type.
- The track type determines the display options
- IGV supports many different file formats.
  - BAM
  - BED
  - <u>BedGraph</u>
  - bigBed
  - bigWig
  - Birdsuite Files
  - broadPeak
  - CBS
  - <u>CN</u>
  - Cufflinks Files
  - Custom File Formats
  - Cytoband
  - FASTA

- GCT
- genePred
- GFF
   OIDT
- GISTIC
   Goby
- Goby
  GWAS
- IGVA
- LOH
- MAF (Multiple Alignment Format)
- MAF (Mutation Annotation Format)
- Merged BAM File
- MUT
- narrowPeak

- PSL PSL
- RES
- <u>SAM</u>
- Sample Information
- SEG
- <u>SNP</u>
- <u>TAB</u>
- <u>TDF</u>
- Track Line
- Type Line
- VCF
- WIG
- For current list see: <u>www.broadinstitute.org/igv/FileFormats</u>





#### **Genome annotation track**







## Annotation display mode



1. Features are drawn in a single row, by default

2. Expand the track using the popup menu





## Annotation display mode

#### 3. For a compact view of all variants use "Squished"

Ref	Seq genes
R	ename Track
C	hange Track Color
C	hange Track Height
C	hange Font Size
С	Collapsed
✓ S	quished
E	xpanded
С	Copy Details to Clipboard
C	Copy Sequence
S	et Feature Visibility Window
R	emove Track
S	ave image





Integrative Genomics Viewer

#### **Reference sequence**



Click anywhere on the sequence to see a 3 frame translation.



By default the sequence for the forward strand is shown.



Click the arrow on the left to reverse the strand.





# **Viewing NGS Data**





## **Viewing alignments**

#### Whole chromosome view

00	IGV
Human hg18	chr1       chr1       Go
	p36.23 p36.12 p34.3 p33 p32.1 p31.1 p22.2 p21.1 p13.1 q12 q21.1 q23.2 q24.3 q25.3 q31.3 q32.2 q42.11 q43
NA19240 SLX (YRI daughter) Co age	[0-86]
NA19240 SLX (YRI daughter)	Zoom in to see alignments.
RefSeq genes	28269 KAZN SYF2 SFPQ STIL C8A AK4 CRYZ UOX DR1 RNPC3 NRAS NR_033189 IFI16 XCL2 ABL2 FAM5C PKP1 RD3 HHIPL2 RBM34 NLR
4 tracks loaded	chr1:95,509,957 185M of 266M



Integrative Genomics Viewer

### **Viewing alignments**



 $\mathbf{R}\mathbf{R}$ 

INSTITUTE

#### Zoom in to view alignments

00			IGV			
Human hg18	¢ chr1	chr1:95,625,439-95,649,30	03 Go 👚 🔸 🕨	🤣 🗖 🗙 💭	- 1	
	p36.23 p36.12 p3	5.1 p34.1 p32.2 p31.2 95,630 kb 95,632 kb	p22.3 p21.3 p13.3 95,634 kb 95,636	p12 q12 q21.1 	q22 q24.1 q25.2 q31.1 q32.1 q 10 kb 95,642 kb 95,644 kb	132.3 q42.11 q42.3 q44
NA19240 SLX (YRI daughter) Co age			History Spectra and the second second	an di kana yang di Kanasanan di pananan sa	langa sustal filmet to grant succession and succession and succession and succession and succession and success	Alf daga and property by the track of particular
NA19240 SLX (YRi daughter)						
RefSeq genes						
4 tracks loaded	chr1:95.634.860					244M of 397M
	10111100,004,000					244W 01 037W

## **Viewing alignments**

Integrative Genomics Viewer

#### Coverage track now has more detail


#### Zoom in to see more detail



Integrative

Genomics Viewer

Integrative Genomics Viewer

#### Zoom in to see more detail



Zoom in to see more detail







Integrative

Genomics Viewer



- Higher value (larger region) → requires more memory
- Low coverage files  $\rightarrow$  ok to use higher value
- Very deep coverage files  $\rightarrow$  use lower value



Integrative

Genomics Viewer







Hands-on exercise

- Load alignments from whole genome sequencing
- View sites where SNPs were called
- Sort and color to highlight patterns

















Integrative

Genomics



Ć	IGV	File	Genomes	View	Tracks	Regions	Tools	GenomeSpace	Help
•	$\bigcirc$								IGV
Hu	man hg	18	*	chr7	\$	snp1		Ga	

Type "snp1" in the Search Box and click Go



00												IGV														<u>a</u>			
Human hg18		\$ Cl	hr1		<b>\$</b>	chr:	L:9,71	8,605-	-9,718	,645		Go	f	•	►	Þ		X				Ξ	]			1111	11111	I <b>I</b> [+	]
		p36.23	p36	5.12	p34	.3 p	933 p	032.1	p31	.1 p	22.2	p21.3	p1	3.1	q	 2 q2	1.1 c	23.1	q24.2	qź	25.3	q31.	.3	q32.2	q41	c	42.2	q4	-
				9,718,0	610 bp			1		9,71	8,620 bp 			- 41 b	p —	9	9,718,63 	0 bp			1			9,718,6 	640 bp			<b>,</b>	
WGS Alignments Coverage		[0 - 50]																											
WGS Alignments		G				T 	A	A	T	C	G	C	T			C		G		3 3		T	A	T		T	A	T A A G C A	
Sequence	→	C T K	ТС	T K	Т	A T D	C	C G A	CG	A G	T	T T K	С	C C G	G	<b>3 A</b>	A	C G R	G /	A G	A	G T	Т	A	A G	C G	C	A G	
स्लाउव्य genes SNP Calls														CLST	<b>J</b> 1														
5 tracks loaded	chr1:	9,718,618												51.0												20	2M of 2	266M	1

Integrative Genomics

ΓЕ

Viewer

10



___ T E

<b>A A A</b>							10							2.	Viev	
Human hg18		¢ chr1		¢ chr1:	9,718,605-9	9,718,645	G	o 音 ·	• •	ŵ 🖪 🔅	¥ 🖵		]		🛛 🛨	.]
		p36.23 p	036.12	p34.3 p3	3 p32.1	p31.1	p22.2 p2	1.1 p13.1	c	112 q21.1 q2	3.1 q24.2	q25.3 q3	1.3 q32.2 q4	1 q42.	2 q4	-
			9,718,6 	10 bp	1	9,7	/18,620 bp	<b>4</b> '	l bp —	9,718,630   	bp	I	9,718,640 bp 	,	•	•
WGS Alignments Coverage		[0 - 50]														
WGS Alignments		G		T	A A T	C	G		T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1	T G	Sample = N Read group Read name Location = Alignment Cigar = 36 Mapped = M Mapping qu Base = A Base phred Pair start = Pair is map Insert size Pair orienta First in pair HO = 0 H1 = 1 MF = 18 RG = ERRO	T A12878 = ERR0017 = IL10_385: chr1:9,718,6 start = 9,718 M yes uality = 70 quality = 6 chr1:97184 ped = yes = -184 tion = F2R1 	57 - 6:180:155:338 529 8,628 (-) - - - 80 (+)	T A T	T N A	
Sequence	-	СТТ	СТ	ТАТ	ссдо	GA	GTT	тсс	C G	GAAC	NM = 1 $UQ = 4$			GCC	A G	
RefSeq genes SNP Calls		K	K	D	A		K	CL	STN1	S R	Aq = 25			G	A	
5 tracks loaded	chr1	:9,718,618						S	np1					202M	of 266M	

Integrative Genomics Viewer

Ε

Integrative Genomics





M ITE



Human hg18       2       chr1       2       chr1.9,718,605-9,718,645       Co       1       +       Image: Control of the contro	0 0 0															10	1														_	2		_A!e	SAVe
38 Algonents	Human hg18		\$		chr1	_		<b></b>	chr1	:9,71	.8,605	-9.7	18.6	45		G	0	4	-	•	à	0		: [				[-	-]	1111	1111			111	+1
aps2.2       p34.3       p32.1       p31.1       p22.2       p21.1       p13.3       q12       q21.4       q23.3       q31.3       q32.2       q41       q42.2       q44       q44.2       q44<					_		_			,,	-,	-,-	,-		_						~						_								_
at bp       5,716,610 bp       5,716,620 bp       9,716,550 bp       9,716,550 bp       9,716,560 bp         35 Algoments Coverage       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I				p36.2	3	p36.1	2	p34.3	p:	33	o32.1	p	31.1	p2	2.2	p2	21.1	p13	.1	q	12	q21.1	q23	.1 (	q24.2	q2	25.3	<b>q</b> 3	1.3	q32	.2 q	41	q42.	2	q44
41 bp																																			
quence			┫			9	718 61	0 bp						9 718	620 b				41 b	р —		9 718	630 b							9.71	8 640 F	n			→
33 Algnments Coverge 38 Algnments S3 Algnments a A A C T T C C C C C C C C C C C C C C C											1								1			0,110													
quences quenc	WGS Alignments Coverage		[0 -	50]																															
SS Algements  A A A C G G G G G G G G G G G G G G G			E																												-				
SS Alignments  SS Alignments  A A A C T T T C G A A A C T T C C C C C C C C C C C C C C			F								т		C	;	G				Ť			С													
SS Alignments a A A C T T C T T A T C C G C G A G T T T C C C G G A A C G G A G A G T T A A G C C A G (Seq genes IP Calls IP Calls III III IIII IIIIIIIIIIIIIIIIIIIIIII																			1±	ļ															
SS Alignments A A C T T C T T A T C C G C G A G T T T C C C G G A A C G G A G T T A A G C C A G T T C T C T T A T C C G C G A G T T T C C C G G A A C G G A G T T A A G C C A G T Geq genes IP Calls IP Calls II C T C T T C T T A T C C G C G A G T T T C C C G C G A A C G G A G C T T A A G C C C A G San the second secon			F																ļţ																
SS Alignments																			1÷	ļ															
A A C T T C T T A T C C G C G A G T T T C C C G C G A A C G G A G A G T T A A G C C A G rguence fSeq genes iP Calis																			1÷	İ															_
A A C T I C T T A T C C G C G A G T T T T C C C G C G A G A C T T A A G C C A G fSeq genes IP Calls A A A C T C C G C G A G A C T T A C C C G C G A G A G T T A A G C C A G Snp1 A A A A A A A A A A A A A A A A A A A																			1÷	l															
rquence       Image: Constraint of the const	WGS Alignments									Α	Α								Ŧ																Α
Iquence fSeq genes IP Calls I C T T C T T A T C C G C G A G T T T C C C G G A A C G G A G T T A A G C C A G Snp1 I C I I I I I I I I I I I I I I I I I I																			T																
rquence fSeq genes IP Calls IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII																			T	ļ					G	}			ļ	4			Т		
rquence fSeq genes IP Calls T T C C C C C C C C C C C C C C C C C																			T	ļ															
rquence fSeq genes IP Calls IP Calls IP Calls IT C T T C T T A T C C G C G A G T T T C C C C G G A A C G G A G A G T T A A G C C A G snp1																			T		С					С									
iquence fSeq genes IP Calls T T T T T T T T T T T T T																			T																
iquence fSeq genes IP Calls T C T T C T T A T C C G G C G A G T T T C C C C G G A A C G G A A C G G A G A G																			A	Т													ТА		
rquence fSeq genes IP Calls  C T T C T T A T C C G C G A G T T T C C C C G G A A C G G A G A G T T A A G C C A G CLSTN1  IP Calls  C T T C T T A T C C G C G A G T T T C C C C G G A A C G G A G A G T T A A G C C A G Snp1  C T T C T T A T C C G C A G A G T T T C C C C G G A A C G G A G A G T T A A G C C A G Snp1  C T T C T T A T C C G C G C A G T T A A G C C A G Snp1  C T T C T T A T C C G C G A G T T A A G C C A G CLSTN1  C T C T T A A G C C A G Snp1  C T T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C A G CLSTN1  C T C T T A A G C C C A G CLSTN1  C T C T T A A G C C C A G CLSTN1  C T C T T A A G C C C A G CLSTN1  C T C T T C T T A A G C C C A G CLSTN1  C T C T T C T T A A G C C C A G CLSTN1  C T C T T C T T A A G C C C A G CLSTN1  C T C T T C T T A A G C C C A G CLSTN1  C T C T T C T T A A G C C C A G C A G C C A G C C A G C C A G C C A G C C C A G C C C A G C C C A G C C C A G C C C C																		A								T	Ν							N	
fSeq genes IP Calls IP Calls	Sequence	⇒	С	T	Т	С	Т : И	ΤA	T	C	G	C	) A	G	Т	T	Т	C C	С	G	G	A A	C	G	G A	G	Α	G	TI	A	Α	G	C C	Α	G
IP Calls snp1	RefSeq genes			K			N		0		A					ĸ		C	CLST	N1	2		ĸ							L			ŭ		A
snp1	SNP Calls																																		
	1				_	_		_	_	_	_	_	_	_	_	_	_	_	snp1		_	_	_	_	_	_	_	_	_	_	_	_			







²³³M of 376M

00			IGV	· 3 · Viewer
Human hg18		thr1         \$         snp2         snp3         snp3	Go 音 🔺 Þ 🤣 🔲 🗶 🗖	
		p36.23 p36.12 p34.3 p33 p32.1 p31.1	p22.2 p21.1 p13.1 q12 q21.1 q23.1 q 41 bp	24.2 q25.3 q31.3 q32.2 q41 q42.2 q44
WGS Alignments Covera	age	[0-56] G G G A C		
WGS Alignments	C pc 5 C€	ick & drag to osition locus with blue C's between enter guidelines		С
		G	c	G
Sequence	-	A G T A T C G G G G A G A T	G A C T A C A C A G C C A	C T C T G A C C C T A G G A
RefSeq genes			TOMM40L	
SNP Calls			snp2	
tracks loaded	chr1:	59,464,343		233M of 376M

Integrative Genomics

Ε

Viewer

10





		IGV		·3· Viewe
Human hg18	<pre>\$ chr1 \$ chr1:159,464,</pre>	338-159,464,378 Go	🖆 🔹 Þ 🧼 🖪 🗙 🖵	
	p36.23 p36.12 p34.3 p33 p32.1	p31.1 p22.2 p21.1	p13.1 q12 q21.1 q23.1 q24.2 q25.3	q31.3 q32.2 q41 q42.2 q44
			41 bp	
	159,464,340 bp	159,464,350 bp 	159,464,360 bp 15 	9,464,370 bp 1!
WGS Alignments Coverage				
	GG			
	G G A	C C (	GC	
				A A A
		Α		
	G A A A	A C C C C	C A	С
		ссо	c c	
WGS Alignments		C	сс	
			C	C
		A A	A T G	
	A			
	G			G
			c	
Sequence	A G T A T C G G G G A	GATGACT	A C A C A G C C A C T C T	G A C C C T A G G A
RefSeq genes	E Y R G	D D	TOMM40L	L G
SNP Calls				
			snp2	

Integrative Genomics

Viewer

1<u>g</u>



Integrative Genomics

						.a. Viewer
Human hg18		\$ chr1	\$ snp2			
				WGS Alignments		
		p36.23 p36.12	p34.3 p33 p32.1	Rename Track Copy read details to clipboard		
WGS Alignments Coverage	_	159,464,340 bp     [0 - 56]	159,464	Group alignments by Sort alignments by Color alignments by	•	no color
		G G G	G A	<ul> <li>✓ Shade base by quality</li> <li>✓ Show mismatched bases</li> <li>Show all bases</li> </ul>		insert size pair orientation ✓ insert size and pair orientation read strand
		G	G A A A A T G T	View as pairs Go to mate View mate region in split screen Set insert size options		first-of-pair strand read group sample tag
WGS Alignments	R C	light-cli <b>olor a</b>	ck on alig I <b>ignment</b>	gnments and select s by > read stran	ct nd	bisulfite mode
				c		
Sequence	→	AGTAT	C G G G G A G A	A T G A C T A C A C A G C C A	A C	T C T G A C C C T A G G A
RefSeq genes				TOMM40L		
SNP Calls				5202		
5 tracks loaded	chr1:	159,464,343		onpr		233M of 376M



## **Viewing Structural Events**







- Paired reads can yield evidence for genomic "structural events", such as deletions, translocations, and inversions.
- Alignment coloring options help highlight these events based on:
  - Inferred insert size (template length)
  - Pair orientation (relative strand of pair)



## Paired-end sequencing







#### **Paired-end sequencing**





## **Interpreting Insert Size**





#### Interpreting inferred insert size



The "inferred insert size" can be used to detect structural variants, including:

- Deletions
- Insertions
- Inter-chromosomal rearrangements: (Undefined insert size)





# What is the effect of a deletion on inferred insert size?



#### **Deletion**



Reference Genome



#### **Deletion**



Reference Genome

Subject



#### **Deletion**












Subject









Subject

































#### Inferred insert size is > expected value

















## Insert size color scheme

- Smaller than expected insert size:
- Larger than expected insert size:
- Pairs on different chromosomes

Each end colored by chromosome of its mate





















# **Interpreting Pair Orientations**





# Interpreting pair orientations



Orientation of paired reads can reveal structural events, including:

- inversions
- duplications
- translocations

Orientation is defined in terms of

- read strand, left vs right, and
- read order, first vs second







Reference genome







Reference genome

















Β

Reference Genome



Α



































































"Left" side pair









#### "Right" side pair



## **Color by pair orientation**



NA12878 WGS			
Rename Track Copy read details to clipboard			
Group alignments by Sort alignments by	•		
Color alignments by	$\mathbf{b}$	no color	
<ul> <li>✓ Shade base by quality</li> <li>✓ Show mismatched bases</li> <li>Show all bases</li> </ul>		insert size ✓ pair orientation insert size and pair orientation read strand first-of-pair strand read group sample tag hisulfite mode	
View as pairs Go to mate View mate region in split screen Set insert size options			
Re-pack alignments		bisunte mode	



### Inversion





Integrative Genomics Viewer

## Inversion







#### Interpretation of read pair orientations



LR Normal reads.

The reads are left and right (respectively) of the unsequenced part of the sequenced DNA fragment when aligned back to the reference genome.

- LL,RR Implies inversion in sequenced DNA with respect to reference.
- RL Implies duplication or translocation with respect to reference.

These categories only apply to reads where both mates map to the same chromosome.

Figure courtesy of Bob Handsaker





Hands-on exercise

- Examine tissue-specific alternative splicing.
- Data: Illumina BodyMap 2.0

http://www.illumina.com/science/data_library.ilmn









# **RNA-Seq Setup**



• Step 1: Tune settings for RNA.



## **RNA-seq alignments**





Integrative

Genomics

## **RNA-seq alignments**

(	Click Alignments tab	
000	IGV	
Human hg18		<u>+</u>
	General Tracks Mutations Char Alignments robes Proxy Advanced IonTorrent	
	Visibility range threshold (kb): 30 Nominal window size at which alignments become visible	q42.2 q4 ²
	☑ Downsample reads Max read count: 100 per window size (bases): 50	15 
	Filter and shading options	
Sequence	Coverage allele-freq threshold 0.2 Mapping quality threshold: 0	T A G G A
RefSeq genes	✓ Filter duplicate reads ✓ Show center line	G
	✓ Filter vendor failed reads ✓ Show coverage track	
	□ Filter secondary alignments □ Show soft-clipped bases	
	□ Flag unmapped pairs	
	Shade mismatched bases by quality: 5 to 20	
	Flag insertions larger than:     bases	
	Filter alignments by read group     URL or path to filter file	
	Splice Junction Track Options	
	Show junction track Min flanking width: 0 Min junction coverage: 1	
	Show flanking regions	
	□ Insert Size Options	
	These options control the color coding of paired alignments by inferred insert size. Base pair values set default values. If "compute" is selected values are computed from the actual size distribution of each library.	
	Defaults Minimum (bp): 50 Scompute Minimum (percentile): 0.5	
	Maximum (bp): 1000 Maximum (percentile): 99.5	
	OK Cancel	
tracks loaded	chr1:159,464,348	386M of 866M



Integrative Genomics Viewer










Human hg18 Human hg19 More	Select Human hg19 From genome menu	42.2 q44
	Image: system of the	
		6.6.4
RefSeq genes	E Y R G D D Y T A T L T L TOMM40L	G
2 tracks loaded	 	VI of 866M







Integrative

Genomics



Integrative

Genomics

000		IGV
Human hg19	*	All 🛟 🚺 Co 🚔 🔹 🖗 🔲 💥 🖵 Exome 🖃
	NAME DATA TYPE DATA FILE	1 2 3 5 7 9 11 13 15 17 19 21 X 2 4 6 8 10 12 14 16 18 20 22 Y
Heart Coverage		[0 - 80]
Heart Junctions		
Heart		Zoom in to see alignments.
Liver Coverage		[0 - 80]
Liver Junctions		
Liver		Zoom in to see alignments.
RefSeq Genes		alus hand ale substant wat have a second and second ale satures had as had been had been had been all the state of
8 tracks	chr1:15	464,339 354M of 726M









00		IGV
Human hg19	*	
	NAME DATA TYPE DATA FILE	SLC25A30         Jump to gene or locus           SLC25A31         SLC25A31           SLC25A32         SLC25A33           SLC25A33         SLC25A33           SLC25A34         6           SLC25A35         6           SLC25A36         1           SLC25A35         6           SLC25A36         1
Heart Coverage		[0 - 93]
Heart Junctions		
Heart		Zoom in to see alignments.
Liver Coverage		[0 - 80]
Liver Junctions		
Liver		Zoom in to see alignments.
RefSeq Genes		letere de services en
8 tracks	chr1:15	356M of 726M

























































#### Viewing RNA splicing with Sashimi Plots

Reference: Katz Y, Wang ET, Silterra J, Schwartz S, Wong B, Mesirov JP, Airoldi EM, Burge, CB. *Sashimi plots: Quantitative visualization of RNA sequencing read alignments.* arXiv:1306.3466 [qbio.GN], 2013









Heart







































000	IGV	
Human hg18		I
	General         Tracks         Mutations         Charts         Alignments         Probes         Proxy         Advanced         IonTorrent           Visibility range threshold (kb):         500         Nominal window size at which alignments become visible	q42.2 q44
_	☑ Downsample reads Max read count: 100 per window size (bases): 50	11 1
equence efSeq genes	Filter and shading options         Coverage allele-freq threshold       0.2         Image: Show center line	TAGGA G
	Filter vendor failed reads     Show coverage track	
	<ul> <li>□ Filter secondary alignments</li> <li>□ Show soft-clipped bases</li> <li>□ Flag unmapped pairs</li> <li>☑ Flag zero-quality alignments</li> </ul>	
	Shade mismatched bases by quality:       5       to       20         Flag insertions larger than:       bases	
	Filter alignments by read group     URL or path to filter file	
	Show junction track Clanking width: Un-Check Show junc	tion
	Insert Size Options These options control the color coding of paired visions of "compute" is colorted vision of a paired	
	Defaults       Minimum (bp):       50       Image: Compute Minimum (percentile):       0.5         Maximum (bp):       1000       Maximum (percentile):       99.5	
	OK Cance	
acks loaded	k chr1:159,464,348	386M of 866M



Integrative Genomics

Viewer

1g

# igvtools





# igvtools



A set of utilities for preparing files for efficient display.

	<ul> <li>Converts sorted data file to a binary tiled data file (TDF).</li> </ul>
toidf	<ul> <li>Supported file formats: .wig, .cn, .snp, .igv, .gct</li> </ul>
count	<ul> <li>Computes average alignment or feature density over a specified window size across the genome.</li> </ul>
	<ul> <li>Supported file formats: .sam, .bam, .aligned, .sorted.txt, .bed</li> </ul>
	<ul> <li>Sorts file by genomic start position.</li> </ul>
sort	<ul> <li>Supported file formats: .cn, .igv, .sam, .aligned, .bed.</li> </ul>
	<ul> <li>Creates an index file for alignment or feature file.</li> </ul>
index	<ul> <li>Supported file formats: .sam, .aligned, .sorted.txt, .bed</li> </ul>



# igvtools



- Can be launched from the IGV user interface *File > Run igvtools...*
- Or run from the command line

Command Count				\$	)
Input File					Browse
Output File					Browse
Genome hg19					Browse
Tile and Count Optio	ns				
Zoom Levels	7 ‡				
Window Functions	🗌 Min	🗌 Max	🗹 Mean	Median	
	2%	10%	90%	98%	
Probe to Loci Mappin	g				Browse
Window Size	25				
Max Records 5000	000				Browse
		Clos	e Run		
Messages					





The **toTDF** utility converts large ASCII data files into tiled data format (.tdf) files.

TDF files have the following advantages:

- Data is indexed for efficient retrieval.
- Data is preprocessed for zoomed out views.
- TDF files are web friendly large data files can be shared over the web. Only small slices of the file are actually transferred as needed.


# igvtools count



The **count** command is used to transform alignment files to read density TDF files, e.g. for ChIP-Seq, RNA-Seq, and similar alignment counting experiments.



### Alignments

Alignments in bam/sam, .aligned, or bed format

### **Read Density**

TDF format, indexed and optimized for fast retrieval at multiple resolution scales



# igvtools sort



- Sorts IGV-supported genomic formats by start position.
- The index command requires sorted files.

### Example:

igvtools sort -m 1000000 –t ~/myTmpDir inputFile.sam outputFile.sorted.sam

• Uses combination of memory and disk to handle large files.

-m = maximum # of lines to hold in memory. When this number is exceeded a temporary file is created.

-t = directory used to create temporary files during sorting.





Creates an index file for viewing large files in bed, gff, or vcf formats. An index is optional for bed or gff files, but required for vcf files.

An alternative indexing tool is "tabix". Tabix both compresses and indexes genomic files. IGV can read either type of index (igvtools or tabix).

**Example:** igvtools index myFeatures.bed

The index file must remain in the same directory as the input file





Hands-on exercise

• Compute alignment coverage from a BAM file using igvtools count command.

Data source

Illumina BodyMap





Download data files required for this exercise from: <u>ftp://ftp.broadinstitute.org/pub/igv/CSH_2013/files.zip</u>

Files included in the zip: heart.bodyMap.bam heart.bodyMap.bam.bai sacCer3.fa (used in <u>next</u> exercise)



File Genomes View Tracks Regions Tools GenomeSpace Help	
Human ng19 ↓ Ali Run igvtools Go G 《 ▷ 《 ▷ ② M ,A ↓ Exome →	
Gitools Heatmans	
BEDTools	
	Y III
Select Tools > Run igvtools	
	11
	11
	11
Minut de serie entré de mantel de mantel de mantel de la serie de la serie de la serie de de de la serie de de serie d	
112M of 291	1M



Integrative Genomics Viewer

0.0.0					
Command Count					÷
nput rite		-			Browse
Jutput File		Salact C	ount com	mand	Browse
enome hg19		Select C		inanu	Browse
Tile and Count Option	s				
Zoom Levels	7 ‡				
Window Functions	🗌 Min	🗌 Max	🗹 Mean	🗌 Median	
	2%	10%	90%	98%	
robe to Loci Mapping					Browse
Nindow Size	25				
Sort Options					Decure a
Sort Options					
temp Directory	0				
Max Records 50000	0				
		Clos	e Run		
vessages					



Integrative

Genomics Viewer

O     O     Input File /Users/jrobinso/files/heart.bodyMap.bam Output File /Users/jrobinso/files/heart.bodyMap.bam.tdf Genome hg19 - Tile and Gount Ontions-	Browse Browse	
Zoom Levels 7 + Window Functions Min Max 2% 10% Probe to Loci Mapping Window Size 25	Select input file <b>heart.bodyMap.ba</b> Output filename will be filled in automatically.	m
Temp Directory Max Records 500000  Messages	Close Run	



Integrative

Genomics Viewer

•••						
Command (	Count					*
nput File	/Users/jrob	oinso/files/heart	bodyMap.bam			Browse
Output File	/Users/jrob	oinso/files/heart	bodyMap.bam.tdf			Browse
Genome	hg19					Browse
Tile and Co Zoom Level	ount Option	s				
Window Fur	nctions	🗌 Min	🗌 Max	🗹 Mean	🗌 Median	
		2%	10%	90%	98%	
Probe to Lo	ci Mapping					Browse
Window Siz	e	25				
Sort Optior	15					
Temp Direc	tory				Click Ru	Browse
Max Record	ls 50000	0				
			Clos	e Run		
Messages						



Integrative

Genomics Viewer

Command	Count					\$
nput File	/Users/jrol	binso/files/heart.	bodyMap.bam			Browse
Output File	/Users/jrol	binso/files/heart.	bodyMap.bam.tdf			Browse
Genome	hg19					Browse
Tile and C	ount Option	15				
Zoom Leve	ls	7 \$				
Window Fu	inctions	🗌 Min	🗌 Max	🗹 Mean	Median	
		2%	10%	90%	98%	
Probe to Lo	oci Mapping					Browse
Window Siz	ze	25				
			Wait for '	'Done" m	essage	
				Done m	essage	
			i fait foi		J	
Messages	٦.		(should h	o fast)	5	
Messages 100.0%			(should b	be fast).	<b>.</b>	
Messages 100.0% Done	<u>}</u> e		(should b	pe fast).		
Messages 100.0% Done	<u>}</u>		(should b	pe fast).		
Messages 100.0% Done			(should k	be fast).		
Messages 100.0% Done			(should k	pe fast).		
Messages 100.0% Done			(should k	oe fast).		
Messages 100.0% Done	Ĵ		(should k	oe fast).		



Integrative

Genomics Viewer

00						
Command	Count					\$
Input File	nput File /Users/jrobinso/files/heart.bodyMap.bam					
Output File	/Users/jrol	binso/files/hear	.bodyMap.bam.tdf			Browse
Genome	hg19					Browse
Tile and C	ount Option	15				
Zoom Leve	els	7 ‡				
Window Fu	inctions	🗌 Min	🗌 Max	🗹 Mean	🗌 Median	
		2%	10%	90%	98%	
Probe to Lo	oci Mapping					Browse
Window Siz	ze	25				
Sort Optio	ns					
Temp Dire	ctory	Click	Class			Browse
Max Recor	ds 5000	CIICK	Close			
			Clos	Run		
Messages						
100.0%						
Done						
	_	_				



Integrative

Genomics Viewer

19

<u> 0</u> 0									
File Genomes View	Tracks Re	gions T	Selec	ct	al fue			🔳 🗶 🖵 Ext	ome 🔄
Load from Server Load from DAS Encode	Load tracks or s	ample infori	File -	> L0a			Ie		
New Session Open Session Save Session	1 	2	3 4	5 6	7 8	9 10	11 13 12	15 17 14 16 1 I I I I I	8 ¹⁹ 2 ¹ 22 Y
Save Image									
Exit									
RefSeq Genes	Must Secure	Marine L.	and the second second		an an a di settan ana.	بالتفعينات فله		يفقق لأحدقت	Aller a secole state 🛔
×									139M of 407M



Integrative

Genomics Viewer

ig





Integrative Genomics Viewer

000	IGV
File Genomes View Tracks Regions To	ools GenomeSpace Help
Human hg19    All	Go  🚽 🕨 🤣 🔲 💥 🖵 Exome —
1 2	3 5 7 9 11 13 15 17 19 21 X 4 6 8 10 12 14 16 18 20 22 Y
heart hodyMan ham trif	
	$\mathbf{T}$
	See coverage blip at whole-genome view.
	The RAM file only has date around a single
	The DAW me only has data around a single
RefSeq Genes	dene on chr 12
3 tracks	145M of 232M



Integrative

Genomics Viewer

10





Integrative Genomics Viewer





Integrative Genomics Viewer



- Computing total and strand specific coverage with igvtools
- IGV batch scripting
- Controlling igv from a web page



## **IGV** Team

Jim Robinson, Helga Thorvaldsdóttir, Jill Mesirov (PI)

## Funding

IGV development has been made possible with funding from:

- National Cancer Institute (NCI) <u>http://cancer.gov/</u>
- Starr Cancer Consortium <a href="http://www.starrcancer.org/">http://www.starrcancer.org/</a>
- National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health <u>http://www.nigms.nih.gov/</u>
- IGV participates in GenomeSpace <u>http://genomespace.org/</u>, which is funded by the the National Human Genome Research Institute (NHGRI) <u>http://www.genome.gov/</u>



nteara

## For further information and help:

http://www.broadinstitute.org/igv

http://groups.google.com/group/igv-help

## Cite:

Robinson et al. Integrative Genomics Viewer. Nature Biotechnology 29, 24–26 (2011).

Thorvaldsdóttir, Robinson, and Mesirov. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics (2012).







Programming for Biology 2014 CSHL

> Scott Cain GMOD Coordinator scott@scottcain.net

## What is GMOD?

- A set of interoperable open-source software components for visualizing, annotating, and managing biological data.
- An active community of developers and users asking diverse questions, and facing common challenges, with their biological data.







# Why Install Your Own?

- You have data no one else has
- You want to be able to share it with your group, community, the world (potentially with "less savvy" users)
- You want to have control over how it looks

# Why JBrowse?

- (Fairly) Easy install
- Good user experience (getting close to a browser-desktop hybrid)
- Good community support (mailing lists, tutorials, software updates)

## Installation

- Only requires:
  - Web server (apache, lighttpd, nginx, etc)
    - Conveniently, Mac OS X ships with one installed.
  - Perl/make/standard unix-y tools

## JBrowse Attributes

- Do everything possible on the client side, in JavaScript.
- Fast, smooth navigation.
- Supports GFF3, BED, Bio::DB::*, Chado, WIG, BAM, BigWig, VCF, and UCSC import (intron/exon structure, name lookups, quantitative plots).
- Is stably funded by NHGRI.
- Is open source, of course.
- Did I mention it's fast?

## The JBrowse Project

- free and open source (license: LGPL / Artistic)
- a GMOD project
  - http://gmod.org
- developed using git, hosted on GitHub
  - http://github.com/GMOD/jbrowse
- Pls most involved: Ian Holmes, Lincoln Stein, Suzi Lewis

	Feature Trac	:ks
<ul> <li>HTMLFeat fills and he</li> </ul>	tures: Rectangles ( <div eights to represent the</div 	v>s) with various e feature spans
<ul> <li>CanvasFea glyphs</li> </ul>	tures: Much prettier, r	nore configurable
<ul> <li>Super-con menus.</li> </ul>	figurable left clicking a	and right-click
HTMLFeatures - mRNAs     Apple2     mRNA with CDSs but no UTRs	Apple3 mRNA with both CDSs and UTRs	





• IE requires version 10.

## **BAM Alignment Tracks**



- Reads small chunks directly from BAM file.
- Coverage and mismatches.

SNV				×	40,00
Primary Data					Go 🔏
Туре	SNV				
Score	119				1
Description	SNV C -> T				
Position	ctgA:1704217042				-
Length	1 bp				T TAU
Attributes					1
AC1	function values() { [na	tive code] }			T
AF1	function values() { [na	tive code] }			SNV C -> T
DP	function values() { [na	tive code] }			
DP4	function values() { [na	tive code] }			
FQ	function values() { [na	tive code] }			
MQ	function values() { [na	tive code] }			
VDB	function values() { [na	tive code] }			
alternative_alle	eles T				
description	SNV C -> T				
reference_alle	le C				
seq_id	ctgA				
Genotypes (1)					
variant homozygous T variant	1 100% 1 100% 1 100%				
Total	1 100%				
Name	GT	PL	GQ		
sample_data/raw sorted.bam	/volvi T/T	152 66 0	99		

 Reads directly from VCF files compressed and indexed with bgzip and tabix.

 Shows all VCF data: alleles, genotypes, quality, etc.

## Particular Strengths

- Web-based, but fast and smooth easy to set up
- Compressed NGS data: direct-to-browser BAM, BigWig, and VCF
- Optional faceted track selector efficiently search thousands of tracks
- Open local files directly on client, no data transfer required
- Highly customizable, embeddable, integratable, programmable



- Based on JBrowse, using plugin system
- Next generation of the popular Apollo annotation editor
- Online annotation editing and curation!



## WebApollo

- Clients receive updates in real time (like Google Docs)
- Saves edits to a central Chado database
- Client side is a JBrowse plugin
- Extensive server-side Java
- Maybe a live demo (later)
- <u>http://genomearchitect.org/WebApolloDemo/</u>

## **JBrowse Plugins**

• Extend JBrowse with your own JavaScript code

### Can do pretty much anything

- Add your own track visualizations
- Add your own data backends
- Add menu items
- Subscribe to event notifications (pub/sub system)
- Reach deep into the guts of JBrowse and (carefully!)
- change anything at all!
- WebApollo client is a JBrowse plugin

# Coming in 2.X

- MORE: data types, sorting options, speed
- Graphical configuration
- Multiple views, linked or independent
- Logins, uploading, track sharing
- Circular genomes

## **Big Thanks**

### Ian Holms (UC Berkeley)

Rob Buels Mitch Skinner Amelia Ireland

#### Lincoln Stein (OICR)

Julien Smith-Roberge Erik Derohanian Julie Moon Natalie Fox Adam Wright

### Suzi Lewis (LBNL)

Gregg Helt Ed Lee Justin Reese (UofMo) Colin Diesh (UofMo)

**NHGRI** Cold, hard cash

## The End (on to the workshop)

http://jbrowse.org/

GMOD: http://gmod.org/wiki/JBrowse

Github: http://github.com/GMOD/jbrowse

### Good Practices for Writing Perl Pipelines

#### Using perl as bioinformatics glue

Simon Prochnik with code from Scott Cain

Sunday, October 21, 12

Built-in	perldoc <	perl topic	> to get	help

% perldoc perlref

PERLREF(1)	User	Contributed	Perl	Documentation	PERLREF(1)
------------	------	-------------	------	---------------	------------

#### NAME

perlref - Perl references and nested data structures

NOTE

This is complete documentation about all aspects of references. For a shorter, tutorial introduction to just the essential features, see perlreftut.

#### DESCRIPTION

Before release 5 of Perl it was difficult to represent complex data structures, because all references had to be symbolic--and even then it was difficult to refer to a variable instead of a symbol table entry. Perl now not only makes it easier to use symbolic references to ...

Also available online at http://perldoc.perl.org/index-tutorials.html

1

#### Built-in peridoc -f <command> to get help

% perldoc -f split split /PATTERN/,EXPR,LIMIT split /PATTERN/,EXPR split /PATTERN/ split Splits the string EXPR into a list of strings and returns that list. By default, empty leading fields are preserved, and empty trailing ones are deleted. (If all fields are empty, they are considered to be trailing.)

Sunday, October 21, 12



Sunday, October 21, 12

3

### Running your script in the perl debugger

> perl -d myScript.pl					
Loading DB routines from perl5db.pl version 1.28					
Editor support available.					
Enter h or `h h' for help, or `man perldebug' for more help.					
<pre>main::(myScript.pl:3): print "hello world\n";</pre>					
DB<1>					
h	help				
q	quit				
n or s	next line or step through next line				
<return></return>	repeat last n or s				
!	repeat last command				
c 45	continue to line 45				
b 45	break at line 45				
b 45 \$a == 0	break at line 45 if \$a equals 0				
p \$a	print the value of \$a				
x \$a	unpack or extract the data structure in \$a				
R	restart the script				

Sunday, October 21, 12

5

### The interactive perl debugger

```
> perl -de 4
Loading DB routines from perl5db.pl version 1.28
Editor support available.
Enter h or `h h' for help, or `man perldebug' for more help.
main::(-e:1):4
 DB<1> $a = {foo => [1,2], boo => [2,3], moo => [6,7]}
  DB<2> x $a
0 HASH(0x8cd314)
   'boo' => ARRAY(0x8c3298)
     0 2
      1 3
   'foo' => ARRAY(0x8d10d4)
      0 1
      1 2
   'moo' => ARRAY(0x815a88)
      0
        6
      1
        7
```

#### More perl tricks: one line perl

```
> perl -e <COMMAND>
> perl -e '@a = (1,2,3,4);print join("\t",@a),"\n"'
      2
            3
1
                4
#print IDs from fasta file
> perl -ne 'if (/^>(\S+)/) {print "$1\n"}' volvox_AP2EREBP.fa
vca4886446_93762
                                     Contents of fasta file volvox AP2EREBP.fa
vca4887371_120236
vca4887497_89954
                               >vca4886446_93762
                               MSPPPTHSTTESRMAPPSQSSTPSGDVDGS
 see Chapter 19, p.
                               >vca4887371_120236
  492-502 Perl book 3rd ed.
                               MAGLHSVPKLSARRPDWELPELHGDLQLAP
                               >vca4887497_89954
                               MAYKLFGTAAVLNYDLPAERRAELDAMSME
                               >vca4888938_93984
                               MLHTDLOPPRCRTSGPRPDPLRMETRARER
```

Sunday, October 21, 12



7

#### Toy example: Finding out how to run a small task

- Let's assume we have a multiple fasta file and we want to use perl to run the program clustalw to make a multiple sequence alignment and read in the results.
- Here are some sequences in fasta format

>vca4886446_93762 MSPPPTHSTTESRMAPPSQSSTPSGDVDGS >vca4887371_120236 MAGLHSVPKLSARRPDWELPELHGDLQLAP >vca4887497_89954 MAYKLFGTAAVLNYDLPAERRAELDAMSME >vca4888938_93984 MLHTDLQPPRCRTSGPRPDPLRMETRARER

Here is the pipeline: MLHTDLQPPRCRTSGPRPDPL get fasta seq filename, construct output filename, generate command line that will align sequences with clustalw, read in/parse output file, (do something with the data)

Sunday, October 21, 12

9

#### How do we start on this? -- Looking for help

- Google
  - <program name> documentation / docs / command line
  - eg google 'clustal command line'

#### USE OF OPTIONS

All parameters of Clustalw can be used as options with a "-" That permits to use Clustalw in a script or in batch.

```
$ clustalw -options
CLUSTAL W (1.7) Multiple Sequence Alignments
clustalw option list:-
    -help
        -options
        -infile=filename
        -outfile=filename
        -type=protein OR dna
        -output=gcg OR gde OR pir OR phylip
```

```
USE OF OPTIONS
```

All parameters of Clustalw can be used as options with a "-" That permits to use Clustalw in a script or in batch.

```
$ clustalw -options
CLUSTAL W (1.7) Multiple Sequence Alignments
clustalw option list:-
        -help
        -options
        -infile=filename
        -outfile=filename
        -type=protein OR dna
        -output=gcg OR gde OR pir OR phylip
```

Command line would be: % clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna Did it do **exactly** what you want/expect when you tested it?

Sunday, October 21, 12

11

#### Running a command line from perl

```
Command line
clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna
```
# Util.pm package for nice reusable utility functions

```
package Util;
use strict;
our @EXPORT = qw(do_or_die);  # allow do_or_die() to be exported
                        # without specifying
                        # Util::do or die()
use Exporter;
use base 'Exporter';
# _____
sub do or die {
 my $cmd = shift;
 print "CMD: $cmd\n";
 my $oops = system $cmd;
 die "Failed" if $oops;
}
 _____
#
1;
```

Sunday, October 21, 12

13

## Util.pm in a script

# Next step: How do we find out how to parse the clustalw alignment file (without even knowing what the file format is)?

The output is a clustalw multiple sequence alignment in the file ExDNA.aln Look in bioperl documentation for help. See HOWTOs http://www.bioperl.org/wiki/HOWTOs

### **BioPerl HOWTOs**

#### **Beginners HOWTO**

An introduction to BioPerl, including reading and writing sequence files, running and parsing BLAST, retrieving from databases, and more.

#### SeqIO HOWTO

...

Sequence file I/O, with many script examples.

#### AlignIO and SimpleAlign HOWTO

A guide on how to create and analyze alignments using BioPerl.

Sunday, October 21, 12

15

## Help on AlignIO from bioperl

#### Abstract

This is a HOWTO that talks about using AlignIO and SimpleAlign to create and analyze alignments. It also discusses how to run various applications that create alignment files.

### AlignIO

Data files storing multiple sequence alignments appear in varied formats and Bio::AlignIO 🗗 is the Bioperl object for conversion of alignment files. AlignIO is patterned on the Bio::SeqIO 🗗 object and its commands have many of the same names as the commands in SeqIO. Just as in SeqIO the AlignIO object can be created with "-file" and "-format" options:

If the "-format" argument isn't used then Bioperl will try and determine the format based on the file's suffix, in a case-insensitive manner. Here is the current set of input formats:

Suffixes	Comment
aln	
	Suffixes

### Here's a more useful synopsis

Let's add this to our script

Sunday, October 21, 12

17

Use bioperl to parse the clustalw alignment

```
Command line
clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna
```

```
Script
#!/usr/bin/perl
use strict; use warnings;
use Util;
use Bio::AlignIO;
my $file = 'ExDNA.fasta';
my $clustFile = 'ExDNA.aln';
my $cmd = "clustalw -infile=$file -outfile=$clustFile
 -type=dna";
                           # build command line
do_or_die($cmd);
my $in = Bio::AlignIO->new(-file => $clustFile,
                         -format => 'clustalw');
while ( my $aln = $in->next aln() ) {
       . . .
    }
```

## We just wrote a script to parse in a clustalw alignment without having to worry about the file format

- That's the point of bioperl and object-oriented programming.
- You don't need to know the details of the file format to be able to work with it or how the alignment is stored in memory.
- Here's a sample file in case you are curious

```
CLUSTAL W (1.74) multiple sequence alignment
```

seq1	KSKERYKDENGGNYFQLREDWWDANRETVWKAITCNA
seq2	YEGLTTANGXKEYYQDKNGGNFFKLREDWWTANRETVWKAITCGA
seq3	KRIYKKIFKEIHSGLSTKNGVKDRYQN-DGDNYFQLREDWWTANRSTVWKALTCSD
seq4	SQRHYKD-DGGNYFQLREDWWTANRHTVWEAITCSA
seq5	DQQNFYQLREDWWTANRATIWEAITCSA
seq6	FSKNIXQIEELQDEWLLEARYKDTDNYYELREHWWTENRHTVWEALTCEA
seq7	KELWEALTCSR
seq1	GGGKYFRNTCDGGQNPTETQNNCRCIGATVPTYFDYVPQYLRWSDE
seq2	P-GDASYFHATCDSGDGRGGAQAPHKCRCDGANVVPTYFDYVPQFLRWPEE
seq3	KLSNASYFRATCSDGQSGAQANNYCRCNGDKPDDDKP-NTDPPTYFDYVPQYLRWSEE
seq4	DKGNA-YFRRTCNSADGKSQSQARNQCRCKDENGKN-ADQVPTYFDYVPQYLRWSEE
seq5	DKGNA-YFRATCNSADGKSQSQARNQCRCKDENGXN-ADQVPTYFDYVPQYLRWSEE
seq6	P-GNAQYFRNACSEGKTATKGKCRCISGDPPTYFDYVPQYLRWSEE
sea7	P-KGANYFVYKLDRPKFSSDRCGHNYNGDPLTNLDYVPOYLRWSDE

Sunday, October 21, 12

19

### bioperl-run can run clustalw and many other programs

- The Run package (bioperl-run) provides wrappers for executing some 60 common bioinformatics applications (bioperl-run in the repository system Git, see link below)
  - Bio::Tools::Run::Alignment::clustalw
- There are several pieces to bioperl these are all listed here
- <u>http://www.bioperl.org/wiki/Using_Git</u>
  - bioperl-live Core modules including parsers and main objects
  - bioperl-run Wrapper modules around key applications
  - bioperl-ext Ext package has C extensions including alignment routines and link to staden IO library for sequence trace reads.
  - bioperl-pedigree
  - bioperl-microarray
  - bioperl-gui
  - bioperl-db

- use strict; use warnings;
- Put all the hard stuff in subroutines so you can write clean subroutine calls.
- If you want to re-use a subroutine several times, put it in a module and re-use the module eg Util.pm
- #comments (ESC-; makes a comment in EMACS)
  - comment what a subroutine expects and returns
  - comment anything new to you or unusual
- Use the correct amount of indentation for loops, logic, subroutines

Sunday, October 21, 12

21

### Coding strategy

- coding time = thinking/design (10%) + code writing (30%) + testing and debugging (60%)
- Re-use and modify existing code as much as possible
- Write your code in small pieces and test each piece as you go.
- Get some simple code running first.
- Use more complicated tools/code only if you need to
- Think about the big picture:
  - total time = coding time + run time + analysis time + writing up results
  - will speeding up your code take longer than waiting for it to complete? Your time is valuable
- Check your input data and your output data
  - are there unexpected characters, line returns (\r or  $\n?$  ), whitespace at the end of lines, spaces instead of tabs. You can use
  - % od -c mydatafile | more
  - are there missing pieces, duplicated IDs?
- use a small piece of (real or fake) data to test your code
- Is the output **exactly** what you expect?

# gene_pred_pipe.pl (by Scott Cain) part I

```
#!/usr/bin/perl -w
use strict;
use Bio::DB::GenBank;
use Bio::Tools::Run::RepeatMasker;
use Bio::Tools::Run::Genscan;
use Bio::Tools::GFF;
my $acc = $ARGV[0]; # read argument from command line
# main functions in simple subroutines
my $seq obj = acc to seq obj($acc);
my $masked seq = repeat mask($seq obj);
my @predictions = run genscan($masked seq);
predictions to gff(@predictions);
warn "Done!\n";
exit(0);
#-----
              _____
```

```
Sunday, October 21, 12
```

23

gene_pred_pipe.pl (by Scott Cain) part II

```
sub acc to seq obj {
    #takes a genbank accession, fetches the seq from
    #genbank and returns a Bio::Seq object
    #parent script has to `use Bio::DB::Genbank`
    my $acc = shift;
    my $db = new Bio::DB::GenBank;
    return $db->get Seq by id($acc);
}
sub repeat mask {
    #takes a Bio::Seq object and runs RepeatMasker locally.
    #Parent script must `use Bio::Tools::Run::RepeatMasker`
    my $seq = shift;
    #BTRRM->new() takes a hash for configuration parameters
    #You'll have to set those up appropriately
    my $factory = Bio::Tools::Run::RepeatMasker->new();
    return $factory->masked seq($seq);
}
```

# gene_pred_pipe.pl (by Scott Cain) part III

```
sub run genscan {
   #takes a Bio::Seq object and runs Genscan locally and returns
   #a list of Bio::SeqFeatureI objects
   #Parent script must `use Bio::Tools::Run::Genscan`
   my $seq = shift;
   #BTRG->new() takes a hash for configuration parameters
   #You'll have to set those up appropriately
   my $factory = Bio::Tools::Run::Genscan->new();
   #produces a list of Bio::Tools::Prediction::Gene objects
   #which inherit from Bio::SeqFeature::Gene::Transcript
   #which is a Bio::SeqFeatureI with child features
   my @genes = $factory->run($seq);
   my @features;
   for my $gene (@genes) {
        push @features, $gene->features;
    }
   return @features;
}
sub predictions_to_gff {
    #takes a list of features and writes GFF2 to a file
    #parent script must `use Bio::Tools::GFF`
   my @features = @_;
   my $gff_out = Bio::Tools::GFF->new(-gff_version => 2,
                                              => '>prediction.gff');
                                       -file
    $gff_out->write_feature($_) for (@features);
   return;
}
```

Sunday, October 21, 12

# Getting arguments from the command line with Getopt::Long and GetOptions()

- order of arguments doesn't matter
- deals with flags, integers, decimals, strings, lists
- complicated.pl -flag -c 4 --price 34.55 --name 'expensive flowers'

# genbank_to_blast.pl (by Scott Cain) part I

```
#!/usr/bin/perl -w
use strict;
use lib "/home/scott/cvs stuff/bioperl-live";
                                                # this will change depending
                                                # on your machine
use Getopt::Long;
use Bio::DB::GenBank;
#use Bio::Tools::Run::RepeatMasker;
                                      # running repeat masked first is a good
                                      # idea, but takes a while
use Bio::Tools::Run::RemoteBlast;
use Bio::SearchIO;
use Bio::SearchIO::Writer::GbrowseGFF;
use Bio::SearchIO::Writer::HTMLResultWriter;
use Data::Dumper; # print out contents of objects etc
#take care of getting arguments
my $usage = "$0 [--html] [--gff] --accession <GB accession number>";
my ($HTML,$GFF,$ACC);
                          => \ \ \text{HTML},
GetOptions ("html"
            "qff" => \$GFF,
            "accession=s" => \$ACC);
unless ($ACC) {
    warn "$usage\n";
    exit(1);
}
#This will set GFF as the default if nothing is set but allowing both to be set
$GFF ||=1 unless $HTML;
#Now do real stuff ...
```

```
Sunday, October 21, 12
```

27

genbank_to_blast.pl (by Scott Cain) part II

# genbank_to_blast.pl (by Scott Cain) part III

```
sub acc_to_seq_obj {
    print STDERR "Getting record from GenBank\n";
    my $acc = shift;
    my $db = new Bio::DB::GenBank;
    return $db->get_Seq_by_id($acc);
}
sub repeat mask {
    my $seq
                = shift;
    return $seq;
                   #short circuiting RM since we
                   #don't have it installed, but this would be where
                   # you would run it
#
     my $factory = Bio::Tools::Run::RepeatMasker-
>new();
     return $factory->masked seq($seq);
#
}
```

```
Sunday, October 21, 12
```

29

```
genbank_to_blast.pl (by Scott Cain) part IV
sub blast_seq {
    my $seq = shift;
    my $prog = 'blastn';
    my $e_val = '1e-10';
    my $db
            = 'refseq rna';
    my @params = (
        -prog => $prog,
        -expect => $e val,
        -readmethod => 'SearchIO',
                   => $db
        -data
    );
    my $factory = Bio::Tools::Run::RemoteBlast->new(@params);
    $factory->submit_blast($seq);
    my $v = 1; # message flag
    print STDERR "waiting for BLAST..." if ( v > 0 );
    while ( my @rids = $factory->each_rid ) {
        foreach my $rid ( @rids ) {
            my $rc = $factory->retrieve_blast($rid);
            if( !ref($rc) ) { #waiting...
                if( $rc < 0 ) {
                    $factory->remove_rid($rid);
                }
                print STDERR "." if ( $v > 0 );
                sleep 25;
            }
            else {
                print STDERR "\n";
                return $rc->next_result();
            }
        }
    }
}
Sunday, October 21, 12
```

## genbank_to_blast.pl (by Scott Cain) partV

```
sub gff_out {
   my ($result, $acc) = @ ;
   my $gff out = Bio::SearchIO->new(
        -output_format => 'GbrowseGFF',
        -output signif => 1,
                       => ">$acc.gff",
        -file
        -reference
                     => 'query',
        -hsp_tag
                      => 'match part',
    );
    $gff_out->write_result($result);
}
sub html out {
   my ($result, $acc) = @_;
   my $writer = Bio::SearchIO::Writer::HTMLResultWriter->new();
   my $html_out = Bio::SearchIO->new(
        -writer => $writer,
        -format => 'blast',
        -file => ">$acc.html"
    );
    $html_out->write_result($result);
}
```

Sunday, October 21, 12

31

# HTML version of blast report: NM_000492.html Bioperl Reformatted HTML of BLASTN Search Report for NM_000492

BLASTN 2.2.12 [Aug-07-2005]

**Reference:** Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

Query= NM_000492 Homo sapiens cystic fibrosis transmembrane conductance regulator, ATP-binding cassette (sub-family C, member 7) (CFTR), mRNA.

(6,129 letters)

Database: NCBI Transcript Reference Sequences

311,041 sequences; 606,661,208 total letters

Sequences producing significant alignments:	Score (bits)	E value
refINM 000492.21 Homo sapiens cystic fibrosis transmembrane conductance re	1.201e+04	<u>0</u>
refINM 001032938.11 Macaca mulatta cystic fibrosis transmembrane conductance	8187	<u>0</u>
refINM 001007143.11 Canis familiaris cystic fibrosis transmembrane conductanc	5019	<u>0</u>
refINM 174018.21 Bos taurus cystic fibrosis transmembrane conductance regu	3253	<u>0</u>
refINM_001009781.11 Ovis aries cystic fibrosis transmembrane conductance regu	3229	<u>0</u>
refINM 021050.11 Mus musculus cystic fibrosis transmembrane conductance re	888	<u>0</u>
refIXM 342645.21 PREDICTED: Rattus norvegicus cystic fibrosis transmembran	714	<u>0</u>
refIXM 347229.2  PREDICTED: Rattus norvegicus similar to cystic fibrosis t	682	0

# GFF output: NM_000492.gff

E NM_000492.2   NM_000492.2  E NM_001032938.1  E NM_001032938.1  E NM_001007143.1  E NM_001007143.1	BLASTN BLASTN BLASTN BLASTN BLASTN	match HSP match HSP match HSP	1 1 1 1 1	6129 6129 4446 4446 4332 4332	1.201e+04 6060 + 8187 + 4130 + 5019 + 2532 +	+ • •	. II ID=match_ ID=match_ ID=match_ ID=match_ ID=match_	D=match_s hspl;Pare sequence2 hsp2;Pare sequence3 hsp3;Pare	equarcel;Targ nt=match_sequ ;Target=Targ;N: nt=match_sequ ;Target=EST:N: nt=match_seque	<pre>st=EST:NM_000492+1+6129 snce1Target=EST:NM_000492+1+6129 4_000492+133+4575 snce2Target=EST:NM_000492+133+4575 4_00492+133+4455 snce3Target=EST:NM_000492+133+4455</pre>
ref  NM_000492 ref  NM_000492 ref  NM_001032 ref  NM_001032 ref  NM_001007 ref  NM_001007 ref  NM_174018 ref  NM_174018	.2  .2  938.1  938.1  143.1  143.1  .2  .2	BI BI BI BI BI BI BI	LASTN LASTN LASTN LASTN LASTN LASTN LASTN LASTN	match HSP match HSP match HSP match HSP	1 1 1 1 54 54	6129 6129 4446 4332 4332 5760 2705	1.201e4 6060 8187 4130 5019 2532 3253 1641	-04 + + + + + + + + + +	+ - - - - -	ID=match_sequ ID=match_hsp1;Parent= ID=match_sequence2;Tc ID=match_hsp2;Parent= ID=match_sequence3;Tc ID=match_hsp3;Parent= ID=match_sequence4;Tc ID=match_hsp4;Parent=

Sunday, October 21, 12

33

### How to approach perl pipelines

- use strict and warnings
- use (bio)perl as glue
- <u>http://www.bioperl.org/wiki/Main_Page</u>
- google.com
- test small pieces as you write them (debugger: perl -d)
- construct a command line and test it (catch failure ...or die...)
- convert into system call, check it worked with small sample dataset
- extend to more complex code only as needed
- if you use code more than once, put it into a subroutine in a module e.g. Util.pm
- get command line arguments with GetOptions()

#### Genome Sequencing & Assembly Michael Schatz

Oct 23, 2014 Programming for Biology



### Outline

- I. Assembly theory
  - I. Assembly by analogy
  - 2. De Bruijn and Overlap graph
  - 3. Coverage, read length, errors, and repeats

2. Whole Genome Alignment

I. Aligning & visualizing with MUMmer

#### 3. Genome assemblers

- I. ALLPATHS-LG: recommended for Illumina-only projects
- 2. Celera Assembler: recommended for long read projects
- 4. Summary & Recommendations

#### Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 – Text printed on 5 long spools

It was the best affal dinter, it was the worst of times, it was the lage of widdom; it wash de optiof.ifoolishness, ... It was the best of times, it was the law of times, it was the lage of widdom, it was the age of foolishness, ... It was the dest of times, it was the law of times, it was the age of widdom, it was the age of foolishness, ... It was the best of times, it was thetworst of times, it was the age of widdom, it was the age of foolishness, ... It was the best of times, it was thetworst of times, it was the age of foolishness, the age of foolishness, ... It was the best of times, it was thetworst of times, it was the age of foolishness, the age of foolish

- How can he reconstruct the text?
  - 5 copies x 138,656 words / 5 words per fragment = 138k fragments
  - The short fragments from every copy are mixed together
  - Some fragments are identical































































Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$(b_1b_2b_k)^N$ where $1 \le k \le 6$ CACACACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence (~280 bp) Mariner elements (~80 bp)	13%
LINEs (Long Interspersed Nuclear Elements)	~500 – 5,000 bp	21%
LTR (long terminal repeat) retrotransposons	Ty I-copia, Ty3-gypsy, Pao-BEL (~100 – 5,000 bp)	8%
Other DNA transposons		3%
Gene families & segmental duplications		4%

- Wheat: 16 Gbp; Pine: 24 Gbp











 We know the order, orientation, and spacing, but just not the bases. Fill with Ns instead





Better resolution of chromosome organization
 Better sequence for all downstream analysis

#### Outline

- I. Assembly theory
  - I. Assembly by analogy
  - 2. De Bruijn and Overlap graph
- 3. Coverage, read length, errors, and repeats

#### 2. Whole Genome Alignment I. Aligning & visualizing with MUMmer

#### 3. Genome assemblers

- 1. ALLPATHS-LG: recommended for Illumina-only projects
- 2. Celera Assembler: recommended for long read projects
- 4. Summary and Recommendations



### Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy University of Maryland

### Goal of WGA

• For two genomes, A and B, find a mapping from each position in A to its corresponding position in B













		S	V Тур	es
R: AIB Q: AB		Insertion into Query R: AB Q: AIB	B	<ul> <li>Different s variation t</li> </ul>
Collapse Query R: ARR8 Q: AR8		Collapse Reference R: ARB Q: ARRB		misassem apparent pattern of
Collapse Query winterion R: ARIRB Q: ARB Exact tandem alignment if I=R		Collapse Reference winserton R: ARB Q: ARIR8 Exact tandem alignment if IwR	ARIB	<ul> <li>Most breat be at or negative</li> </ul>
Collapse Query R: ARR8 Q: ARR8	B B B B B B B B B B B B B B B B B B B	Collapse Reference R: ARRB Q: ARRRB	A R B	Things que     complicate     genomes
R: ABC Q: ABC		Rearrangement w Disgreement R: ABCDE Q: AFCBE		http://mum

- structural types / nblies will be by their f breakpoints
- akpoints will near repeats
- uickly get ed in real

mer.sf.net/manual/ lignmentTypes.pdf





I. Assembly theory I. Assembly by analogy 2. De Bruijn and Overlap graph 3. Coverage, read length, errors, and repeats

Outline

- 2. Whole Genome Alignment I. Aligning & visualizing with MUMmer
- 3. Genome assemblers
  - I. ALLPATHS-LG: recommended for Illumina-only projects 2. Celera Assembler: recommended for long read projects
- 4. Summary and Recommendations







Libraries	Fragment	Read length	Sequence	Required			
(insert types)	size (bp)	(bases)	coverage (x)				
Fragment	180*	≥ 100	45	yes			
Short jump	3,000	≥ 100 preferable	45	yes			
Long jump	6,000	≥ 100 preferable	5	no**			
Fosmid jump	40,000	≥ 26	1	no**			

**For best results. Normally not used for small genomes. However essential to assemble long repeats or duplications.

Cutting coverage in half still works, with some reduction in quality of results.

All: protocols are either available, or in progress.

















# Strain specific regions

#### (A) Nipponbare Conclusions

- Very high quality representation of the "gene-space" • Overall identity ~99.9%
  - Less than 1% of exonic bases missing
- Genome-specific genes enriched for disease resistance Reflects their geographic and environmental diversity
- Detailed analysis of agriculturally important loci
- Assemblies fragmented at (high copy) repeats Missing regions have mean k-mer coverage >10,000x Difficult to identify full length gene models and

  - regulatory features













































































### NanoCorr: Nanopore-Illumina Hybrid Error Correction

https://github.com/jgurtowski/nanocorr

- 1. BLAST Miseq reads to all raw Oxford Nanopore reads

- Compute consensus of each Oxford Nanopore read

   Currently using Pacbio's pbdagcon

















What should we expect from an assembly							
Analysis the tree	of dozens of genomes from across of life with real and simulated data						
Summary	e & Recommendations 🛛 💦 🍼	y					
< 100 Mbp:	HGAP/PacBio2CA @ 100x PB C3-P5						
	expect near perfect chromosome arms	2					
< 1GB:	HGAP/PacBio2CA @ 100x PB C3-P5						
	high quality assembly: contig N50 over IMbp	,					
> IGB:	hybrid/gap filling						
	expect contig N50 to be 100kbp – 1Mbp	)					
> 5GB:	Email mschatz@cshl.edu						
Error correctio	on and assembly complexity of single molecule sequencing reads.	1					
http://www.biorxiv.	org/content/early/2014/06/18/006395						

#### Assembly Summary



Assembly quality depends on

- I. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds

   Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats & other misassemblies

   Globally/Locally reassemble data from scratch with better parameters & stitch the 2 assemblies together

### Acknowledgements

Schatz Lab Rahul Amin Tyler Gavin James Gurtowski Han Fang Hayan Lee Maria Nattestad Aspyn Palatnick Srividya Ramakrishnan

Eric Biggers Ke Jiang Shoshana Marcus Giuseppe Narzisi Rachel Sherman Greg Vurture Alejandro Wences Gingeras Lab Jackson Lab Hicks Lab Lossifov Lab Levy Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Tuveson Lab Ware Lab Wigler Lab

Oxford Nanopore

<u>CSHL</u>

Hannon Lab



SFARI

SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE



Genome-Based and Genome-Free Transcript Reconstruction and Analysis Using RNA-Seq Data

> Brian Haas Broad Institute





# Workshop Overview

- Genome-based and genome-free transcript reconstruction from RNA-Seq
- Running the Tuxedo and Trinity software and visualizing the results.
- Principles of transcript abundance estimation
- Principles of differential expression analysis
- Analysis frameworks included in Tuxedo and Trinity

# **Overview of RNA-Seq**



From: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html

# **Common Data Formats for RNA-Seq**

FASTA format:

>61DFRAAXX100204:1:100:10494:3070/1 AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT

FASTQ format:

```
@61DFRAAXX100204:1:100:10494:3070/1
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT
+
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC@@CACCCCCA
```

Read

Quality values

AsciiEncodedQual(x) =  $-10 * \log_{10}(Pwrong(x)) + 33$ 

AsciiEncodedQual ('C') = 64

So, Pwrong('C') = 10^( (64-33/(-10)) = 10^-3.4 = 0.0004
### **Paired-end Sequences**



#### **Transcript Reconstruction from RNA-Seq Reads**



#### Advancing RNA-Seq analysis

Brian J Haas & Michael C Zody

Nature Biotech, 2010

New methods for analyzing RNA-Seq data enable *de novo* reconstruction of the transcriptome.

#### **Transcript Reconstruction from RNA-Seq Reads**





#### **Transcript Reconstruction from RNA-Seq Reads**



### Overview of the Tuxedo Software Suite



Slide courtesy of Cole Trapnell

#### Tuxedo development team



#### The TopHat Pipeline



From Trapnell, Pachter, & Salzberg. Bioinformatics. 2009

#### Alignments are reported in a compact representation: SAM format

0	61G9EAAXX100520:5:100:10095:16477
1	83
2	chr1
3	51986
4	38
5	46M
6	=
7	51789
8	-264
9	CCCAAACAAGCCGAACTAGCTGATTTGGCTCGTAAAGACCCGGAAA
10	###CB?=ADDBCBCDEEFFDEFFFDEFFGDBEFGEDGCFGFGGGGG
11	MD:Z:67
12	NH:i:1
13	HI:i:1
14	NM:i:0
15	SM:i:38
16	XQ:i:40
17	X2:i:0

SAM format specification: http://samtools.sourceforge.net/SAM1.pdf

#### Alignments are reported in a compact representation: SAM format

0	61G9EAAXX100520:5:100:10095:16477 (read name)
1	83 (FLAGS stored as bit fields; 83 = 00001010011 )
2	chr1 (alignment target)
3	51986 (position alignment starts)
4	38
5	46M (Compact description of the alignment in CIGAR format)
6	=
7	51789
8	-264 <i>(read sequence, oriented according to the forward alignment)</i>
9	CCCAAACAAGCCGAACTAGCTGATTTGGCTCGTAAAGACCCGGAAA
10	###CB?=ADDBCBCDEEFFDEFFFDEFFGDBEFGEDGCFGFGGGGG
11	MD:Z:67 (base quality values)
12	NH:i:1
13	HI:i:1
14	NM:i:0
15	SM:i:38 (Metadata)
16	XQ:::40
17	X2:i:0

SAM format specification: http://samtools.sourceforge.net/SAM1.pdf

Alignments are reported in a compact representation: SAM format

0 1	61G9EAAXX10 83 (FLAGS stor	0520:5:100:10095:16477 (read name) red as bit fields; 83 = 00001010011 )	
2	chr1 (alignme	ent target)	
	Still n	ot compact enough	
Milli	ons to billions	s of reads takes up a lot of space!!	5
		· · · ·	ľ
	Convert SA	M to binary – BAM format.	)
		······	
15	CM+++-20	וויובנמעמנמן	
10	SM:1:30		
16	XQ:1:40		
17	X2:i:0		

SAM format specification: http://samtools.sourceforge.net/SAM1.pdf

### Samtools

- Tools for
  - converting SAM <-> BAM
  - Viewing BAM files (eg. samtools view file.bam | less)
  - Sorting BAM files, and lots more:

Program: Version:	samtools (Tools for alignments in the SAM format) 0.1.18 (r982:295)		
Usage:	<pre>samtools <command/> [options]</pre>		
Command:	view sort mpileup depth faidx tview index idxstats fixmate flagstat calmd merge rmdup reheader cat targetcut phase	SAM<->>BAM conversion sort alignment file multi-way pileup compute the depth index/extract FASTA text alignment viewer index alignment BAM index stats (r595 or later) fix mate information simple stats recalculate MD/NM tags and '=' bases merge sorted alignments remove PCR duplicates replace BAM header concatenate BAMs cut fosmid regions (for fosmid pool only) phase heterozygotes	

### Visualizing Alignments of RNA-Seq reads

### **Text-based Alignment Viewer**

% samtools tview alignments.bam target.fasta



### IGV





### **Transcript Reconstruction Using Cufflinks**



### **Transcript Reconstruction Using Cufflinks**

a Splice-align rea	ads to the genome			
176,800 kb	176,802 kb	176,804 kb	176,806 kb	176,808 kb

#### b Build a graph representing alternative splicing events



From Martin & Wang. Nature Reviews in Genetics. 2011

### **Transcript Reconstruction Using Cufflinks**



From Martin & Wang. Nature Reviews in Genetics. 2011

### Transcript Structures in GTF Format

(tab-delimited fields per line shown transposed to a column format here)

- 0 700000090838467 (genomic contig identifier)
- 1 Cufflinks
- 2 transcript
- 3 101 (left coordinate)
- 4 5716 (right coordinate)
- 5 1000
- 6 + (strand)
- 7 .
  8 gene_id "CUFF.1"; transcript_id "CUFF.1.1"; FPKM "378.0239937260" (annotations)
- 0 700000090838467
- 1 Cufflinks
- 2 exon
- 3 101
- 4 5716
- 5 1000
- 6 +
- 7
- 8 gene_id "CUFF.1"; transcript_id "CUFF.1.1"; exon_number "1"; FPKM "378.0239937260"

### Demo: Tuxedo and IGV

- Run Tophat to align reads to the genome
- Reconstruct transcripts using cufflinks
- View genome-aligned reads and reconstructed transcripts using IGV

### De novo transcriptome assembly

No genome required

Empower studies of non-model organisms

- expressed gene content
- transcript abundance
- differential expression

The General Approach to *De novo* RNA-Seq Assembly Using De Bruijn Graphs

### Sequence Assembly via De Bruijn Graphs

a Generate all substrings of length k from the reads	
ACAGC TCCTG GTCTC	AGCGC CTCTT GGTCG
CACAG TTCCT GGTCT	CAGCG CCTCT TGGTC
CCACA CTTCC TGGTC TGTTG	TCAGC TCCTC TTGGT
CCCAC GCTTC CTGGT TTGTT	CTCAG TTCCT GTTGG
GCCCA CGCTT GCTGG CTTGT	CCTCA CTTCC TGTTG
CGCCC GCGCT TGCTG TCTTG	CCCTC GCTTC TTGTT CGTAG
CCGCC AGCGC CTGCT CTCTT	GCCCT CGCTT CTTGT TCGTA
ACCGC CAGCG CCTGC TCTCT	CGCCC GCGCT TCTTG GTCGT
ACCGCCCACAGCGCTTCCTGCTGGTCTCTTGTTG	CGCCCTCAGCGCTTCCTCTTGTTGGTCGTAG - Reads
<b>b</b> Generate the De Bruijn graph	
Accor + ccccc	AG + ACAGC CAGCC + AGCGC + GCGCT + GCTTC AG + TCAGC
(CTTCC)+(TTCCT)	Deletion or intron GCTGG + CTGGT + TGGTC + GGTCT + GTCTC + TCTCT

GTTGG + TTGGT + TGGTC + GTCGT + GTCGT

TCGTA CGTAG

From Martin & Wang, Nat. Rev. Genet. 2011

TCTTG

CTCT

TCCTC)+(CCTCT)

CTTGT

TTGTT

TGTTG





From Martin & Wang, Nat. Rev. Genet. 2011

#### **Contrasting Genome and Transcriptome Assembly**

#### **Genome Assembly**

- Uniform coverage
- Single contig per locus
- Double-stranded

#### **Transcriptome Assembly**

- Exponentially distributed coverage levels
- Multiple contigs per locus (alt splicing)
- Strand-specific



### Trinity Aggregates Isolated Transcript Graphs



Entire chromosomes represented.

#### **Trinity Transcriptome Assembly**

Many Thousands of Small Graphs



Ideally, one graph per expressed gene.



Thousands of disjoint graphs



Decompose all reads into overlapping Kmers (25-mers) Identify seed kmer as most abundant Kmer, ignoring low-complexity kmers. Extend kmer at 3' end, guided by coverage.





GATTACA C







 $G_{4}$ A₁ GATTACA 9 T С







GATTACA 9 A₁ T₀

















Report contig: ....AAGATTACAGA....

Isoform B

Remove assembled kmers from catalog, then repeat the entire process.



Inchworm Contigs from Alt-Spliced Transcripts















#### Chrysalis Re-groups Related Inchworm Contigs



Chrysalis uses (k-1) overlaps and read support to link related Inchworm contigs





#### Butterfly Example 1: Reconstruction of Alternatively Spliced Transcripts





#### **Reconstruction of Alternatively Spliced Transcripts**





#### **Reconstruction of Alternatively Spliced Transcripts**





#### **Reconstruction of Alternatively Spliced Transcripts**



### Butterfly Example 2: Teasing Apart Transcripts of Paralogous Genes





#### Teasing Apart Transcripts of Paralogous Genes



# Trinity output: A multi-fasta file

bcomp0_c0_seq1 len=5528 path=[1:0-3646 10775:3647-3775 3648:3776-5527]



Can align Trinity transcripts to genome scaffolds to examine intron/exon structures (Trinity transcripts aligned using GMAP)



# **Trinity Demo**

- Assemble RNA-Seq using Trinity
- Examine Trinity in context of a genome:
  - Align Trinity transcripts to the genome using GMAP
  - Align rna-seq reads to genome using Tophat
  - Visualize all alignments using IGV

Improved reconstruction with deeper sequencing depth and

Genome-based reconstruction is more sensitive than de novo methods



### Strand-specific RNA-Seq is Preferred

Computationally: fewer confounding graph structures in de novo assembly:

ex. Forward != reverse complement

(GGAA != TTCC)

Biologically: separate sense vs. antisense transcription

NATURE METHODS | VOL.7 NO.9 | SEPTEMBER 2010 |



#### Comprehensive comparative analysis of strand-specific RNA sequencing methods

Joshua Z Levin^{1,6}, Moran Yassour^{1-3,6}, Xian Adiconis¹, Chad Nusbaum¹, Dawn Anne Thompson¹, Nir Friedman^{3,4}, Andreas Gnirke¹ & Aviv Regev^{1,2,5}

Strand-specific, massively parallel cDNA sequencing (RNA-seq) is a powerful tool for transcript discovery, genome annotation

Nevertheless, direct information on the originating strand can substantially enhance the value of an RNA-seq experiment. For

'dUTP second strand marking' identified as the leading protocol to choose between them, were we developed a comprehensive computational pipeline to compare library quality metrics from any RNA-seq method. Using the well-annotated Saccharomyces cerevisige transcriptome as a benchmark, we compared seven library-construction protocols, including both published and

transcribed strand of other noncoding revers, demarcate the exact boundaries of adjacent genes transcribed on opposite strands and resolve the correct expression levels of coding or noncoding overlapping transcripts. These tasks are particularly challenging in small microbial genomes, prokaryotic and eukaryotic, in which

#### **Overlapping UTRs from Opposite Strands**



Schizosacharomyces pombe (fission yeast)



# **Antisense-dominated Transcription**



## Summary

- Two paradigms for transcript reconstruction
  - Rna-seq alignment assembly
    - Tuxedo (tophat, cufflinks)
  - genome-free de novo read assembly
    - Trinity
- Often best to pursue both strategies
  - Maximize sensitivity for genome-based transcript reconstruction + capture missing or ill-represented transcripts via de novo assembly.

### Abundance Estimation (Aka. Computing Expression Values)

### Calculating expression of genes and transcripts



Calculating expression of genes and transcripts



### **Normalized Expression Values**

- Transcript-mapped read counts are normalized for both length of the transcript and total depth of sequencing.
- Reported as: Number of RNA-Seq Fragments
  Per Kilobase of transcript
  per total Million fragments mapped

# **FPKM**

### Multiply-mapped Reads Confound Abundance Estimation



Blue = multiply-mapped reads Red, Yellow = uniquely-mapped reads

### Multiply-mapped Reads Confound Abundance Estimation



Isoform B

Blue = multiply-mapped reads Red, Yellow = uniquely-mapped reads Use Expectation Maximization (EM) to find the most likely assignment of reads to transcripts.

Performed by:

- Cufflinks and Cuffdiff (Tuxedo)
- RSEM
- eXpress
### Differential Expression Analysis Using RNA-Seq



Robinson and Oshlack, Genome Biology, 2010

## Diff. Expression Analysis Involves

- Counting reads
- Statistical significance testing

	Sample_A	Sample_B	Fold_Change	Significant?
Gene A	1	2	2-fold	No
Gene B	100	200	2-fold	Yes

### Observed RNA-Seq Counts Result from Random Sampling of the Population of Reads

Technical variation in RNA-Seq counts per feature is well modeled by the Poisson distribution



#### Example: One gene*not* differentially expressed



SampleA(gene) = SampleB(gene) = 4 reads

## Beware of concluding fold change from small numbers of counts

Poisson distributions for counts based on **2-fold** expression differences



No confidence in 2-fold difference. Likely observed by chance.

High confidence in 2-fold difference. Unlikely observed by chance.

### More Counts = More Statistical Power

Example: 5000 total reads per sample. Observed 2-fold differences in read counts.

	SampleA	Sample B	Fisher's Exact Test (P-value)
geneA	1	2	1.00
geneB	10	20	0.098
geneC	100	200	< 0.001

Tools for DE analysis with RNA-Seq



ShrinkSeq NoiSeq baySeq Vsf Voom SAMseq TSPM DESeq EBSeq NBPSeq edgeR

> + other (not-R) including CuffDiff

See: http://www.biomedcentral.com/1471-2105/14/91

### Visualization of DE results and Expression Profiling

#### Plotting Pairwise Differential Expression Data



Significantly differently expressed transcripts have FDR <= 0.001 (shown in red)

## **Comparing Multiple Samples**



**Heatmaps** provide an effective tool for navigating differential expression across multiple samples.

**Clustering** can be performed across both axes: -cluster transcripts with similar expression patters.

-cluster samples according to similar expression values among transcripts.

#### **Examining Patterns of Expression Across Samples**

Can extract clusters of transcripts and examine them separately.



### **RNA-Seq Analysis Frameworks**

#### Tuxedo Framework for Transcriptome Analysis



Derived from: Nat Protoc. 2012 Mar 1;7(3):562-78. doi: 10.1038/nprot.2012.016.

## Full Tuxedo Framework Demo

• See: Tuxedo_workshop_activities.pdf

**Trinity Framework for Transcriptome Analysis** 



# Full Trinity Framework Demo

• See Trinity_workshop_activities.pdf

# Summary of Key Points

- RNA-Seq is a versatile method for transcriptome analysis enabling quantification and novel transcript discovery.
- Genome-based and genome-free methods exist for transcript reconstruction
- Expression quantification is based on sampling and counting reads derived from transcripts
- Fold changes based on few read counts lack statistical significance.
- Multiple analysis frameworks are available alternative and often complementary approaches to support biological investigations.

## Software Links

- Tuxedo
  - Bowtie: <u>http://bowtie-bio.sourceforge.net/index.shtml</u>
  - Tophat: <u>http://tophat.cbcb.umd.edu/</u>
  - Cufflinks: http://cufflinks.cbcb.umd.edu/
- Trinity <u>http://trinityrnaseq.sourceforge.net/</u>
- IGV for Visualization <u>http://www.broadinstitute.org/igv/</u>
- GMAP
   <u>http://research-pub.gene.com/gmap/</u>
- Samtools
   <u>http://samtools.sourceforge.net/</u>

# Papers of Interest

- Next generation transcriptome assembly
  - http://www.nature.com/nrg/journal/v12/n10/full/nrg3068.html
- Tuxedo protocol
  - <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334321/</u>
- Trinity
  - <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571712/</u>
  - http://www.nature.com/nprot/journal/v8/n8/full/nprot.2013.084.html