
Perl III
File input and output

Dave Messina

v5 2013

1

Recap of UNIX I/O

STDOUT - Prints to your screen, but can be
redirected to a file or other program in the shell
using redirection or pipes.

STDERR Standard error, used for diagnostic
messages. Also prints to your screen, and also can
be redirected in the shell.

STDIN - Reads in the text you type or from a file
using redirection or pipes.

2

If we use output redirection on the UNIX
command line, the standard output goes to a file
and we see only the standard error on the
screen:

$ ls
kubrick.txt

$ cat kubrick.txt
Barry Lyndon
The Shining

$ cat kubrick.txt fincher.txt > films.txt
ls: fincher.txt: No such file or directory

Recap of UNIX I/O

The UNIX way of reading from and writing to
files is redirection.

3

Perl I/O

open(IN, '<', 'myfile.txt') or die "can't open
myfile.txt: $!\n";

The Perl way of reading from or writing to a file is the
function open.

4

open's first argument

The first argument is a filehandle. Filehandles are how
you refer to a file within Perl.

STDOUT and STDERR are filehandles.

When you open a file yourself, you make your own
filehandle and give it a name (here, I chose IN).

open(IN, '<', 'myfile.txt')

open is a function, which takes 3 arguments:

First argument

5

Filehandles

Reading and writing to the filesystem is very
complicated, involving bits, buffers, and memory.

Perl provides a 'handle' to the file and takes care of all
the complicated parts for us so we can interact with a
file more simply.

the name of the file
a way to get access to a file's contents
the actual data inside the file

Filename
Filehandle
File contents

Filenames, filehandles, and the data in a file are three
different things.

6

The second argument is a mode. The modes are
borrowed from redirection on the command line.

< for reading from a file
> for writing to a file

open(IN, '<', 'myfile.txt')

open's second argument

Second argument

7

The third argument is the name of a file to open. It can
either be a literal name:

open(IN, '<', 'myfile.txt')

open(IN, '<', 'myfile.txt')

or a variable containing a filename:

open(IN, '<', $file)

open's third argument

Third argument

8

Catch errors with die

open or die is a Perl idiom. die is a function that
exits the program immediately and prints the specified
string to STDERR.

open(IN, '<', 'myfile.txt')

 or die "can't open myfile.txt: $!\n";

If you're going to read from a file, that file must exist and
be readable.

Since it rarely makes sense to continue when it's not
possible to read the file, we want the program to stop.
We do this with die.

9

Capturing system errors with $!

$! is a special Perl variable that contains error
messages from the system. If there was a problem with
opening your file, there will be an error message in $!,
and we can include it in our error string.

 or die "can't open $file: $!\n";

Let's try it.

Perl can also tell us what the filesystem said about why
the file couldn't be opened.

contains error
message from
the filesystem

10

Open also can be used to open files for writing by using '>'
as the second argument to open.

my $out = 'out.txt';

open(OUT, '>', $out) or die "can't open $out: $!\n";

Now specify that filehandle when you print

print OUT "I'm writing to a file!\n";

Open a file for writing

and the output will go into a file instead of the screen:

$ perl myprog.pl

$ cat out.txt

I'm writing to a file!

no redirection on the command line

11

Open a file for writing

If you open a file for writing and the file doesn't exist, it
will be created.

$ ls

$ perl myprog.pl

$ ls

out.txt

Be careful! If you open an existing file for writing, you
will erase everything inside that file!

Let's try it.

look! no file there!

out.txt has been created by myprog.pl

12

Opening multiple files

You can open more than one file in a script — just give
them different filehandles.

my $in = 'in.txt';

my $out = ‘out.txt’;

open(IN, '<', $in) or die "can't open $in: $!\n";

open(OUT, '>', $out) or die "can't open $out: $!\n";

13

Open files from user input

Instead of hardcoding filenames inside your program,
you can read them in from the command line:

my $in = shift @ARGV;

my $out = shift @ARGV;

open(IN, '<', $in) or die "can't open $in: $!\n";

open(OUT, '>', $out) or die "can't open $out: $!\n";

$ perl test.pl myinfile.txt myoutfile.txt

On the command line, you'd type this:

14

Open files from user input

my $in = shift @ARGV;

my $out = shift @ARGV;

open(IN, '<', $in) or die "can't open $in: $!\n";

open(OUT, '>', $out) or die "can't open $out: $!\n";

$ perl test.pl myinfile.txt myoutfile.txt
Command line

Inside our Perl program

myinfile.txt and myoutfile.txt are filenames.
IN and OUT are filehandles.
$in and $out are variables containing the filenames.

Which are the filehandles and which are the filenames?

15

<> to get contents out of a file

Perl reads files one line at a time.

To read a line from a file, you put the filehandle inside
<>, like this:

my $in = ‘in.txt’;

open(IN, '<', $in) or die "can't open $in: $!\n";

print "This is the first line from the file $in:\n";

my $line = <IN>;

print $line;

16

This code reads the first two lines from a file:

my $in = ‘in.txt’;

open(IN, '<', $in) or die "can't open $in: $!\n";

print "This is the first line from the file $in:\n";

my $line = <IN>;

print $line;

print "This is the 2nd line from the file $in:\n";

$line = <IN>;

print $line;

<> to get contents out of a file

17

To read from a filehandle line by line, put

my $in = shift @ARGV;

open(IN, '<', $in) or die "can't open $in: $!
\n";

while (my $line = <IN>) {

 chomp $line;

 print "This line is from the file $in:\n";

 print $line\n";

}

into a while loop, like this:my $line = <IN>

<> to get contents out of a file

Most files have lots of lines, and we often want to read
all the lines in a file one by one. We can do that using a
while loop.

18

Removing newlines with chomp

chomp removes the newline from the end of a string
(if there is a newline).

my $string = "hey there!\n";

print "my string is: ", $string, "\n";

chomp $string;

print "after chomp : ", $string, "\n";

When you read a line from a file, the first thing you
always want to do is chomp.

19

Counting lines in a file

my $line_count;

while (my $line = <IN>) {

 chomp $line;

 $line_count++;

}

print "There are $line_count lines\n";

Let's do something more interesting than printing the
line back out. Let's count how many lines there are in
the file.

++ adds 1 to $line_count each time we go through the
loop.

20

Why we read a file with while

while (my $line = <IN>) {

<IN> returns a line from a file.
We assign that line to a variable, $line.
while tests that assignment for truth:
"Can we assign a value to $line?"

If we've hit the end of the file, there are no more lines
to read, and so the answer is "no", or FALSE.
When the expression in parentheses is false, we exit
the loop.

Let's step back for a moment and think about why this
works. What exactly is going on on this line?

What happens if the input file contains a blank line?
21

