
Algorithms in Bioinformatics
Jim Tisdall

Programming for Biology

Lecture Notes
The Problem1.
Time and Space and Algorithms2.
Using Less Time3.
Using Less Space4.
Profiling5.
Parallel Processing6.

Suggested Reading
Mastering Algorithms with Perl

by Orwant, Hietaniemi, and Macdonald
(An excellent algorithms text with implementations in Perl)

Introduction to Algorithms
by Cormen et al.
(This is the standard modern text)

Writing Efficient Code
by Jon Bentley
(Hard to find. Great book.)

Introduction to Automata Theory, Languages, and Computation
by Hopcroft and Ullman
(The standard, mathematical textbook for theoretical computer science.)

Computers and Intractability: A Guide to the Theory of NP-Completeness
by Gary and Johnson
(Very well written.)

Network Programming with Perl
by Lincoln Stein
(Client-server network programming.)

An Introduction to Parallel Algorithms
by Joseph Jaja
(For the next generation of computers.)

Programming for Biology

Jim Tisdall, James.Tisdall -- at -- DuPont.com
Last modified: Wed Oct 14 16:14:01 EDT 2009

Scientific Computing http://infoserver.cshl.edu/LectureNotes/ScientificComputing/alg...

1 of 1 10/18/10 1:47 PM

Time and Space and Algorithms
A program's use of time and space depends on the algorithms and associated data
structures used to solve a problem.

Typically there are many algorithms (ways to solve a problem in a computer.) Some ways
use less time and/or less space than other ways. Finding the good ways is the study of the
design and analysis of algorithms.

An algorithm is the design or idea of a computation. It can be expressed in terms of a
specific computer program, or more informally as in pseudocode.

A data structure is the form of the computation as it proceeds. A great deal of biological
data is organized into two-dimensional tables in relational databases. Relational
database tables are the standard workhorse for storing data in biology, and are useful in a
surprising number of situations.

It's important to know, however, that often the best algorithm will use some other data
structure such as a doubly-linked list or a tree, for example. Such data structures might
better represent graph structures, gene networks, evolutionary relationships, and so on. And,
such data structures may be used in sometimes surprising ways to speed up a computation.

The space of an algorithm is just the amount of computer memory it uses.

The time of an algorithm is usually given as a function on the size of the input. So if the input
is of size n, the algorithm might take time n2. So, for instance, if you gave such an algorithm
a hundred genes, it would take about 10000 units of time to run; if you gave it ten thousand
genes, it would take 100000000 units of time to run.

Time is roughly estimated according to the number of basic operations performed by your
program as it runs. Basic operations are adding, concatenating two strings, printing, etc. The
overall structure of the program is what is important, not an actual prediction of exactly how
many seconds the program will take.

System building and knowing what can be computed
We are primarily interested in building software to achieve easily computed, but useful,
results. We will not delve into the study of algorithms in any depth in this course. But it can
easily happen that you may want to compute something that is hard to compute in a week,
or a year, or even at all. This is a practical problem, and it's important to know what you can
do about it.

The idea is that there are limits to what can be computed. These limits take two main
forms: intractability and undecidability.

The main point:
MANY PROBLEMS CANNOT BE COMPUTED
but it's possible to get "pretty good" answers for many of them

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

1 of 4 10/18/10 1:57 PM

How algorithms are measured
Algorithms are typically classified by how fast they perform on inputs of varying sizes, by
giving their speed as a function of the size of the input. The size of the input is usually called
n.

Say for example that an algorithm gets an input of size n, and then just to write the answer it
must write an output in space of size 2n. (The amount of space that an algorithm uses is one
way to establish a lower bound for how much time the algorithm takes to complete.) Then we
say the algorithm's time complexity is "order of 2 to the n", written in a shorthand called big
Oh notation as

O(2n).

This way of measuring an algorithm is called time complexity.

Examples:
O(2n) computations: intractable (e.g. exponential) is bad
O(n2) computations: tractable (e.g. polynomial) is good
O(5n) computations: tractable (e.g. linear) is great
O(log(n)) computations: tractable (e.g. logarithmic) is amazing

If the size of the input n is 3, then all methods take a short amount of time -- 8 and 9 and 15
and about 1, respectively.

But if the size of the input n = 100 , then log(n) is about 6, 5n is 500, and n2 is 10,000 which
is still not bad. However, 2n is bigger than the number of atoms in the universe. (And is the
universe really finite? Oh well ... who's counting?)

Intractability
Intractability means that a problem cannot be computed in a reasonable amount of time.
Many biological problems are intractable.

Example: in phylogeny we learn that there are many possible trees that can be built, and that
the number of possible trees grows exponentially as you increase the number of taxa and as
you increase the evolutionary time under discussion.

To find the best solution in an exponentially-growing space, such as the space of all possible
evolutionary trees, often requires examining each possibility, and so may take an
exponentially-growing time. Problems that have this property (very loosely defined here) are
called
NP
(for non-deterministic polynomial time), and certain canonical such problems are called
NP-complete.

NP-complete problems are all essentially interchangeable; that is, they all come down to
essentially the same problem. The prototypical NP-complete problem is the

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

2 of 4 10/18/10 1:57 PM

TRAVELING SALESMAN PROBLEM:
given a set of cities and the distances between them, what is the shortest route a traveling
salesman can take to visit each one?

By the time you get to about 30 cities, the number of possible routes cannot be computed in
your lifetime; by the time you reach about 60 cities, there are more possible routes than
there are atoms in the universe. And we don't know a better way to find the best route than
to look at each one.

An aside: no one has proved that NP-complete problems must require looking at each
individual possibility. If you could find a polynomial-time algorithm for any NP-complete
problem, you would be the most famous computer scientist/mathematician around, and
would surely win a Nobel prize. Few people believe it will be done, but it's been an open
problem for many years, and no one yet can prove that it can't be done. This is called the P
=? NP problem.

The practical implications:

If you have a lot of data for your problem, and the problem is in NP, then you have no
practical solution to find the best, optimal answer except on very small data sets.

But the good news is: there are approximation algorithms that will give you a very good
answer in a reasonable amount of time, even if it's not the optimal answer. Such
approximation algorithms underlie many of the practical approaches to such problems as
phylogeny, sequence assembly, and many other problems in bioinformatics.

Undecidable problems
Less likely to be a problem for the practical bioinformatics programmer, but something to be
aware of, is that there are problems for which no solution is possible.

These problems are called undecidable, and they were first demonstrated by Alan Turing
and others in the 1930s.

Here's the most famous undecidable problem: the

HALTING PROBLEM
Write a program that can scan any other program and decide if it will eventually halt, or if it
will go on forever without coming to a stop.

In other words, write a virus checker for nonhalting programs.

As an example of such a nonhalting "virus", here's a perl program that goes on forever (until
you stop it):
while(1) {}

That looks easy to recognize. But we can prove that no program can be written that would
catch all such non-halting programs.

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

3 of 4 10/18/10 1:57 PM

The fact that such an easily-described problem as the HALTING PROBLEM has no solution
is, when you think about it, a very deep and profound statement about the limits of human
knowledge. But, nevertheless, and of a certainty, we all play on.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

4 of 4 10/18/10 1:57 PM

Using Less Time
The Art and Science of Algorithm Design
You can divide knowledge into two types: procedural knowledge and declarative knowledge.

Declarative knowledge is a collection of facts. (E.g., Watson's great textbook "The Molecular Biology of the
Gene")

Procedural knowledge is knowledge of how to do things, and is the kind of knowledge captured by
computer algorithms. Procedural knowledge has been growing immensely since (programmable digital)
computers brought the ability to specify how to do something -- that is, to formulate an algorithm -- to the
very center of our economic, scientific, and cultural lives.

Algorithms are discovered by a combination of mathematics and art and science and luck and training and
talent. Much of what we do on computers relies on the accumulated procedural knowledge -- algorithms -- of
our culture.

A good algorithm is more important than a good computer
Finding a better algorithm can be much more important than getting a better, faster computer.

For the following examples I created a set of random DNA that I'll use as my "promoters". I include the code
here. (We'll return to this code later in the lecture).
#
Main program -- make promoters from random DNA
#

srand();

$dna = make_random_DNA(1000000);
open(DNA, ">genomic_data") or die;
print DNA $dna;

@promoters = make_random_DNA_set(10, 5000);
open(PROMOTERS, ">promoters") or die;
print PROMOTERS join("\n",@promoters),"\n";

exit 0;

#
Subroutines
#

Make a string of random DNA of specified length.
sub make_random_DNA {

 my($length) = @_;
 my $dna;

 for (my $i=0 ; $i < $length ; ++$i) {
 $dna .= randomnucleotide();
 }

 return $dna;

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

1 of 4 10/18/10 1:57 PM

}

Make a set of random DNA
sub make_random_DNA_set {

 my($length, $size_of_set) = @_;
 my $dna;
 my @set;

 # Create set of random DNA
 for (my $i = 0; $i < $size_of_set ; ++$i) {

 $dna = make_random_DNA ($length);
 push(@set, $dna);
 }

 return @set;
}

Select at random one of the four nucleotides
sub randomnucleotide {

 my(@nucleotides) = ('A', 'C', 'G', 'T');

 return randomelement(@nucleotides);
}

sub randomelement {

 my(@array) = @_;

 return $array[rand @array];
}

Consider this fragment of perl code, written to find a set of short sequences in a genome ("findpromoters0"):

Read the promoter data from a file
open(PROMOTERS, "promoters") or die "a horrible death: $!";
my @promoters = <PROMOTERS>;

Look for each occurence of each promoter in the genome
foreach my $promoter (@promoters) {

chomp $promoter;

Read the genome data from a file
open(GENOME, "genome_data") or die "a horrible death: $!";
my $genome = <GENOME>;

while($genome =~ /$promoter/g) {
$-[0] prints the location of the find
#print "$promoter $-[0]\n"; exit;
$db{$promoter} = $-[0];

}
}

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

2 of 4 10/18/10 1:57 PM

Now this code is good perl. It is syntactically correct, and it will produce the correct output. It will run, and in
the end you will print out all the locations of the sequence.

Let's see how long it takes to run:

-bash-3.00$ date; perl findpromoters0; date
Thu Oct 20 14:28:06 EDT 2005
Thu Oct 20 14:28:48 EDT 2005
-bash-3.00$

Okay, so 42 seconds isn't bad! But wait ... what if we had the entire human genome, and a million tags? I'll
let you do the math, or the experiment, but it takes too long.

So we try to make it faster. How? Well, we notice that for each tag, we're reading in the entire genome from
the disk. Let's rewrite the code so that it only reads the genome in once (findpromoters1):

Read the genome data from a file
open(GENOME, "genome_data") or die "a horrible death: $!";
my $genome = <GENOME>;

Read the promoter data from a file
open(PROMOTERS, "promoters") or die "a horrible death: $!";
my @promoters = <PROMOTERS>;

Look for each occurence of each promoter in the genome
foreach my $promoter (@promoters) {

chomp $promoter;
while($genome =~ /$promoter/g) {

$-[0] prints the location of the find
#print "$promoter $-[0]\n"; exit;
$db{$promoter} = $-[0];

}
}

And the time for that is:

-bash-3.00$ date; perl findpromoters1; date
Thu Oct 20 14:30:46 EDT 2005
Thu Oct 20 14:31:05 EDT 2005
-bash-3.00$

>From 42 seconds to 19 seconds -- sweet!

But can we do better? Notice that for each promoter, we're scanning through the entire genome. So we're
scanning through the entire genome 5000 times.

Is there a way we can scan through the entire genome just once? Yes, and here is one solution:
Read the genome data from a file
open(GENOME, "genome_data") or die "a horrible death: $!";
my $genome = <GENOME>;

Read the promoter data from a file
open(PROMOTERS, "promoters") or die "a horrible death: $!";
foreach $promoter (<PROMOTERS>) {

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

3 of 4 10/18/10 1:57 PM

chomp $promoter;
$promoters{$promoter} = 1;

}

Look for each occurence of each promoter in the genome
my $genomelength = length($genome);
for($i = 0; $i < $genomelength - 10 + 1; ++$i) {

my $subsequence = substr($genome, $i, 10);

Now we just look in the hash to see if this subsequence is a promoter
if($promoters{$subsequence}) {

$db{$promoter} = $i;
}

}

and we run a timing on it to get ("findpromoters2"):

-bash-3.00$ date ; perl findpromoters2 ; date
Thu Oct 20 15:42:15 EDT 2005
Thu Oct 20 15:42:16 EDT 2005
-bash-3.00$

That's one second, maybe less.

And so we've achieved a 43-fold speedup in our program. What was taking, say, two days to compute, now
takes an hour. We couldn't have achieved that speedup going to a super expensive computer (well, maybe a
cluster, which we'll discuss later.)

And so we see that finding a better algorithm is the best way to get good performance.

What, exactly, did we do? We eliminated unnecessary work. We eliminated the repetitive reading in of the
genome data from the disk; and we eliminated multiple scanning through the genome data.

These are the kinds of things that you can often find in the first version of a working program. So don't
neglect the important step of editing your code after you get a working draft.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

4 of 4 10/18/10 1:57 PM

Using Less Space
Here is the main problem of space in bioinformatics:
Very large strings will swamp the main memory on your computer.

(Main memory, or RAM, is where your computer holds a running program; it is much smaller than the memory
on your disks.)

When a program on your computer starts to use up too much main memory, its performance starts to
degrade. The program will first enlist a portion of disk space to hold the part of the running program that it can
no longer fit. This is called swapping.

But when a program starts swapping, which involves a lot of writing and reading to and from hard disk, it can
get increasingly slow. The program may even start thrashing, that is, repeatedly writing and reading large
amounts of data between main memory and hard disk. A program that is thrashing is going really slow, and it's
slowing down the whole computer and other programs, too.

Take this snippet of code that calls get_chromosome:

my $chromosome1 = getchromosome(1);

When getchromosome(1) returns the data from human chromosome 1 to be stored in $chromosome1, the
program uses 100Mb of memory.

Operating on the chromosome may use additional memory. For instance, in perl, when you do a regular
expression search, you often want to save the successful match by using parentheses that set the special
variables $1, $&, and so on.

$chromosome =~ /AA(GAGTC*T)/;
my $pattern = $1;

But once you use these special variables, the inner workings of perl require the use of considerable additional
memory by your program. And you may make copies of all or part of the chromosome.

Your resulting code may be clear, straightforward to understand, and correct -- all good and proper things for
code to be -- but the amount of memory usage may still seriously slow down your program.

Motto: copying large strings is slow and takes up large amounts of memory

Editing for Space
Often, a program that barely runs at all and takes many hours of clogging up the computer, can be rewritten to
run more quickly by rewriting the algorithm so that it uses only a small fraction of the memory. It will fit into
less memory, and also run a lot faster.

Use references to save space
There's one easy way to cut down on the number of big strings in a program.

Normally (without using references) a subroutine makes copies of the values passed into it, and it makes
copies of the values returned from it.

References allow subroutines to avoid the string copying.

When we pass a reference to a string as an argument to a subroutine, we don't pass a copy of the string -- we

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

1 of 5 10/18/10 1:57 PM

pass a reference to the string, which takes almost no additional space.

And when the subroutine ends, whatever we've done with the string is immediately available to the calling
program, without having to use the return function, which would also copy the string.

In our example:

load_chromosome(1, \$chromosome1);

This new subroutine has two arguments. The 1 indicates that we want the biggest human chromosome,
chromosome 1.

The second argument is a reference to a scalar variable. Inside the subroutine, the reference is most likely
used to initialize an argument $chromref, which is a reference to the genomic data. And then, in the
subroutine, the DNA data is put into the dereferenced string:

sub load_chromosome {
my($chromnumber, $chromref) = @_;

...(omitted)...

$$chromref = <CHROMOSOME1>
}

It is not necessary to return the whole chromosome from the subroutine, which would make a copy of it. The
value is passed by the reference out of the subroutine.

Using references is also a great way to pass a large amount of data into a subroutine without making copies
of it. In this case, however, the fact that the subroutine can change the contents of the referenced data is
something to watch out for.

The rule of thumb is: if you don't need two copies of the data, you can use references.

Managing Memory with Buffers
One of the most efficient ways to deal with very large strings is to deal with them a little at a time.

Here is an example of a program that searches an entire chromosome for a particular 12-base pattern, using
very little memory.

When searching for any regular expression in a chromosome, it's hard to see how you could avoid putting the
whole chromosome in a string. But very often there's a limit to the size of what you're searching for. In this
program, I'm looking for the 12-base pattern "ACGTACGTACGT."

I'm going to read the chromosome data into memory just a line or two at a time, search for the pattern, and
then reuse the memory to read in the next line or two of data.

The extra programming work involves:

First, keeping track of how much of the data has been read in, so I can report the locations in the
chromosome of successful searches.

Second, making sure I search across line breaks as well as within lines of data from the input file.

The following program reads in a FASTA file searches for my pattern in any amount of DNA--a whole
chromosome, a whole genome, a year's worth of Solexa data, even all known genetic data, while using only a
small amount of main memory.

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

2 of 5 10/18/10 1:57 PM

$ perl find_fragment human.dna

For testing purposes I made a very short FASTA DNA file, human.dna, which contains:

>human dna: ACGTACGTACGT appears at positions 10, 40, and 98
AAAAAAAAAACGTACGTACGTCCGCGCGCGCGCGCGCGCACGTACGTACG
TGGGGGGGGGGGGGGGCCCCCCCCCCGGGGGGGGGGGGAAAAAAAAAACG
TACGTACGTTTTTTTTTTTTTTTTTTTTTTTTTTT

Here's the code for the program find_fragment:

#!/usr/bin/perl

use warnings;
use strict;

$fragment: the pattern to search for
$fraglen: the length of $fragment
$buffer: a buffer to hold the DNA from the input file
$position: the position of the buffer in the total DNA

my($fragment, $fraglen, $buffer, $position) = ('ACGTACGTACGT', 12, '', 0);

The first line of a FASTA file is a header and begins with '>'
my $header = <>;

Get the first line of DNA data, to start the ball rolling
$buffer = <>;
chomp $buffer;

The remaining lines are DNA data ending with newlines
while(my $newline = <>) {

 # Add the new line to the buffer
 chomp $newline;
 $buffer .= $newline;

 # Search for the DNA fragment, which has a length of 12
 # (Report the character at string position 0 as being at position 1,
 # as usual in biology)
 while($buffer =~ /$fragment/gi) {
 print "Found $fragment at position ", $position + $-[0] + 1, "\n";
 }

 # Reset the position counter (will be true after you reset the buffer, next)
 $position = $position + length($buffer) - $fraglen + 1;

 # Discard the data in the buffer, except for a portion at the end
 # so patterns that appear across line breaks are not missed
 $buffer = substr($buffer, length($buffer) - $fraglen + 1, $fraglen - 1);
}

Here's the output of running the command
perl find_fragment human.dna:

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

3 of 5 10/18/10 1:57 PM

Found ACGTACGTACGT at position 10
Found ACGTACGTACGT at position 40
Found ACGTACGTACGT at position 98

How the Code Works
I want to search for the fragment even if it is broken by new lines, so I'll have to look at least at two lines at a
time. I get the first line, and in the while loop that follows I'll start by adding more lines to the buffer.

Then the while loop starts reading in the next lines of the FASTA file. The newline character is removed with
chomp and the new line is added to the $buffer.

Then comes the short while loop that does the regular expression pattern match of the $fragment in the
$buffer.

When the fragment is found the program simply prints out the fragment's position. The variable $position
holds the position of the beginning of the buffer in the total DNA.

I also add 1, because biologists always say that the first base in a sequence of DNA is at position 1, whereas
Perl says that the first character in a string is at position 0. So I add 1 to the Perl position to get the biologist's
position.

The last two lines of code reset the buffer. First we eliminate the beginning (already searched) of the buffer,
and then we adjust the $position counter accordingly. The buffer is shortened so that it just keeps the part at
the very end that might be part of a pattern match that spans the newlines.

The program manages to search the entire genome for the fragment, while keeping at most two lines' worth of
DNA in $buffer, It performs very quickly, compared to a program that reads in a whole genome and blows out
the memory in the process.

When You Should Bother
Programs may be developed on one computer, but run on very different computers.

A space-inefficient program might well work fine on your computer, but not work well at all when you run it on
another computer with less main memory installed. Or, it might work fine on the fly genome, but start thrashing
when you try it on the human genome.

If you know you'll be dealing with large data sets, like genomes, take the amount of space your program uses
as an important constraint when designing and coding. Then you won't have to go back and redo the entire
program when a large amount of DNA gets thrown at the program.

Data Compression
In Perl, as in any programming system, the size of the data that the program uses is an absolute lower bound
on how fast the program can perform.

Each base is typically represented in a computer language as one ASCII character taking one 8-bit byte, so 3
gigabases equals 3 gigabytes. Of course, you could represent each of the four bases using only 2 bits, so
considerable compression is possible; but such space efficiency is not commonly employed. When it is, you
can pack 4 times as much data into a given space (for nucleotides, that is.)

A 00
C 01
G 10
T 11

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

4 of 5 10/18/10 1:57 PM

If you want an exercise, try using perl functions pack and vec to compress DNA sequence data to 4 bases per
byte.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

5 of 5 10/18/10 1:57 PM

Profiling
You saw earlier an easy way on Unix to see how long a program takes:

date; perl findpromoters1; date

This prints the time, then immediately runs the program, and then immediately prints the time
again.

Perl has several much more detailed ways to examine the performance of a program.

I'll just show you one of them, called DProf. DProf reports on various aspects of your program's
performance.

The most valuable report is probably the summary by subroutine.

By seeing which subroutines are taking the most time, you can narrow your re-editing of the
program to just those subroutines, and quickly make the improvements where they count the
most.

For demonstration, I'm going to use a program with a few subroutines; namely, the makerandom
program we used earlier to make random DNA genomic sequence and putative DNA binding
sites.

First you have to load the Devel::Prof module in your program. You do this by adding the
-d:DProf command-line argument. Then when your program runs, the module makes counts of
many things in the program. Your program will take a bit longer to run, but you'll collect valuable
statistics on its performance.

So one can simply run the program as usual, adding the command-line argument. When it's
done, it will have created a file called tmon.out in my directory. I then run the dprofpp tmon.out
program to see the results of the profile of my program:

$ perl -d:DProf makerandom
$ dprofpp tmon.out
Total Elapsed Time = 5.464274 Seconds
 User+System Time = 5.354274 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 72.2 3.870 7.594 105000 0.0000 0.0000 main::randomnucleotide
 69.5 3.725 3.725 105000 0.0000 0.0000 main::randomelement
 33.7 1.807 9.402 5001 0.0004 0.0019 main::make_random_DNA
 0.22 0.012 0.525 1 0.0125 0.5250 main::make_random_DNA_set
$

If I wanted to speed this program up, I'd head straight for the randomelement and
randomnucleotide subroutines to see what I might be able to tweak in them, since my analysis
shows that they take almost all the time in the program.

Profiling http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

1 of 4 10/18/10 1:57 PM

DProf has many options, but this is how I almost always use it, as it's simple and tells me what I
need to know.

Some older perls might not have DProf installed, in which case you have to do something like
this: (you may need root permission):

$ perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.7601)
ReadLine support enabled

cpan> install Devel::DProf
CPAN: Storable loaded ok
Going to read /root/.cpan/Metadata
 Database was generated on Wed, 19 Oct 2005 22:01:03 GMT
Devel::DProf is up to date.

cpan> quit
Lockfile removed.
$

In this case perl reported that the Devel::DProf module was already installed with the latest
version; if not, it would have installed it.

You know, I wonder if I can speed up my makerandom program. Let's look at it. Hmmm. I did try a
few things out: let's see how the new program makerandom2 behaves:

$ perl -d:DProf makerandom2
$ dprofpp tmon.out
Total Elapsed Time = 1.27999 Seconds
 User+System Time = 1.27999 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 96.8 1.240 1.240 5001 0.0002 0.0002 main::make_random_DNA
 0.78 0.010 0.050 1 0.0100 0.0500 main::make_random_DNA_set
$

Cool! From over 5 seconds to a little over 1 second. A five-fold speedup!

How did I do it? Here's the new version:

srand();

my(@nucleotides) = ('A', 'C', 'G', 'T');

$dna = make_random_DNA(1000000);
open(DNA, ">genomic_data") or die;
print DNA $dna;

Profiling http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

2 of 4 10/18/10 1:57 PM

@promoters = make_random_DNA_set(10, 5000);
open(PROMOTERS, ">promoters") or die;
print PROMOTERS join("\n",@promoters),"\n";

Make a string of random DNA of specified length.
sub make_random_DNA {

 my($length) = @_;
 my $dna;

 for (my $i=0 ; $i < $length ; ++$i) {
 $dna .= $nucleotides[rand @nucleotides];
 }

 return $dna;
}

make_random_DNA_set
sub make_random_DNA_set {

 my($length, $size_of_set) = @_;
 my $dna;
 my @set;

 # Create set of random DNA
 for (my $i = 0; $i < $size_of_set ; ++$i) {

 # make a random DNA fragment
 $dna = make_random_DNA ($length);

 # add $dna fragment to @set
 push(@set, $dna);
 }

 return @set;
}

First, I moved the line

my(@nucleotides) = ('A', 'C', 'G', 'T');

out of a subroutine and up to the top of the program. This way the array doesn't have to get
reinitialized each time the program is called.

But much more importantly, I eliminated two subroutine calls entirely, and put their functionality
directly into the lines of code that were calling them. First I axed randomelement by putting its
functionality directly into the calling subroutine randomnucleotide: from

Profiling http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

3 of 4 10/18/10 1:57 PM

sub randomnucleotide {

 my(@nucleotides) = ('A', 'C', 'G', 'T');

 return randomelement(@nucleotides);
}

sub randomelement {

 my(@array) = @_;

 return $array[rand @array];
}

to

my(@nucleotides) = ('A', 'C', 'G', 'T');

sub randomnucleotide {

 return $nucleotides[rand @nucleotides];
}

and finally I eliminated randomnucleotide by putting its code directly into the calling program:
from

 $dna .= randomnucleotide();

to

 $dna .= $nucleotides[rand @nucleotides];

In short, I eliminated two subroutine calls that were each being called 105000 times, and that
made a significant speedup. Usually, you're more likely to try to improve a subroutine than to
eliminate it, but as you see eliminating a subroutine can on occasion have big payoffs.

The book by Bentley "Writing Efficient Code" discusses such "tricks" in entertaining and useful
detail.

So I hope you're convinced that DProf is worthwhile. There are other profiling methods available
in Perl too, and you might want to explore them.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Profiling http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

4 of 4 10/18/10 1:57 PM

There are different ways to think of parallel processing.

Parallel Algorithms
One kind of parallel processing actually uses the specific topology of the interconnections
between the CPUs to implement new kinds of algorithms. This kind of parallel processing is
fascinating and gives you very fast programs, but is way beyond the scope of this lecture or
this course. But I thought you'd like to know that it exists.

In this hard-core parallel algorithms work, you might work on special computers (e.g. "grids",
"butterfly networks") or even on purely theoretical models of parallel computation, and you
design algorithms to run on those types of parallel computers.

Parallel Processing on Networks and
Clusters
More common is this scenario: say you are doing 40 tasks, one after the other, and each one
takes an hour. It will take your working week to finish the tasks.

Now let's say you figure out a way to do all the tasks simultaneously, and each one still takes
an hour. You'll now finish the tasks, all of them, in one hour instead of one week.

One kind of parallel processing is just like this example. That's the kind of parallelism I'll talk
about here, in terms of networks and clusters and threads. You simply divide your program
up into parts that can be performed simultaneously, and then you run each part on its own
CPU. Not all problems can be divided up like this, but those that can (say running a million
blast searches) can get big speedups fairly easily.

Network Programming
One of the most successful forms of multi-processor computing has been network
programming.

Network programming involves connecting two or more computers by a communications line
and implementing a protocol that enables them to exchange information.

The development of computer networks began in earnest in the 1950s, and the various
networks were interconnected by the internet (from interconnected networks) beginning in
the late 1970s.

The protocols supported by the internet gradually expanded, until the protocols known as the
web (or "world wide web") became widely popular beginning around 1990.

It is quite possible to program several computers to interact, using the several programming
interfaces to the protocols that are available from such languages as perl.

Parallel Processing http://infoserver.cshl.edu/LectureNotes/ScientificComputing/par...

1 of 2 10/18/10 1:58 PM

Perl has supported these protocol interfaces since the beginning. I can speak from personal
experience that it's a lot of fun to build a useful network service in this way. (In 1992 I was
searching all of Genbank with regular expressions in about 35 seconds, by distributing the
job with a network service written entirely in perl.)

I recommend the book "Network Programming with Perl" by Lincoln Stein if you're interested
in these techniques.

Threads
Threads are different from, but related to, multiprocessing. Threads are multiple execution
paths built into one process, that share resources like global variables, signals, and such.
You can have a multithreading program that runs on a single processor; or, if you're running
on a multiprocessor (it's common to have from 2 to around 24 processors on a given
machine) the threads may be executed on different processors, giving you the advantage of
parallelism.

Threads are a capability that is built into an operating system (or not, as the case may be.) If
your operating system supports threads, and your programming language gives you access
to them, then you can use them in your program.

If you're interested in threads, you want to use the "threads" (not "Threads") module:

use threads;

I'm going to skip the examples of threads programs: see me if you're interested.

Clusters
Clusters are multiple CPUs joined in a simple network. They are typically used to take a
program that must compute the same way over many inputs, and run the program on all the
CPUs, dividing the input up between them.

If you have access to a (usually) Linux cluster where you work, take the time to find out how
to submit programs to it.

In a recent job I had, I had to do three computation-intensive calculations over several
genomes. Each one took a week or two to finish when running on a single computer. On the
Linux cluster, they all finished within a small number of hours, and using that precomputation
I was able to carry my search for novel genes to a successful conclusion.

This Linux cluster has about 450 CPUs, and is a fairly big one. But it's quite straightforward
-- you could do it yourself -- to buy 10 or 20 inexpensive Linux boxes and construct a Linux
cluster that can speed up your large-scale, repetitive computations by 10 or 20 times.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Parallel Processing http://infoserver.cshl.edu/LectureNotes/ScientificComputing/par...

2 of 2 10/18/10 1:58 PM

Using Less Space
Here is the main problem of space in bioinformatics:
Very large strings will swamp the main memory on your computer.

(Main memory, or RAM, is where your computer holds a running program; it is much smaller than the memory
on your disks.)

When a program on your computer starts to use up too much main memory, its performance starts to
degrade. The program will first enlist a portion of disk space to hold the part of the running program that it can
no longer fit. This is called swapping.

But when a program starts swapping, which involves a lot of writing and reading to and from hard disk, it can
get increasingly slow. The program may even start thrashing, that is, repeatedly writing and reading large
amounts of data between main memory and hard disk. A program that is thrashing is going really slow, and it's
slowing down the whole computer and other programs, too.

Take this snippet of code that calls get_chromosome:

my $chromosome1 = getchromosome(1);

When getchromosome(1) returns the data from human chromosome 1 to be stored in $chromosome1, the
program uses 100Mb of memory.

Operating on the chromosome may use additional memory. For instance, in perl, when you do a regular
expression search, you often want to save the successful match by using parentheses that set the special
variables $1, $&, and so on.

$chromosome =~ /AA(GAGTC*T)/;
my $pattern = $1;

But once you use these special variables, the inner workings of perl require the use of considerable additional
memory by your program. And you may make copies of all or part of the chromosome.

Your resulting code may be clear, straightforward to understand, and correct -- all good and proper things for
code to be -- but the amount of memory usage may still seriously slow down your program.

Motto: copying large strings is slow and takes up large amounts of memory

Editing for Space
Often, a program that barely runs at all and takes many hours of clogging up the computer, can be rewritten to
run more quickly by rewriting the algorithm so that it uses only a small fraction of the memory. It will fit into
less memory, and also run a lot faster.

Use references to save space
There's one easy way to cut down on the number of big strings in a program.

Normally (without using references) a subroutine makes copies of the values passed into it, and it makes
copies of the values returned from it.

References allow subroutines to avoid the string copying.

When we pass a reference to a string as an argument to a subroutine, we don't pass a copy of the string -- we

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

1 of 5 10/18/10 1:57 PM

pass a reference to the string, which takes almost no additional space.

And when the subroutine ends, whatever we've done with the string is immediately available to the calling
program, without having to use the return function, which would also copy the string.

In our example:

load_chromosome(1, \$chromosome1);

This new subroutine has two arguments. The 1 indicates that we want the biggest human chromosome,
chromosome 1.

The second argument is a reference to a scalar variable. Inside the subroutine, the reference is most likely
used to initialize an argument $chromref, which is a reference to the genomic data. And then, in the
subroutine, the DNA data is put into the dereferenced string:

sub load_chromosome {
my($chromnumber, $chromref) = @_;

...(omitted)...

$$chromref = <CHROMOSOME1>
}

It is not necessary to return the whole chromosome from the subroutine, which would make a copy of it. The
value is passed by the reference out of the subroutine.

Using references is also a great way to pass a large amount of data into a subroutine without making copies
of it. In this case, however, the fact that the subroutine can change the contents of the referenced data is
something to watch out for.

The rule of thumb is: if you don't need two copies of the data, you can use references.

Managing Memory with Buffers
One of the most efficient ways to deal with very large strings is to deal with them a little at a time.

Here is an example of a program that searches an entire chromosome for a particular 12-base pattern, using
very little memory.

When searching for any regular expression in a chromosome, it's hard to see how you could avoid putting the
whole chromosome in a string. But very often there's a limit to the size of what you're searching for. In this
program, I'm looking for the 12-base pattern "ACGTACGTACGT."

I'm going to read the chromosome data into memory just a line or two at a time, search for the pattern, and
then reuse the memory to read in the next line or two of data.

The extra programming work involves:

First, keeping track of how much of the data has been read in, so I can report the locations in the
chromosome of successful searches.

Second, making sure I search across line breaks as well as within lines of data from the input file.

The following program reads in a FASTA file searches for my pattern in any amount of DNA--a whole
chromosome, a whole genome, a year's worth of Solexa data, even all known genetic data, while using only a
small amount of main memory.

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

2 of 5 10/18/10 1:57 PM

$ perl find_fragment human.dna

For testing purposes I made a very short FASTA DNA file, human.dna, which contains:

>human dna: ACGTACGTACGT appears at positions 10, 40, and 98
AAAAAAAAAACGTACGTACGTCCGCGCGCGCGCGCGCGCACGTACGTACG
TGGGGGGGGGGGGGGGCCCCCCCCCCGGGGGGGGGGGGAAAAAAAAAACG
TACGTACGTTTTTTTTTTTTTTTTTTTTTTTTTTT

Here's the code for the program find_fragment:

#!/usr/bin/perl

use warnings;
use strict;

$fragment: the pattern to search for
$fraglen: the length of $fragment
$buffer: a buffer to hold the DNA from the input file
$position: the position of the buffer in the total DNA

my($fragment, $fraglen, $buffer, $position) = ('ACGTACGTACGT', 12, '', 0);

The first line of a FASTA file is a header and begins with '>'
my $header = <>;

Get the first line of DNA data, to start the ball rolling
$buffer = <>;
chomp $buffer;

The remaining lines are DNA data ending with newlines
while(my $newline = <>) {

 # Add the new line to the buffer
 chomp $newline;
 $buffer .= $newline;

 # Search for the DNA fragment, which has a length of 12
 # (Report the character at string position 0 as being at position 1,
 # as usual in biology)
 while($buffer =~ /$fragment/gi) {
 print "Found $fragment at position ", $position + $-[0] + 1, "\n";
 }

 # Reset the position counter (will be true after you reset the buffer, next)
 $position = $position + length($buffer) - $fraglen + 1;

 # Discard the data in the buffer, except for a portion at the end
 # so patterns that appear across line breaks are not missed
 $buffer = substr($buffer, length($buffer) - $fraglen + 1, $fraglen - 1);
}

Here's the output of running the command
perl find_fragment human.dna:

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

3 of 5 10/18/10 1:57 PM

Found ACGTACGTACGT at position 10
Found ACGTACGTACGT at position 40
Found ACGTACGTACGT at position 98

How the Code Works
I want to search for the fragment even if it is broken by new lines, so I'll have to look at least at two lines at a
time. I get the first line, and in the while loop that follows I'll start by adding more lines to the buffer.

Then the while loop starts reading in the next lines of the FASTA file. The newline character is removed with
chomp and the new line is added to the $buffer.

Then comes the short while loop that does the regular expression pattern match of the $fragment in the
$buffer.

When the fragment is found the program simply prints out the fragment's position. The variable $position
holds the position of the beginning of the buffer in the total DNA.

I also add 1, because biologists always say that the first base in a sequence of DNA is at position 1, whereas
Perl says that the first character in a string is at position 0. So I add 1 to the Perl position to get the biologist's
position.

The last two lines of code reset the buffer. First we eliminate the beginning (already searched) of the buffer,
and then we adjust the $position counter accordingly. The buffer is shortened so that it just keeps the part at
the very end that might be part of a pattern match that spans the newlines.

The program manages to search the entire genome for the fragment, while keeping at most two lines' worth of
DNA in $buffer, It performs very quickly, compared to a program that reads in a whole genome and blows out
the memory in the process.

When You Should Bother
Programs may be developed on one computer, but run on very different computers.

A space-inefficient program might well work fine on your computer, but not work well at all when you run it on
another computer with less main memory installed. Or, it might work fine on the fly genome, but start thrashing
when you try it on the human genome.

If you know you'll be dealing with large data sets, like genomes, take the amount of space your program uses
as an important constraint when designing and coding. Then you won't have to go back and redo the entire
program when a large amount of DNA gets thrown at the program.

Data Compression
In Perl, as in any programming system, the size of the data that the program uses is an absolute lower bound
on how fast the program can perform.

Each base is typically represented in a computer language as one ASCII character taking one 8-bit byte, so 3
gigabases equals 3 gigabytes. Of course, you could represent each of the four bases using only 2 bits, so
considerable compression is possible; but such space efficiency is not commonly employed. When it is, you
can pack 4 times as much data into a given space (for nucleotides, that is.)

A 00
C 01
G 10
T 11

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

4 of 5 10/18/10 1:57 PM

If you want an exercise, try using perl functions pack and vec to compress DNA sequence data to 4 bases per
byte.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

5 of 5 10/18/10 1:57 PM

