
Subroutines

#!/usr/bin/perl

use strict;
use warnings;

my $seq1 = "ac ggTtAa";
my $seq2 = "tTcC aaA tgg";

clean up $seq1
1) make it all lower case
$seq1 = lc $seq1;
2) remove white space
$seq1 =~ s/\s//g;

clean up $seq2
1) make it all lower case
$seq2 = lc $seq2;
2) remove white space
$seq2 =~ s/\s//g;

print cleaned up sequences
print "seq1: $seq1\n";
print "seq2: $seq2\n";

• The same cleanup statements are run for $seq1 and
$seq2.

• Duplication of code (BAD!).

• Subroutines to the rescue.

Problems With This Code

Subroutines

• Blocks of code that you can call in different places.

• Code resides in one place.

• Only need to write the code once.

• Easier to maintain.

• Take arguments and return results.

• Make code easier to read.

• Like a mini-program within your program.

Creating a Subroutine

1. Turn the code of interest into a block.

{
 # clean up $seq
 # 1) make it all lower case
 $seq = lc $seq;
 # 2) remove white space
 $seq =~ s/\s//g;
}

Creating a subroutine

2. Label the block with: sub subroutine_name

sub cleanup_sequence {
 # clean up $seq
 # 1) make it all lower case
 $seq = lc $seq;

 # 2) remove white space
 $seq =~ s/\s//g;

}

Creating a Subroutine

3. Add statements to read the subroutine
argument(s) and return the subroutine result(s).

sub cleanup_sequence {

 # get the sequence argument to the
 # subroutine – note that just like shift gets
 # an argument for your program, shift gets an
 # argument to your subroutine
 my $seq = shift;

 # clean up $seq

 # 1) make it all lower case
 $seq = lc $seq;
 # 2) remove white space
 $seq =~ s/\s//g;

 # return cleaned up sequence
 return $seq;

}

 Passing Arguments to a
Subroutine

• Arguments are passed in @_ a special array created
by Perl.

• Analogous to @ARGV for program arguments.

• Can use shift to take one argument at a time.

take the first argument
my $arg1 = shift;
take the second argument
my $arg2 = shift;

 Passing Arguments to a
Subroutine

• Can copy the contents of @_ into a list of named
variables.

my ($arg1, $arg2) = @_;

Returning Subroutine Results

 Use return operator to return results.

• Usually return at the end of the subroutine but can
use it to exit the subroutine earlier.

• Return a single value.
return $single_value; #scalar

• Return a list.
return ($variable, “string”, 3); #list
return @array_of_values; #array

Returning Subroutine Results

• Return an empty list or undef depending on context.

return; #empty list or undef

Calling a Subroutine

 Calling our subroutine is just like calling an existing
built-in Perl function.

my $result = my_sub($arg1, $arg2, $arg3, ...);

Location of Subroutines

Usually at the bottom of the script.

– Allows to visually separate main program form the
subroutines.

#!/usr/bin/perl
use strict;
use warnings;

my $seq1 = "ac ggTtAa";
my $seq2 = "tTcC aaA tgg";

call cleanup_sequence for each sequence
$seq1 = cleanup_sequence($seq1);
$seq2 = cleanup_sequence($seq2);
print cleaned up sequences
print "seq1: $seq1\n";
print "seq2: $seq2\n";

sub cleanup_sequence {
 # get the sequence argument
 my $seq = shift;
 # cleanup $seq
 # 1) make it all lower case
 $seq = lc $seq;
 # 2) remove white space
 $seq =~ s/\s//g;
 # return cleaned up sequence
 return $seq;
}

Scope

#!/usr/bin/perl

use strict;
use warnings;

my $x = 100;
my $y = 20;

if ($x > $y) {
 my $z = 10;
 $x = 30;
 print "x (inside if block): $x\n";
 print "y (inside if block): $y\n";
 print "z (inside if block): $z\n";
}

print "x (outside if block): $x\n";
print "y (outside if block): $y\n";
print "z (outside if block): $z\n";

Global symbol "$z" requires explicit
package name at ./scope.pl line 19.

Execution of ./scope.pl aborted due
to compilation errors.

Blocks

• That’s because $z was declared inside the if block, so
it’s only accessible inside that block.

• Any time we see {}, we’re creating a block.

• Blocks are like boxes that have one way mirrors –
you can see outside the box from inside, but not inside
the box from the outside.

• To fix that error, we need to declare $z outside the if
block.

Blocks

• Variables declared inside of a block only exist inside
the block – once the block is finished, they will be
destroyed.

#!/usr/bin/perl

use strict;
use warnings;

my $x = 100;
my $y = 20;
my $z = 5;

if ($x > $y) {
 my $z = 10;
 $x = 30;
 print "x (inside if block): $x\n";
 print "y (inside if block): $y\n";
 print "z (inside if block): $z\n";
}

print "x (outside if block): $x\n";
print "y (outside if block): $y\n";
print "z (outside if block): $z\n";

Output:
$x (inside of block):30
$y (inside of block): 20
$z (inside of block):10
$x (outside if block): 30
$y (outside if block): 20
$z (outside if block): 5

Scope

 Does the program give the expected behavior?

• By declaring “my $z =10;” inside the if block,
we’re creating a new variable called $z only accessible
within the block.

• This new variable will not modify the outside
variable!

• Note that we can create a new $z variable inside the
block with no problems – if we do it outside, we’ll get a
warning.

Scope

• If we remove “my” from that line, the modification to
$z will show outside the block.

#!/usr/bin/perl

use strict;
use warnings;

my $x = 100;
my $y = 20;
my $z = 5;

if ($x > $y) {
 $z = 10;
 $x = 30;
 print "x (inside if block): $x\n";
 print "y (inside if block): $y\n";
 print "z (inside if block): $z\n";
}

print "x (outside if block): $x\n";
print "y (outside if block): $y\n";
print "z (outside if block): $z\n";

Output:
 $x (inside if block): 30
 $y (inside if block): 20
 $z (inside if block): 10
 $x (outside if block): 30
 $y (outside if block): 20
 $z (outside if block): 10

