
Using Modules

v2 2012

1

Why use modules?
Sometimes you may want to use the same functions
over and over again in different programs

Bad way: Copy and paste a subroutine

Good way: Make a module

There are also many many modules that other
people have written that you can use!

To use modules they must be properly installed and
called with the “use” command

2

File::Basename

basename

Input = long UNIX path name
i.e. ‘/home/dave/dna.fa’

Output = file name
i.e. ‘dna.fa’

dirname

Input = long UNIX path name
i.e. ‘/home/dave/dna.fa’

Output = directory
‘/home/dave/’

Let’s try it.

3

File::Basename

 #!/usr/bin/perl
 # file: basename.pl

 use strict;
 use File::Basename;

 my $path = '/home/dave/dna.fa';
 my $base = basename($path);
 my $dir = dirname($path);

 print "The base is $base and the directory is $dir.\n";

Undefined subroutine &main::basename called at basename.pl
line 8.

The base is dna.fa and the directory is /home/dave.Output:

Common
error:

4

Env

 This standard module imports a set of scalar variables that describe your
environment

$HOME
$PATH
$USER

5

Env!
#!/usr/bin/perl
file env.pl

use strict;
use Env;

print "My home is $HOME\n";
print "My path is $PATH\n";
print "My username is $USER\n";

My home is /home/dave
My path is /home/dave/pfb2012
My username is dave

Output:

6

Which modules are installed?

dave$ perldoc perlmodlib

Which modules are installed with basic perl installation?

http://perldoc.perl.org/perlmodlib.html

dave$ perldoc perllocal

Which modules are installed on your machine?

7

Installing modules manually
% tar zxvf bioperl-1.6.1.tar.gz
bioperl-1.6.1/
bioperl-1.6.1/Bio/
...

% perl Makefile.PL
Generated sub tests. go make show_tests to see available subtests
...
Writing Makefile for Bio

% make
cp Bio/Tools/Genscan.pm blib/lib/Bio/Tools/Genscan.pm
...
Manifying blib/man3/Bio::Location::CoordinatePolicyI.3
Manifying blib/man3/Bio::SeqFeature::Similarity.3

% make test
PERL_DL_NONLAZY=1 /net/bin/perl -Iblib/arch -Iblib/lib
 -I/net/lib/perl5/5.6.1/i686-linux -I/net/lib/perl5/5.6.1 -e 'use
 Test::Harness qw(&runtests $verbose); $verbose=0; runtests @ARGV;' t/*.t
t/AAChange..........ok
...
All tests successful, 95 subtests skipped.
Files=60, Tests=1011, 35 wallclock secs (25.47 cusr + 1.60 csys = 27.07 CPU)

% make install
Installing /net/lib/perl5/site_perl/5.6.1/bioback.pod
Installing /net/lib/perl5/site_perl/5.6.1/biostart.pod
...

8

Installing Modules Using the
CPAN Shell

Perl has a CPAN module installer built into it. You run it like this:

% sudo cpan

cpan shell -- CPAN exploration and modules installation (v1.59_54)
ReadLine support enabled

cpan>
From this shell, there are commands for searching for modules, downloading them, and installing them.

[The first time you run the CPAN shell, it will ask you a lot of configuration questions. Generally, you can just hit return to accept the
defaults. The only trick comes when it asks you to select CPAN mirrors to download from. Choose any ones that are in your
general area on the Internet and it will work fine.]

To search for a module:

cpan> i /Wrap/
Going to read /bush_home/bush1/lstein/.cpan/sources/authors/01mailrc.txt.gz
CPAN: Compress::Zlib loaded ok
Going to read /bush_home/bush1/lstein/.cpan/sources/modules/02packages.details.txt.gz
 Database was generated on Tue, 16 Oct 2001 22:32:59 GMT
...

Module Text::Wrap (M/MU/MUIR/modules/Text-Tabs+Wrap-2001.0929.tar.gz)
...
41 items found

cpan> install Text::Wrap
Running install for module Text::Wrap

quit
quit 9

Where are modules installed?
Module files end with the extension .pm. If the module name is a simple one, like Env, then Perl will look for a file named Env.pm. If the
module name is separated by :: sections, Perl will treat the :: characters like directories. So it will look for the module File::Basename in
the file File/Basename.pm

Perl searches for module files in a set of directories specified by the Perl library path. This is set when Perl is first installed. You can find
out what directories Perl will search for modules in by issuing perl -V from the command line:

 % perl -V
 Summary of my perl5 (revision 5.0 version 6 subversion 1) configuration:
 Platform:
 osname=linux, osvers=2.4.2-2smp, archname=i686-linux
 ...
 Compiled at Oct 11 2001 11:08:37
 @INC:
 /usr/lib/perl5/5.6.1/i686-linux
 /usr/lib/perl5/5.6.1
 ...
You can modify this path to search in other locations by placing the use lib command somewhere at the top of your script:

 #!/usr/bin/perl

 use lib '/home/lstein/lib';
 use MyModule;
 ...
This tells Perl to look in /home/lstein/lib for the module MyModule before it looks in the usual places. Now you can install module files in
this directory and Perl will find them.

Sometimes you really need to know where on your system a module is installed. Perldoc to the rescue again -- use the -l command-line
option:

% perldoc -l File::Basename
/System/Library/Perl/5.8.8/File/Basename.pm

10

Making modules
Programming for Biology

11

What is a module?

continue

12

package MySequence;

file: MySequence.pm

use strict;
our $EcoRI = 'ggatcc';

sub reverseq {

 my $sequence = shift;
 $sequence = reverse $sequence;

 $sequence =~tr/gatcGATC/ctagCTAG/;

 return $sequence;

}

sub seqlen {

 my $sequence = shift;
 $sequence =~ s/[^gatcnGATCN]//g;

 return length $sequence;

}

1;
A Perl module must end with a

true value.

A package (or namespace) is an abstract
container or environment created to hold a

logical grouping of unique symbols
(i.e.,subroutines).

Module

13

#!/usr/bin/perl

file: sequence.pl

use strict;

use warnings;
use MySequence;

my $sequence ='gattccggatttccaaagggttcccaatttggg';

my $complement = MySequence::reverseq($sequence);

print "original = $sequence\n";

print "complement = $complement\n";

Must explicitly qualify each MySequence function by
using the notation

 MySequence::function_name

*

Script

14

package MySequence;
file: MySequence.pm

use strict;
use base 'Exporter';

our @EXPORT = qw(reverseq seqlen);
our @EXPORT_OK = qw($EcoRI);
our $EcoRI = 'ggatcc';

sub reverseq {
 my $sequence = shift;
 $sequence = reverse $sequence;
 $sequence =~ tr/gatcGATC/ctagCTAG/;
 return $sequence;
}

sub seqlen {
 my $sequence = shift;
 $sequence =~ s/[^gatcnGATCN]//g;
 return length $sequence;
}

1; *

Module using Exporter

15

#!/usr/bin/perl

file: sequence.pl

use strict;

use warnings;
use MySequence;

my $sequence ='gattccggatttccaaagggttcccaatttggg';

my $complement = reverseq($sequence);

print "original = $sequence\n";

print "complement = $complement\n";

*

Script using Exporter

16

use base 'Exporter' Tells Perl that this module is
a type of "Exporter" module

our @EXPORT = qw(reverseq seqlen) line tells
Perl to export the functions reverseq and seqlen
automatically.

Also, can export qw(afunc $scalar @array %hash);
our @EXPORT_OK = qw($EcoRI) tells Perl that it
is OK for the user to import the $EcoRI
variable, but not to export it automatically.

Exporter - Implements default import method
for modules

use base 'Exporter';

our @EXPORT = qw(reverseq seqlen);
our @EXPORT_OK = qw($EcoRI);

17

Command line operated programs traditionally take their
arguments from the command line, for example filenames.

Besides arguments, these programs often take command line
options as well. Options are not necessary for the program to
work, hence the name 'option', but are used to modify its
default behavior.

Getopt::Long - Extended processing
of command line options

Example:

coursemain:~ dmessina$ grep -i ‘AGCG’ > capture.txt

coursemain:~ dmessina$ make_fake_fasta.pl --length 100

18

*

Script using Getopt::long
#!/usr/bin/env perl

use strict;
use warnings;

use Getopt::Long;
my $length = 30;
my $number = 10;
my $help;
GetOptions('l|length:i' => \$length,
! ! 'n|number:i' => \$number,
! ! 'h|help' => \$help);

my $usage = "make_fake_fasta.pl - generate random DNA seqs

Options:
-n <number> the number of sequences to make (default: 10)
-l <length> the length of each sequence (default: 30)
";
die $usage if $help;

my @nucs = qw(A C T G);

for (my $i = 1; $i <= $number; $i++) {
! my $seq;

! for (my $j = 1; $j <= $length; $j++) {
 !my $index = int(rand (4));
 !my $nuc = $nucs[$index];
 !$seq .= $nuc;
! }
! print ">fake$i\n";
! print $seq, "\n";
}

19

