
References
&

Multi-Dimensional Data Structures
Sofia Robb

What good are references?

Sometimes you need a more complex data structure
than just an array or just a hash.

What if you want to keep together several related
pieces of information?

Gene Sequence Organism

HOXB2 ATCAGCAATATACAATTATAAAGGCCTAAATTTAAAA mouse
HDAC1 GAGCGGAGCCGCGGGCGGGAGGGCGGACGGAC human

References are only addresses.

Multi-dimensional data structures are just
hashes and arrays inside of hashes and
arrays.

References
•References are pointers, or the address of the data

•All data has an address in memory
•Humans have no need to know the address

•References are useful because they are a scalar variable.
•Arrays and hashes are not scalar variables.
•The only kind of data that you can store in an array or hash
is scalar.

We can now store hashes and arrays in hashes and arrays by
storing the address!!!!

What is a reference, what do you mean
by an address?

$x=1;
really means 0x84048ec

1SCALAR x:

A variable is a label for the location in
memory of some data. This location has an

address.

Scalar

Well first, what is a variable?

address

Array
@y = (1, ‘a’, 23);

really means

1 ‘a’ 23

0x82056b4

ARRAY y:

A variable is a labeled memory address.

When we read the contents of the variable, we
are reading the contents of the memory address.

0x82056b4

ARRAY y: 1 ‘a’ 23

How do I find you, what’s your address?

So, what is a reference?

A reference is a variable that contains the memory
address of some data.

It does not contain the data itself.

It contains the memory address where data is
stored.

Creating a Reference

• Every time a variable is created it gets an address

• To retrieve the address or in other words, create a
reference, use ‘\’

Creating a Reference to an Array

$address is now a
reference to the

array.

codons for my favorite gene: HDAC
my @codons = qw(ATG GCG CAG ACG CAG GGC ACC CGG AGG AAA GTC TGT TAC TAC TAC GAC GGG GAT GTT GGA AAT TAC TAT TAT);

my $address = \@codons;
print "$address\n";

Output:
%% ./references.pl
ARRAY(0x100812e30)

Creating a Reference to a Hash

my %HDAC;

$HDAC{seq} = "MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol} = "HDAC";

my $address = \%HDAC;
print "$address\n";

Output:
%% ./references.pl
HASH(0x10081e538)

• Arrays are a list of scalars

• Hashes are key/value pairs of scalars

• References are scalars

Storing References

Now that we have a way to retrieve the address we can
store (assign) an array or a hash in an array or hash.

Storing a Reference as a Hash Value

use Data::Dumper;

my @codons = qw(ATG GCG CAG ACG CAG GGC ACC CGG AGG AAA GTC TGT
TAC TAC TAC GAC GGG GAT GTT GGA AAT TAC TAT TAT);

my $codons_address = \@codons;

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol} = "HDAC";
$HDAC{codons} = $codons_address;

using Data::Dumper to print our data structure
print Dumper \%HDAC;

Notice the hash reference.

$VAR1 = {
 'symbol' => 'HDAC',
 'function' => 'Histone Deacetylase',
 'seq' => 'MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...',
 'codons' => [
 'ATG',
 'GCG',
 'CAG',
 'ACG',
 'CAG',
 'GGC',
 'ACC',
 'CGG',
 'AGG',
 'AAA',
 'GTC',
 'TGT',
 'TAC',
 'TAC',
 'TAC',
 'GAC',
 'GGG',
 'GAT',
 'GTT',
 'GGA',
 'AAT',
 'TAC',
 'TAT',
 'TAT'
]
 };

output:

Data::Dumper is a nice way to view the contents of
your data structures without complicated print

statements.

Or you could use the debugger.

Altering the data

• References are NOT copies of the data. They are
addresses or pointers to the data

• Since a reference is like a short cut (windows) or
alias (mac), when the original data changes, the
change can be seen when using the reference to
access the data.

• So, if @codons is changed, the hash also changes,
because the hash contains only the address of the
array, not a copy of the array.

Addresses/References are like Short Cuts/Aliases

my @codons = qw(ATG GCG CAG ACG CAG GGC ACC CGG AGG AAA GTC TGT TAC TAC
TAC GAC GGG GAT GTT GGA AAT TAC TAT TAT);

my $codons_address = \@codons;

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol} = "HDAC";
$HDAC{codons} = $codons_address;

#Replacing the contents of @codons with only 2 codons
@codons = qw(ATG GCG);

#Printing the unaltered %HDAC
print Dumper \%HDAC;

Altering the Original Array affects the reference

$VAR1 = {
 'symbol' => 'HDAC',
 'function' => 'Histone Deacetylase',
 'seq' => 'MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...',
 'codons' => [
 'ATG',
 'GCG'
]
 };

Only @codons was altered but the hash also changed

Output:

Anonymous Data structures

■You do not always need to retrieve the address of data to
store/assign in a variable.
■You can create an anonymous array or hash on the fly.
■ It is anonymous because it is unnamed.
■ It only has an address, no name, no label.
■We use the [] in the anonymous array assignment
■We use the {} in the anonymous hash assignment.

Now:Creating and storing an anonymous array
$HDAC{codons} = ["ATG" , "GCG"] ;

Creating and Storing an Anonymous Array

Notice the [] instead of ().

the array is never given a name.

Before:
my @codons = qw(ATG GCG);
my @address = \@codons;
$HDAC{codons} = $address;

#my @codons = qw(ATG GCG);

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol} = "HDAC";
$HDAC{codons} = ["ATG" , "GCG"] ;

print Dumper \%HDAC;

$VAR1 = {
 'symbol' => 'HDAC',
 'function' => 'Histone Deacetylase',
 'seq' => 'MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...',
 'codons' => [
 'ATG',
 'GCG'
]
 };

Output:

the array is never given a name.

Storing an Anonymous (unnamed) Array as a Hash
Value

my %HDAC;
$HDAC{seq}= "MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...";
$HDAC{function} = "Histone Deacetylase";
$HDAC{symbol} = "HDAC";
$HDAC{codons} = ["ATG" , "GCG"] ;
$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

print Dumper \%HDAC;

Storing an Anonymous (unnamed) Hash as a Hash
Value

$VAR1 = {
 'symbol' => 'HDAC',
 'function' => 'Histone Deacetylase',
 'expression' => {
 'heart' => '1.3',
 'liver' => '2.1'
 },
 'seq' => 'MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIR...',
 'codons' => [
 'ATG',
 'GCG'
]
 };

Notice the {} instead of ().
Output:

$HDAC{expression} = { "liver" => 2.1 ,
 "heart" => 1.3

 } ;

Storing an Anonymous (unnamed) Hash as a Hash
Value

Same As:

$HDAC{expression}{"liver"} = 2.1 ;
$HDAC{expression}{"heart"} = 1.3 ;

$HDAC{symbol} = "HDAC";
Looks Like:

Now, all the data is in the data
structure, how to you get it out?

Whole chunks of data or pieces of data can be
retrieved from the multidimensional structures by
using the address.

 A.K.A. Dereferencing

3 Easy Steps to Dereference

1. Get the address, or reference: $ADDRESS

2. Wrap the address, or reference in {}: {$ADDRESS}

3. Put the symbol of the data type out front @: @{$ADDRESS}

Dereference === retrieve data from address

Dereference a reference to an array

my @codons = qw(ATG GCG CAG ACG CAG GGC ACC CGG AGG AAA GTC TGT TAC
TAC TAC GAC GGG GAT GTT GGA AAT TAC TAT TAT);

my $codons_address = \@codons;

print "address of the array:\n$codons_address\n\n";
print "array from a dereferenced reference:\n @{$codons_address}\n";

Output:
address of the array:
ARRAY(0x7fd89c016b90)

array from a dereferenced reference:
ATG GCG CAG ACG CAG GGC ACC CGG AGG AAA GTC TGT TAC TAC TAC GAC GGG GAT GTT GGA
AAT TAC TAT TAT

Dereference an anonymous array that is a hash
value

$HDAC{codons} = ["ATG" , "GCG"] ;

my $codons_address = $HDAC{codons};

print "address of the array:\n$codons_address\n\n";
print "array from a dereferenced reference:\n @{$codons_address}\n";

Key Value

$hash{key} = "value";
my $value = $hash{key};

Regular hash
address of the array:
ARRAY(0x7f97db822958)

array from a dereferenced reference:
ATG GCG

Output:

Did you notice that dereferencing an array and an anonymous array are the same?

Dereference an anonymous hash that is a hash
value

$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

my $hash_address = $HDAC{expression};

print "address of the hash:\n$hash_address\n\n";
print "keys from a dereferenced reference:\n";

my @keys = keys %{$hash_address};

print "keys from a dereferenced reference:\n@keys\n";

address of the hash:
HASH(0x7f94e38226d0)

keys from a dereferenced reference:
heart liver

Output:

Regular hash

my @keys = keys %hash;

It is not always needed to explicitly retrieve the
address

$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

my $hash_address = $HDAC{expression};
my @keys = keys %{$hash_address};

my @keys = keys %{ $HDAC{expression} };

print "keys from a dereferenced reference:\n@keys\n";

This evaluates to an address

keys from a dereferenced reference:
heart liver

Output:

Regular hash
my @keys = keys %hash;

Dereferencing to access every element from the
anonymous array that is a hash value

$HDAC{codons} = ["ATG" , "GCG"] ;

##my @codons = @{ $HDAC{codons} };
##my $zeroth_element = ${ $HDAC{codons} }[0];

foreach my $codon (@ { $HDAC{codons} }){

print "codon: $codon\n";
}

codon: ATG
codon: GCG

Output:

This evaluates to
 an address

foreach my $codon (@codons)
{
 print "codon: $codon\n";
}

Regular array:

Dereferencing to access a piece of the
anonymous array that is a hash value.

$HDAC{codons} = ["ATG" , "GCG"] ;
##my @codons = @{ $HDAC{codons} };

my $zeroth_element = ${ $HDAC{codons} }[0];

print "the 0th element = $zeroth_element\n";

the 0th element = ATG

Output:

This evaluates to
 an address

$array[1] = "value";
my $value = $array[1]

Regular array

Dereferencing to access every key/value pair from
the anonymous hash in a hash

$HDAC{expression} = { "liver" => 2.1 , "heart" => 1.3 } ;

foreach my $tissue (keys % { $HDAC{expression} }){
 my $level = ${ $HDAC{expression} }{$tissue};
 print "$tissue: $level\n";
}

heart: 1.3
liver: 2.1

Output:

foreach my $key (keys %hash){
 my $value = $hash{$key};
}

Regular Hash

The ref() function

my %hash;

$hash{codons}= [“ATG” , “TTT”];
my $address = $hash{codons};

ref ($address); ## returns ARRAY
ref ($hash{codons}); ## returns ARRAY

ref(REF)
returns the data type in which the reference points

both $address and $hash{codons} evaluate to the address of the array

Extra fun stuff to look
over later.

• Array of arrays

• Another Scripting Example:

• Creating a Hash of Hashes

Multidimensional Data: Making an Array of Arrays
my @spotarray = (
 [0.124, 43.2, 0.102, 80.4],
 [0.113, 60.7, 0.091, 22.6],
 [0.084, 112.2, 0.144, 35.3]
);

two ways to get the value of the inner index
my $cell_1_0 = ${$spotarray[1]}[0];
my $cell_1_0 = $spotarray[1][0];

print $cell_1_0;

Output:
0.113

Scripting Example: Creating a Hash of Hashes

We are presented with a table of sequences in the following format:
the ID of the sequence, followed by a tab, followed by the sequence
itself.

2L52.1 atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattggaagtaag...
4R79.2 tcaaatacagcaccagctcctttttttatagttcgaattaatgtccaact...
AC3.1 atggctcaaactttactatcacgtcatttccgtggtgtcaactgttattt...
...

For each sequence calculate the length of the sequence and the count
for each nucleotide. Store the results into hash of hashes in which the
outer hash's key is the ID of the sequence, and the inner hashes' keys
are the names and counts of each nucleotide.

#!/usr/bin/perl -w

use strict;

tabulate nucleotide counts, store into %sequences

my %seqs; # initialize hash
while (my $line = <>) {
 chomp $line;
 my ($id,$sequence) = split "\t",$line;
 my @nucleotides = split '', $sequence; # array of base pairs
 foreach my $n (@nucleotides) {
 $seqs{$id}{$n}++; # count nucleotides and keep tally
 }
}

print table of results
print join("\t",'id','a','c','g','t'),"\n";

foreach my $id (sort keys %seqs) {
 print join("\t",$id,
 $seqs{$id}{a},
 $seqs{$id}{c},
 $seqs{$id}{g},
 $seqs{$id}{t},
),"\n";
}

The output will look something like this:

id a! c! g! t
2L52.1! 23! 4! 12 11
4R79.2! 15! 12 ! 5! 18
AC3.1! 11! 11! 8! 20
...

