
Perl III
File I/O, more on system calls

Dave Messina

v4 post 2012

1

File I/O

I/O stands for input/output.

It's how get computer programs talk
to the rest of the world.

2

Perl has magic

Perl has a magic way that makes it
super easy to get data from files and
into your program.

It looks like this: <>

3

<>

<> will:

read filenames that are arguments on the
command line

open each file in turn

read each line from the file

4

<>

#!/usr/bin/perl
how to read a file with <>
use warnings;
use strict;

while (my $line = <>) {
 chomp $line;
 print "Here's a line: ", $line, "\n";
}

5

Sidebar: chomp

chomp removes the newline from the end of a
string (if there is a newline).

my $string = "hey there!\n";
print "my string is: ", $string, "\n";
chomp $string;
print "after chomp : ", $string, "\n";

When you read a file, the first thing you always
want to do is chomp.

6

<>

% perl read_from_file.pl myfile.txt

Let's make a file and read from it.
We'll call it myfile.txt

And now we're giving the name myfile.txt as a
command-line argument to our Perl script.

7

<> line count

my $line_count;
while (my $line = <>) {
 chomp $line;
 $line_count++;
}
print "There are $line_count lines\n";

Let's do something more interesting than
printing the line back out. Let's count how
many lines there are in the file.

8

Sidebar: increment operators

Yesterday we learned several numeric operators.
Here are a couple more common ones:

my $x = 1;
$x++; # add 1 to $x

exactly the same as
$x = $x + 1;

++ the increment operator

9

Sidebar: decrement operators

my $x = 1;
$x--; # subtract 1 from $x

exactly the same as
$x = $x - 1;

-- the decrement operator

10

<> line count

my $line_count;
while (my $line = <>) {
 chomp $line;
 $line_count++;
}
print "There are $line_count lines\n";

With ++, we're counting each time we go
through the loop.

11

<> multiple files

% perl read_from_file.pl myfile.txt another.txt

If there is more than one argument, each one is
opened and read completely, one after the
other.

So let's create another file and try it.

12

<> mistakes

% perl read_from_file.pl 2 9

Remember how yesterday we had command-
line arguments that were numbers?

Does Perl know that the arguments are files?

Let's try it and see what happens.

13

the input loop

my $line_count;
while (my $line = <>) {
 chomp $line;
 $line_count++;
}
print "There are $line_count lines\n";

Let's step back for a moment and think about
why <> works. What is while? What is it
testing?

14

the input loop

while (my $line = <>) {

What exactly is going on on this line?

The <> is a function.
It returns a line of input.
We assign that line to a variable, $line.
While tests that assignment for truth:
"Can we assign a value to $line?"

15

the input loop

If there is another line in the file, the answer is
"yes, we can, it's TRUE."

If we've hit the end of the file, there are no
more lines to read, and so the answer is "no",
or FALSE.

When the expression in parentheses is false, we
exit the loop.

16

the input loop

my $line_count;
while (my $line = <>) {
 chomp $line;
 $line_count++;
}
print "There are $line_count lines\n";

Once we've exited the loop, the print
statement gets executed.

17

the input loop

To summarize:

The while loop will read one line of text after
another. At the end of input, the <> operator
returns undef and the while loop terminates.

Remember that even blank lines in a file are
TRUE, because they consist of a single newline
character.

18

STDOUT and STDERR

Every Perl script by default has two
places it knows where to write to:

STDOUT and STDERR

19

STDOUT

Standard output, used to write data
out.

Prints to your screen, but can be
redirected to a file or other program
from the shell using redirection or
pipes.

STDOUT and STDERR

20

STDERR

Standard error, used for diagnostic
messages.

Also prints to your screen, and also
can be redirected to a file or other
program from the shell using
redirection or pipes.

STDOUT and STDERR

21

print "Well, how did I get here?\n";
print STDOUT "Well, how did I get here?\n";

You've actually been usually STDOUT all along.
It's the default place where your program's
output goes.

STDOUT and STDERR

When you use print, you're actually writing to
STDOUT.

These are equivalent:

22

print STDOUT "You may ask yourself:\n";
print STDERR "Well, how did I get here?\n";

But you can also specify other places to write to.

STDOUT and STDERR

Like STDERR:

23

$ perl test.pl > output.txt
Well, how did I get here?

At first it looks exactly the same as STDOUT,
but if we use output redirection on the
command line, we can see that the output is
actually going to a different place:

STDOUT and STDERR

24

open for reading

my $file = shift;

open(my $filehandle, '<', $file) or die "can't open
$file: $!\n";

<> is great, but often you want to read from a
specific file. You can do that using open.

25

open
my $file = shift @ARGV;

open(my $filehandle, '<', $file)

 or die "can't open $file: $!\n";

Let's break this down into pieces:

my $file = shift @ARGV;

reads the filename from the command line.

26

open

open is a function, which takes 3 arguments:

The first argument is a filehandle. Filehandles
are how you refer to a file within Perl.
STDOUT and STDERR are filehandles.

When you open a file yourself, you make your
own filehandle and give it a name (here, I chose
$filehandle).

open(my $filehandle, '<', $file)

27

open

The second argument is a mode. The modes are
borrowed from redirection on the command
line.

< for reading from a file
> for writing to a file

open(my $filehandle, '<', $file)

28

open

The third argument is the name of a file to
open. It can either be a literal name:

open(my $filehandle, '<', $file)

open(my $filehandle, '<', 'myfile.txt')

or a variable containing a filename:

open(my $filehandle, '<', $file)

Where can you go for more information on open?

29

open or die

open or die is a Perl idiom. die is a function
that exits the program immediately and prints
the specified string to STDERR.

 or die "can't open $file: $!\n";

Why or? What is being tested for truth?

30

open — $!

$! is a special Perl variable that contains error
messages from the system. If there was a
problem with opening your file, there will be an
error message in $!, and we can include it in
our error string.

 or die "can't open $file: $!\n";

Let's try it.

31

open for writing

Open also can be used to open files for writing
by using '>' as the second argument to open.

my $out = shift @ARGV;

open(my $filehandle, '>', $out)

 or die "can't open $out: $!\n";

Now specify that filehandle when you print:
print $filehandle "I'm writing to a file!\n";

Be careful! If you open an existing file for writing, you will
erase everything inside that file!

32

open

You can open more than one file in a script —
just give them different filehandles.

my $in = shift @ARGV;

my $out = ‘out.txt’;

open(my $in_fh, '<', $in) or die "can't open $in: $!\n";

open(my $out_fh, '>', $out) or die "can't open $out: $!\n";

33

open

To read from a filehandle line by line, you put
the name of the filehandle inside <>, like this:

my $in = shift @ARGV;

open(my $in_fh, '<', $in) or die "can't open $in: $!\n";

while (my $line = <$in_fh>) {

 chomp $line;

 print "This line is from the file $in: $line\n";

}

34

a quick word on system

We saw yesterday that there were two ways of
executing a command line from within Perl:

with system

system("sort $file");

or with backticks

`sort $file`;

35

a quick word on system

With backticks, you can capture the output
from the command into a variable:

open(my $out_fh, '>', 'sorted.txt')

 or die "error:$!";

my $sorted_output = `sort $file`;

print $out_fh "sorted output:\n", $sorted_output;

36

