
Perl II
Operators, truth, control structures, functions, and

processing the command line

Dave Messina

v3 2012

1

Math

1 + 2 = 3 # kindergarten

x = 1 + 2 # algebra

my $x = 1 + 2; # Perl

What are the differences between the
algebra version and the Perl version?

2

Math

my $x = 5;

my $y = 2;

my $z = $x + $y;

3

Math

my $sum = $x + $y;

my $difference = $x - $y;

my $product = $x * $y;

my $quotient = $x / $y;

my $remainder = $x % $y;

4

Math

my $x = 5;

my $y = 2;

my $sum = $x + $y;

my $product = $x - $y;

Variable names are arbitrary. Pick good ones!

5

What are these called?

my $sum = $x + $y;

my $difference = $x - $y;

my $product = $x * $y;

my $quotient = $x / $y;

my $remainder = $x % $y;

6

Numeric operators

Operator Meaning
+ add 2 numbers

- subtract left number from right number

* multiply 2 numbers

/ divide left number from right number

% divide left from right and take remainder

** take left number to the power
of the right number

7

Numeric comparison operators

Operator Meaning
< Is left number smaller than right number?

> Is left number bigger than right number?

<= Is left number smaller or equal to right?

>= Is left number bigger or equal to right?

== Is left number equal to right number?

!= Is left number not equal to right number?

Why == ?

8

Comparison operators are
yes or no questions

or, put another way, true or false questions

True or false:
> Is left number larger than right number?

2 > 1 # true

1 > 3 # false

9

Comparison operators are
true or false questions

 5 > 3

-1 <= 4

 5 == 5

 7 != 4

10

What is truth?

0 the number 0 is false

"0" the string 0 is false

"" and '' an empty string is false

my $x; an undefined variable is false

everything else is true

11

Examples of truth

my $a; # FALSE (not yet defined)
$x = 1; # TRUE
$x = 0; # FALSE
$x = "\n”; # FALSE
$x = 'true'; # TRUE
$x = 'false'; # TRUE (watch out! "false" is a nonempty string)
$x = ' '; # TRUE (a single space is non-empty)
$x = "\n\n”; # TRUE (a single newline is non-empty)
$x = 0.0; # FALSE (converts to string "0")
$x = '0.0'; # TRUE (watch out! The string "0.0" is not the
 # same as "0")

12

Sidebar: = vs ==

my $x; # x is undefined
my $x = 1; # x is now defined
if ($x == 1) # is $x equal to 1?
if ($x = 1) # (wrong)

1 equals sign to make the left side equal the right side.
2 equals signs to test if the left side is equal to the right.

use warnings will catch this error.
13

Logical operators

Use and and or to combine comparisons.

Operator Meaning

and TRUE if left side is TRUE and right side is TRUE

or TRUE if left side is TRUE or right side is TRUE

14

Logical operator examples

if ($i < 100 and $i > 0) {
 print "$i is the right size\n”;
}
else {
 print "out of bounds error!\n”;
}

if ($age < 10 or $age > 65) {
 print "Your movie ticket is half price!\n”;
}

Let’s test some more

15

Logical operators

Use not to reverse the truth.

$ok = ($i < 100 and $i > 0);
print "a is too small\n" if not $ok;

same as this:
print "a is too small\n" unless $ok;

16

defined and undef

defined lets you test whether a variable is defined.

undef lets you empty a variable, making it undefined.

if (defined $x) {
 print "$x is defined\n”;
}

undef $x;
print $x if defined $x;

17

if not

if (defined $x) {
 print "$x is defined\n”;
}

Testing for defined-ness:

What if you wanted to test for undefined-ness?

if (not defined $x) {
 print "x is undefined\n”;
}

18

if not

unless (defined $x) {
 print "$x is undefined\n”;
}

or you could use unless:

19

Sidebar: operator precedence

Some operators have higher
precedence than others.

my $result = 3 + 2 * 5;

force addition before multiplication
my $result = (3 + 2) * 5 = 25;

The universal precedence rule is this:
multiplication comes before addition,
use parentheses for everything else.

20

String operators

Operator Meaning

eq Is the left string same as the right string?

ne Is the left string not the same as the right string?

lt Is the left string alphabetically before the right?

gt Is the left string alphabetically after the right?

. add the right string to the end of the left string

21

String operator examples
my $his_first = 'Barry';
my $his_last = 'White';
my $her_first = 'Betty';
my $her_last = 'White';

my $his_full = $his_first . ' ' . $his_last;
if ($his_last eq $her_last) {
 print "Same\n\n”;
}
if ($his_first lt $her_first) {
 print "$his_first before $her_first\n\n”;
}

22

Comparing numeric and
string operators

Numeric Meaning String

== equal to eq

!= not equal to ne

> greater than gt

< less than lt

+ addition/concatenation .

23

Control structures

Control structures allow you to control if
and how a line of code is executed.

You can create alternative branches in which
different sets of statements are executed
depending on the circumstances.

You can create various types of repetitive
loops.

24

Control structures

my $x = 1;
my $y = 2;
my $z = $x + $y;
print "$x + $y = $z\n\n”;

So far you’ve seen a basic program,
where every line is executed, in
order, and only once.

25

Control structures

my $x = 1;
my $y = 2;
if ($x == $y) {
 print "$x and $y are equal\n\n”;
}

Here, the print statement is only
executed some of the time.

26

Components of a control structure

if ($x == $y) {
 print "$x and $y are equal\n\n”;
}

3. squiggly brackets

2. a statement in parentheses

1. a keyword

The part enclosed by the squiggly brackets is called a block.
27

Components of a control structure

if ($x == $y) {
 print "$x and $y are equal\n\n”;
}

3. squiggly brackets

2. a statement in parentheses

1. a keyword

When you program, build the structure first and then fill in.

4. now add the print statement
28

if
if ($x == $y) {
 print "$x and $y are equal\n\n”;
}

If $x is the same as $y, then the print
statement will be executed.

If ($x == $y) is true, then the print
statement will be executed.

or said another way:

29

if — a common mistake

if ($x = $y) {
 print "$x and $y are equal\n\n”;
}

What happens if we write it this way?

30

else

if ($x == $y) {
 print "$x and $y are equal\n\n”;
}
else {
 print "$x and $y aren't equal\n\n”;
}

If the if statement is false, then the first
print statement will be skipped and only the
second print statement will be executed.

31

elsif

if ($x == $y) {
 print "$x and $y are equal\n\n”;
}
elsif ($x > $y) {
 print "$x is bigger than $y\n\n”;
}
elsif ($x < $y) {
 print "$x is smaller than $y\n\n”;
}

Sometimes you want to test a series of
conditions.

32

elsif

if (1 == 1) {
 print "$x and $y are equal\n\n”;
}
elsif (2 > 0) {
 print "2 is positive\n\n”;
}
elsif (2 < 10) {
 print "2 is smaller than 10\n\n”;
}

What if more than one condition is true?

33

given-when

my $x = 3;

given($x) {

 when ($x % 2 == 0) {

 print '$x is even';

 }

 when ($x < 10) {

 print '$x is less than 10';

 }

 default {

 die q(I don't know what to do with $x);

 }

}

is another way to test a series of conditions
(whose full power you'll learn later).

34

unless

if ($x > 0) {
 print "$x is positive\n\n”;
}
unless ($x < 0) {
 print "$x is positive\n\n”;
}

If the statement($x < 0) is false, then the print
statement will be executed.

It's exactly the opposite of if (something) *
These statements are equivalent:

*except you can't unless..else or unless..elsif
35

while

while ($x == $y) {
 print "$x and $y are equal\n\n”;
}

As long as ($x == $y) is true, the
print statement will be executed over
and over again.

Why might you want to execute a block repeatedly?
36

one line conditionals

print "x is less than y\n" if $x < $y;

print "x is less than y\n" unless $x >= $y;

However, you can execute only one statement
because there's no longer brackets to enclose
multiple lines. Only works for if and unless.

An alternative form that sometimes
reads better. The conditional comes at
the end and parentheses are optional.

37

functions
Functions are like operators — they do
something with the data you give them. They
have a human-readable name, such as print
and take one or more arguments.

print "The rain in Spain falls mainly on the plain.\n\n”;

38

functions

The function is print. Its argument is a string.
The effect is to print the string to the
terminal.

print "The rain in Spain falls mainly on the plain.\n\n”;

39

functions

You can enclose the argument list in
parentheses, or leave the parentheses off.

Same thing, with parentheses.

print("The rain in Spain falls mainly on the plain.\n");

40

function examples

This prints out "The rain in Spain falls 6 times in the plain."
print "The rain in Spain falls ", 2*4-2, " times in the plain.\n\n”;

Same thing, but with parentheses.
print ("The rain in Spain falls ", 2*4-2, " times in the plain.\n");

You can pass multiple values
separated by commas to print,
and it will print each argument.

41

functions

A function may return no value, a single
value, or multiple values.

print returns nothing.

print "The rain in Spain falls mainly on the plain.\n\n”;

The length function calculates the length of a string
and returns the answer.

my $length = length "The rain in Spain falls mainly on the
plain.\n\n”;

42

processing the
command line

Often when you run a program, you
want to pass it some information. For
example, some numbers, or a filename.

These are called arguments.

$ add 1 2

$ parse_blast.pl mydata.blast

What are the command-line
arguments in these examples?

43

processing the
command line

You can give arguments to Perl
programs you write, and you can see
those arguments inside your script
using the shift function.

#!/usr/bin/perl

my $arg1 = shift;
my $arg2 = shift;
print "my command-line arguments were $arg1 and $arg2\n”;

44

