
Beginning Perl Scripting

Simple scripts, Expressions, Operators, Statements, Variables

Simon Prochnik & Lincoln Stein

Suggested Reading

Learning Perl (6th ed.): Chap. 2, 3, 12,
Unix & Perl to the Rescue (1st ed.): Chap. 4 Chapters 1, 2 & 5 of Learning Perl.

Lecture Notes

What is Perl?1.
Some simple Perl scripts2.
Mechanics of creating a Perl script3.
Statements4.
Literals5.
Operators6.
Functions7.
Variables8.
Processing the Command Line9.

Problems

What is Perl?

Perl is a Programming Language

Written by Larry Wall in late 80's to process mail on Unix systems and since extended by a huge cast of characters. The name is
said to stand for:

Pathologically Eclectic Rubbish Lister1.
Practical Extraction and Report Language2.

Perl Properties

Interpreted Language1.
"Object-Oriented"2.
Cross-platform3.
Forgiving4.
Great for text5.
Extensible, rich set of libraries6.
Popular for web pages7.
Extremely popular for bioinformatics8.

Other Languages Used in Bioinformatics

1 of 20

C, C++
Compiled languages, hence very fast.
Used for computation (BLAST, FASTA, Phred, Phrap, ClustalW)
Not very forgiving.

Java
Interpreted, fully object-oriented language.
Built into web browsers.
Supposed to be cross-platform, getting better.

Python , Ruby
Interpreted, fully object-oriented language.
Rich set of libraries.
Elegant syntax.
Smaller user community than Java or Perl.

Some Simple Scripts
Here are some simple scripts to illustrate the "look" of a Perl program.

Print a Message to the Terminal

Code:

 #!/usr/bin/perl
 # file: message.pl
 use strict;
 use warnings;
 print "When that Aprill with his shoures soote\n";
 print "The droghte of March ath perced to the roote,\n";
 print "And bathed every veyne in swich licour\n";
 print "Of which vertu engendered is the flour...\n";

Output:

(~) 50% perl message.pl
When that Aprill with his shoures soote
The droghte of March ath perced to the roote,
And bathed every veyne in swich licour
Of which vertu engendered is the flour...

Do Some Math

Code:

 #!/usr/bin/perl
 # file: math.pl
 use strict;
 use warnings;
 print "2 + 2 =", 2+2, "\n";
 print "log(1e23)= ", log(1e23), "\n";
 print "2 * sin(3.1414)= ", 2 * sin(3.1414), "\n";

2 of 20

Output:

(~) 51% perl math.pl
2 + 2 =4
log(1e23)= 52.9594571388631
2 * sin(3.1414)= 0.000385307177203065

Run a System Command

Code:

 #!/usr/bin/perl
 # file: system.pl
 use strict;
 use warnings;
 system "ls";

Output:

(~/docs/grad_course/perl) 52% perl system.pl
index.html math.pl~ problem_set.html~ what_is_perl.html
index.html~ message.pl simple.html what_is_perl.html~
math.pl problem_set.html simple.html~

Return the Time of Day

Code:

 #!/usr/bin/perl
 # file: time.pl
 use strict;
 use warnings;
 $time = localtime;
 print "The time is now $time\n";

Output:

(~) 53% perl time.pl
The time is now Thu Sep 16 17:30:02 1999

Mechanics of Writing Perl Scripts
Some hints to help you get going.

Creating the Script

A Perl script is just a text file. Use any text (programmer's) editor. Don't use word processors like Word.

By convention, Perl script files end with the extension .pl.

3 of 20

I suggest Emacs, because it is already installed on almost all Unix machines, but there are many good options: vi, vim,
Textwrangler, eclipse

The Emacs text editor has a Perl mode that will auto-format your Perl scripts and highlight keywords. Perl mode will be activated
automatically if you end the script name with .pl.

GUI-based script writing tools (Aquamacs, xemacs, Textwrangler, Eclipse) are easier to use, but you may have to install them
yourself.

Let's write a simple perl script. It'll be a simple text file called time.pl and will contain the lines above.

Let's try doing this in emacs

Emacs Essentials

A GUI version is simpler to use e.g. Aquamacs, run it by adding the icon for the application to your Dock then clicking on the
icon. You can also run emacs in a Terminal window. Emacs will be installed on almost every Unix system you encounter.

 (~) 50% emacs

The same shortcuts you can use on the command line work in Emacs
e.g.

control-a (^a)
 move cursor to beginning of line etc

The most important Emacs-specific commands

control-x control-f (^x ^f)
 open a file
control-x control-w (^x ^w)
 save as...
control-x control-c (^x ^c)
 quit
control-g (^g)
 cancel command
shift-control-_ (^_)
 Undo typing
control-h ?(^h ?)
 Help!!
option-; (M;)
 Add comment
option-/ (M/)
 Variable/subroutine name auto-completion (cycles through options)

Running the Script

Don't forget to save any changes in your script before running it. The filled red circle at the top left of the emacs GUI window has
a dot in it if there are unsaved changes.

Option 1 (quick, not used much)
Run the perl program from the command line, giving it the name of the script file to run.

 (~) 50% perl time.pl
 The time is now Thu Sep 16 18:09:28 1999

4 of 20

Option 2 (as shown in examples above)
Put the magic comment

#!/usr/bin/perl

at the top of your script.

It's really easy to make a mistake with this complicated line and this causes confusing errors (see below). Double check, or
copy from a friend who has it working.

And always add

use strict;
use warnings;

to the top of your script like in the example below

#!/usr/bin/perl
file: time.pl
use strict;
use warnings;
$time = localtime;
print "The time is now $time\n";

Now make the script executable with chmod +x time.pl:

 (~) 51% chmod +x time.pl

Run the script as if it were a command:

 (~) 52% ./time.pl
 The time is now Thu Sep 16 18:12:13 1999

Note that you have to type "./time.pl" rather than "time.pl" because, by default, bash does not search the current
directory for commands to execute. To avoid this, you can add the current directory (".") to your search PATH
environment variable. To do this, create a file in your home directory named .profile and enter the following line
in it:

export PATH=$PATH:.

The next time you log in, your path will contain the current directory and you can type "time.pl" directly.

Common Errors

Plan out your script before you start coding. Write the code, then run it to see if it works. Every script goes through a few
iterations before you get it right. Here are some common errors:

Syntax Errors

Code:

5 of 20

 #!/usr/bin/perl
 # file: time.pl
 use strict;
 use warnings;
 time = localtime;
 print "The time is now $time\n";

Output:

(~) 53% time.pl
Can't modify time in scalar assignment at time.pl line 3, near "localtime;"
Execution of time.pl aborted due to compilation errors.

Runtime Errors

Code:

 #!/usr/bin/perl
 # file: math.pl
 use strict;
 use warnings;

 $six_of_one = 6;
 $half_dozen = 12/2;
 $result = $six_of_one/($half_dozen - $six_of_one);
 print "The result is $result\n";

Output:

(~) 54% math.pl
Illegal division by zero at math.pl line 6.

Forgetting to Make the Script Executable

(~) 55% test.pl
test.pl: Permission denied.

Getting the Path to Perl Wrong on the #! line

Code:

 #!/usr/local/bin/pearl
 # file: time.pl
 use strict;
 use warnings;
 $time = localtime;
 print "The time is now $time\n";

(~) 55% time.pl

6 of 20

time.pl: Command not found.

This gives a very confusing error message because the command that wasn't found is 'pearl' not time.pl

Useful Perl Command-Line Options

You can call Perl with a few command-line options to help catch errors:

-c
Perform a syntax check, but don't run.

-w
Turn on verbose warnings. Same as

use warnings;

-d
Turn on the Perl debugger.

Usually you will invoke these from the command-line, as in perl -cw time.pl (syntax check time.pl with verbose warnings). You can
also put them in the top line: #!/usr/bin/perl -w.

Perl Statements
A Perl script consists of a series of statements and comments. Each statement is a command that is recognized by the Perl
interpreter and executed. Statements are terminated by the semicolon character (;). They are also usually separated by a newline
character to enhance readability.

A comment begins with the # sign and can appear anywhere. Everything from the # to the end of the line is ignored by the Perl
interpreter. Commonly used for human-readable notes. Use comments plentifully, especially at the beginning of a script to
describe what it does, at the beginning of each section of your code and for any complex code.

Some Statements

$sum = 2 + 2; # this is a statement

$f = <STDIN>; $g = $f++; # these are two statements

$g = $f
 /
 $sum; # this is one statement, spread across 3 lines

The Perl interpreter will start at the top of the script and execute all the statements, in order from top to bottom, until it reaches
the end of the script. This execution order can be modified by loops and control structures.

Blocks

It is common to group statements into blocks using curly braces. You can execute the entire block conditionally, or turn it into a
subroutine that can be called from many different places.

Example blocks:

{ # block starts

7 of 20

 my $EcoRI = 'GAATTC';
 my $sequence = <STDIN>;
 print "Sequence contains an EcoRI site" if $sequence=~/$EcoRI/;
} # block ends

my $sequence2 = <STDIN>;
if (length($sequence) < 100) { # another block starts
 print "Sequence is too small. Throw it back\n";
 exit 0;
} # and ends

foreach $sequence (@sequences) { # another block
 print "sequence length = ",length($sequence),"\n";
}

Literals
A literal is a constant value that you embed directly in the program code. You can think of the value as being literally in the code.
Perl supports both string literals and numeric literals. A string literal or a numeric literal is a scalar i.e. a single value.

Literals cannot be changed. If you want to change the value of some data, it needs to be a variable. Much, much more on this
coming up, until you're really sick of the whole thing.

String Literals

String literals are enclosed by single quotes (') or double quotes ("):

'The quality of mercy is not strained.'; # a single-quoted string
"The quality of mercy is not strained."; # a double-quoted string

The difference between single and double-quoted strings is that variables and certain special escape codes are interpolated into
double quoted strings, but not in single-quoted ones. Here are some escape codes:

\n New line

\t Tab

\r Carriage return

\f Form feed

\a Ring bell

\040 Octal character (octal 040 is the space character)

\0x2a Hexadecimal character (hex 2A is the "*" character)

\cA Control character (This is the ^A character)

\u Uppercase next character

8 of 20

\l Lowercase next character

\U Uppercase everything until \E

\L Lowercase everything until \E

\Q Quote non-word characters until \E

\E End \U, \L or \Q operation

"Here goes\n\tnothing!";
 # evaluates to:
 # Here goes
 # nothing!

'Here goes\n\tnothing!';
 # evaluates to:
 # Here goes\n\tnothing!

"Here goes \unothing!";
 # evaluates to:
 # Here goes Nothing!

"Here \Ugoes nothing\E";
 # evaluates to:
 # Here GOES NOTHING!

"Alert! \a\a\a";
 # evaluates to:
 # Alert! (ding! ding! ding!)

Putting backslashes in strings is a problem because they get interpreted as escape sequences. To inclue a literal backslash in a
string, double it:

"My file is in C:\\Program Files\\Accessories\\wordpad.exe";

 # evaluates to: C:\Program Files\Accessories\wordpad.exe

Put a backslash in front of a quote character in order to make the quote character part of the string:

"She cried \"Oh dear! The parakeet has flown the coop!\"";

 # evaluates to: She cried "Oh dear! The parakeet has flown the coop!"

Numeric Literals

You can refer to numeric values using integers, floating point numbers, scientific notation, hexadecimal notation, and octal. With
some help from the Math::Complex module, you can refer to complex numbers as well:

9 of 20

123; # an integer

1.23; # a floating point number

-1.23; # a negative floating point number

1_000_000; # you can use _ to improve readability

1.23E45; # scientific notation

0x7b; # hexadecimal notation (decimal 123)

0173; # octal notation (decimal 123)

use Math::Complex; # bring in the Math::Complex module

12+3*i; # complex number 12 + 3i

Backtick Strings

You can also enclose a string in backtics (`). This has the helpful property of executing whatever is inside the string as a Unix
system command, and returning its output:

`ls -l`;
evaluates to a string containing the output of running the
ls -l command

Lists

The last type of literal that Perl recognizes is the list, which is multiple values strung together using the comma operator (,) and
enclosed by parentheses. Lists are closely related to arrays, which we talk about later. Lists (and arrays) are composed from zero,
one or more scalars, making an empty list, a list containing a single item or a more typical list containing many items, respectively.

('one', 'two', 'three', 1, 2, 3, 4.2);
 # this is 7-member list contains a mixure of strings, integers
 # and floats

Operators
Perl has numerous operators (over 50 of them!) that perform operations on string and numberic values. Some operators will be
familiar from algebra (like "+", to add two numbers together), while others are more esoteric (like the "." string concatenation
operator).

Numeric & String Operators

10 of 20

The "." operator acts on strings. The "!" operator acts on strings and numbers. The rest act on numbers.

Operator Description Example Result

. String concatenate 'Teddy' . 'Bear' TeddyBear

= Assignment $a = 'Teddy' $a variable contains 'Teddy'

+ Addition 3+2 5

- Subtraction 3-2 1

- Negation -2 -2

! Not !1 0

* Multiplication 3*2 6

/ Division 3/2 1.5

% Modulus 3%2 1

** Exponentiation 3**2 9

<FILEHANDLE> File input <STDIN> Read a line of input from standard input

>> Right bit shift 3>>2 0 (binary 11>>2=00)

<< Left bit shift 3<<2 12 (binary 11<<2=1100)

| Bitwise OR 3|2 3 (binary 11|10=11

& Bitwise AND 3&2 2 (binary 11&10=10

^ Bitwise XOR 3^2 1 (binary 11^10=01

Operator Precedence

When you have an expression that contains several operators, they are evaluated in an order determined by their precedence. The
precedence of the mathematical operators follows the rules of arithmetic. Others follow a precedence that usually does what you
think they should do. If uncertain, use parentheses to force precedence:

2+3*4; # evaluates to 14, multiplication has precedence over addition
(2+3)*4; # evaluates to 20, parentheses force the precedence

Logical Operators

These operators compare strings or numbers, returning TRUE or FALSE:

Numeric Comparison String Comparison

3 == 2 equal to 'Teddy' eq 'Bear' equal to

3 != 2 not equal to 'Teddy' ne 'Bear' not equal to

3 < 2 less than 'Teddy' lt 'Bear' less than

3 > 2 greater than 'Teddy' gt 'Bear' greater than

11 of 20

3 <= 2 less or equal 'Teddy' le 'Bear' less than or equal

3 >= 2 greater than or equal 'Teddy' ge 'Bear' greater than or equal

3 <=> 2 compare 'Teddy' cmp 'Bear' compare

 'Teddy' =~ /Bear/ pattern match

The <=> and cmp operators return:

-1 if the left side is less than the right side
0 if the left side equals the right side
+1 if the left side is greater than the right side

File Operators

Perl has special file operators that can be used to query the file system. These operators generally return TRUE or FALSE.

Example:

print "Is a directory!\n" if -d '/usr/home';
print "File exists!\n" if -e '/usr/home/lstein/test.txt';
print "File is plain text!\n" if -T '/usr/home/lstein/test.txt';

There are many of these operators. Here are some of the most useful ones:

-e filename file exists

-r filename file is readable

-w filename file is writable

-x filename file is executable

-z filename file has zero size

-s filename file has nonzero size (returns size)

-d filename file is a directory

-T filename file is a text file

-B filename file is a binary file

-M filename age of file in days since script launched

-A filename same for access time

Functions
In addition to its operators, Perl has many functions. Functions have a human-readable name, such as print and take one or more
arguments passed as a list. A function may return no value, a single value (AKA "scalar"), or a list (AKA "array"). You can enclose
the argument list in parentheses, or leave the parentheses off.

12 of 20

A few examples:

 # The function is print. Its argument is a string.
 # The effect is to print the string to the terminal.
print "The rain in Spain falls mainly on the plain.\n";

 # Same thing, with parentheses.
print("The rain in Spain falls mainly on the plain.\n");

 # You can pass a list to print. It will print each argument.
 # This prints out "The rain in Spain falls 6 times in the plain."
print "The rain in Spain falls ",2*4-2," times in the plain.\n";

 # Same thing, but with parentheses.
print ("The rain in Spain falls ",2*4-2," times in the plain.\n");

 # The length function calculates the length of a string,
 # yielding 45.
length "The rain in Spain falls mainly on the plain.\n";

 # The split function splits a string based on a delimiter pattern
 # yielding the list ('The','rain in Spain','falls mainly','on the plain.')
split '/','The/rain in Spain/falls mainly/on the plain.';

Creating Your Own Functions

You can define your own functions or redefine the built-in ones using the sub function. This is described in more detail in the
lesson on creating subroutines, which you'll be seeing soon..

Often Used Functions (alphabetic listing)

For specific information on a function, use perldoc -f function_name to get a concise summary.

abs absolute value

chdir change current directory

chmod change permissions of file/directory

chomp remove terminal newline from string variable

chop remove last character from string variable

chown change ownership of file/directory

close close a file handle

closedir close a directory handle

cos cosine

defined test whether variable is defined

delete delete a key from a hash

13 of 20

die exit with an error message

each iterate through keys & values of a hash

eof test a filehandle for end of file

eval evaluate a string as a perl expression

exec quit Perl and execute a system command

exists test that a hash key exists

exit exit from the Perl script

glob expand a directory listing using shell wildcards

gmtime current time in GMT

grep filter an array for entries that meet a criterion

index find location of a substring inside a larger string

int throw away the fractional part of a floating point number

join join an array together into a string

keys return the keys of a hash

kill send a signal to one or more processes

last exit enclosing loop

lc convert string to lowercase

lcfirst lowercase first character of string

length find length of string

local temporarily replace the value of a global variable

localtime return time in local timezone

log natural logarithm

m// pattern match operation

map perform on operation on each member of array or list

mkdir make a new directory

my create a local variable

next jump to the top of enclosing loop

open open a file for reading or writing

opendir open a directory for listing

pack pack a list into a compact binary representation

14 of 20

package create a new namespace for a module

pop pop the last item off the end of an array

print print to terminal or a file

printf formatted print to a terminal or file

push push a value onto the end of an array

q/STRING/ generalized single-quote operation

qq/STRING/ generalized double-quote operation

qx/STRING/ generalized backtick operation

qw/STRING/ turn a space-delimited string of words into a list

rand random number generator

read read binary data from a file

readdir read the contents of a directory

readline read a line from a text file

readlink determine the target of a symbolic link

redo restart a loop from the top

ref return the type of a variable reference

rename rename or move a file

require load functions defined in a library file

return return a value from a user-defined subroutine

reverse reverse a string or list

rewinddir rewind a directory handle to the beginning

rindex find a substring in a larger string, from right to left

rmdir remove a directory

s/// pattern substitution operation

scalar force an expression to be treated as a scalar

seek reposition a filehandle to an arbitrary point in a file

select make a filehandle the default for output

shift shift a value off the beginning of an array

sin sine

sleep put the script to sleep for a while

15 of 20

sort sort an array or list by user-specified criteria

splice insert/delete array items

split split a string into pieces according to a pattern

sprintf formatted string creation

sqrt square root

stat get information about a file

sub define a subroutine

substr extract a substring from a string

symlink create a symbolic link

system execute an operating system command, then return to Perl

tell return the position of a filehandle within a file

tie associate a variable with a database

time return number of seconds since January 1, 1970

tr/// replace characters in a string

truncate truncate a file (make it smaller)

uc uppercase a string

ucfirst uppercase first character of a string

umask change file creation mask

undef undefine (remove) a variable

unlink delete a file

unpack the reverse of pack

untie the reverse of tie

unshift move a value onto the beginning of an array

use import variables and functions from a library module

values return the values of a hash variable

wantarray return true in an array context

warn print a warning to standard error

write formatted report generation

Ok, now you know all the perl functions, so we're done. Thanks for coming.

16 of 20

Variables
A variable is a symbolic placeholder for a value, a lot like the variables in algebra. These values can be changed. Compare literals
whose values cannot be changed. Perl has several built-in variable types:

Scalars: $variable_name
A single-valued variable, always preceded by a $ sign.

Arrays: @array_name
A multi-valued variable indexed by integer, preceded by an @ sign.

Hashes: %hash_name
A multi-valued variable indexed by string, preceded by a % sign.

Filehandle: FILEHANDLE_NAME
A file to read and/or write from. Filehandles have no special prefix, but are usually written in all uppercase.

We discuss arrays, hashes and filehandles later.

Scalar Variables

Scalar variables have names beginning with $. The name must begin with a letter or underscore, and can contain as many letters,
numbers or underscores as you like. These are all valid scalars:

$foo
$The_Big_Bad_Wolf
$R2D2
$_____A23
$Once_Upon_a_Midnight_Dreary_While_I_Pondered_Weak_and_Weary

You assign values to a scalar variable using the = operator (not to be confused with ==, which is numeric comparison). You read
from scalar variables by using them wherever a value would go.

A scalar variable can contain strings, floating point numbers, integers, and more esoteric things. You don't have to predeclare
scalars. A scalar that once held a string can be reused to hold a number, and vice-versa:

Code:

 $p = 'Potato'; # $p now holds the string "potato"
 $bushels = 3; # $bushels holds the value 3
 $potatoes_per_bushel = 80; # $potatoes_per_bushel contains 80;

 $total_potatoes = $bushels * $potatoes_per_bushel; # 240

 print "I have $total_potatoes $p\n";

Output:

I have 240 Potato

Scalar Variable String Interpolation

The example above shows one of the interesting features of double-quoted strings. If you place a scalar variable inside a double
quoted string, it will be interpolated into the string. With a single-quoted string, no interpolation occurs.

17 of 20

To prevent interpolation, place a backslash in front of the variable:

 print "I have \$total_potatoes \$p\n";

 # prints: I have $total_potatoes $p

Operations on Scalar Variables

You can use a scalar in any string or numeric expression like $hypotenuse = sqrt($x**2 + $y**2) or $name =
$first_name . ' ' . $last_name. There are also numerous shortcuts that combine an operation with an assignment:

$a++
Increment $a by one

$a--
Decrement $a by one

$a += $b
Modify $a by adding $b to it.

$a -= $b
Modify $a by subtracting $b from it.

$a *= $b
Modify $a by multiplying $b to it.

$a /= $b
Modify $a by dividing it by $b.

$a .= $b
Modify the string in $a by appending $b to it.

Example Code:

 $potatoes_per_bushel = 80; # $potatoes_per_bushel contains 80;

 $p = 'one';
 $p .= ' '; # append a space
 $p .= 'potato'; # append "potato"

 $bushels = 3;
 $bushels *= $potatoes_per_bushel; # multiply

 print "From $p come $bushels.\n";

Output:

From one potato come 240.

String Functions that Come in Handy for Dealing with Sequences

Reverse the Contents of a String

18 of 20

 $name = 'My name is Lincoln';
 $reversed_name = reverse $name;
 print $reversed_name,"\n";
 # prints "nlocniL si eman yM"

Translating one set of letters into another set

 $name = 'My name is Lincoln';
 # swap a->g and c->t
 $name =~ tr/ac/gt/;
 print $name,"\n";
 # prints "My ngme is Lintoln"

Can you see how a combination of these two operators might be useful for computing the reverse complement?

Processing Command Line Arguments
When a Perl script is run, its command-line arguments (if any) are stored in an automatic array called @ARGV. You'll learn how
to manipulate this array later. For now, just know that you can call the shift function repeatedly from the main part of the script
to retrieve the command line arguments one by one.

Printing the Command Line Argument

Code:

 #!/usr/bin/perl
 # file: echo.pl
 use strict;
 use warnings;
 $argument = shift;
 print "The first argument was $argument.\n";

Output:

(~) 50% chmod +x echo.pl
(~) 51% echo.pl tuna
The first argument was tuna.
(~) 52% echo.pl tuna fish
The first argument was tuna.
(~) 53% echo.pl 'tuna fish'
The first argument was tuna fish.
(~) 53% echo.pl
The first argument was.

Computing the Hypotenuse of a Right Triangle

19 of 20

Code:

 #!/usr/bin/perl
 # file: hypotense.pl
 use strict;
 use warnings;
 $x = shift;
 $y = shift;
 $x>0 and $y>0 or die "Must provide two positive numbers";

 print "Hypotenuse=",sqrt($x**2+$y**2),"\n";

Output:

(~) 82% hypotenuse.pl
Must provide two positive numbers at hypotenuse.pl line 6.
(~) 83% hypotenuse.pl 1
Must provide two positive numbers at hypotenuse.pl line 6.
(~) 84% hypotenuse.pl 3 4
Hypotenuse=5
(~) 85% hypotenuse.pl 20 18
Hypotenuse=26.9072480941474
(~) 86% hypotenuse.pl -20 18
Must provide two positive numbers at hypotenuse.pl line 6.

20 of 20

