
Perl Pipelines

Using perl as bioinformatics glue

Simon Prochnik
with code from Scott Cain

1Sunday, October 23, 2011

perldoc -f <command> to get help

% perldoc -f split

 split /PATTERN/,EXPR,LIMIT
 split /PATTERN/,EXPR
 split /PATTERN/
 split Splits the string EXPR into a list of strings and returns that
 list. By default, empty leading fields are preserved, and
 empty trailing ones are deleted. (If all fields are empty,
 they are considered to be trailing.)

2Sunday, October 23, 2011

perldoc <perl topic> to get help

% perldoc perlref

PERLREF(1) User Contributed Perl Documentation PERLREF
(1)

NAME
 perlref - Perl references and nested data structures

NOTE
 This is complete documentation about all aspects of references. For a
 shorter, tutorial introduction to just the essential features, see
 perlreftut.

DESCRIPTION
 Before release 5 of Perl it was difficult to represent complex data
 structures, because all references had to be symbolic--and even then
it
 was difficult to refer to a variable instead of a symbol table entry.
 Perl now not only makes it easier to use symbolic references to
 variables, but also lets you have "hard" references to any piece of
 data or code. Any scalar may hold a hard reference. Because arrays
 and hashes contain scalars, you can now easily build arrays of arrays,
 arrays of hashes, hashes of arrays, arrays of hashes of functions, and
 so on.

3Sunday, October 23, 2011

Get online help from perldoc.perl.org

http://perldoc.perl.org/functions/split.html

4Sunday, October 23, 2011

Running your script in the perl debugger

> perl -d myScript.pl
Loading DB routines from perl5db.pl version 1.28
Editor support available.
Enter h or `h h' for help, or `man perldebug' for more help.
main::(myScript.pl:3):	print "hello world\n";
 DB<1>

h help
q quit
n or s next line or step through next line
<return> repeat last n or s
c 45 continue to line 45
b 45 break at line 45
b 45 $a == 0 break at line 45 if $a equals 0
p $a print the value of $a
x $a unpack or extract the data structure in $a

5Sunday, October 23, 2011

The interactive perl debugger

> perl -de 4
Loading DB routines from perl5db.pl version 1.28
Editor support available.

Enter h or `h h' for help, or `man perldebug' for more help.

main::(-e:1):	4
 DB<1> $a = {foo => [1,2] , boo => [2,3] , moo => [6,7]}
 DB<2> x $a
0 HASH(0x8cd314)
 'boo' => ARRAY(0x8c3298)
 0 2
 1 3
 'foo' => ARRAY(0x8d10d4)
 0 1
 1 2
 'moo' => ARRAY(0x815a88)
 0 6
 1 7

6Sunday, October 23, 2011

More perl tricks: one line perl

> perl -e <COMMAND>

> perl -e '@a = (1..4);print join("\t",@a),"\n"'
1 2	 3	 4

#print IDs from fasta file
> perl -ne 'if (/^>(\S+)/) {print "$1\n"}' volvox_AP2EREBP.fa
vca4886446_93762
vca4887371_120236
vca4887497_89954

• see Chapter 19, p. 492-502 Perl book 3rd ed.

7Sunday, October 23, 2011

Is a module installled?

% perl -e 'use Bio::AlignIO::clustalw'

The module in the next example hasn’t been installed
(it doesn’t actually exist)
% perl -e 'use Bio::AlignIO::myformat'
Can't locate Bio/AlignIO/myformat.pm in
@INC (@INC contains: /sw/lib/perl5 /sw/
lib/perl5/darwin /Users/simonp/lib /
Users/simonp/Library/Perl/5.8.1/darwin-
thread-multi-2level /Users/simonp/
Library/Perl/5.8.1 /Users/simonp/
com_lib /Users/simonp/cvs/bdgp/software/
perl-modules ...

To install a module
% sudo cpan
install Bio::AlignIO::clustalw

all ok: no errors

perl can’t find the module in any of
the paths in the PERL5LIB list (which
is in the perl variable @INC)
You can add directories with
use lib ‘/Users/yourname/lib’;
after the use strict; at the beginning
of your script

one-line perl program with ‘-e’

this is the program in quotes

8Sunday, October 23, 2011

Toy example: Finding out how to run a small task

• Let’s assume we have a multiple fasta file and we want to
use perl to run the program clustalw to make a multiple
sequence alignment and read in the results.

• Here are some sequences

>vca4886446_93762
MSPPPTHSTTESRMAPPSQSSTPSGDVDGS
>vca4887371_120236
MAGLHSVPKLSARRPDWELPELHGDLQLAP
>vca4887497_89954
MAYKLFGTAAVLNYDLPAERRAELDAMSME
>vca4888938_93984
MLHTDLQPPRCRTSGPRPDPLRMETRARER

9Sunday, October 23, 2011

Looking for help with Google

• Google

• <program name> documentation / docs / command line

• eg google ‘clustal command line’

USE OF OPTIONS

! All parameters of Clustalw can be used as options
with a "-" That permits to use Clustalw in a script or
in batch.

! $ clustalw -options

! CLUSTAL W (1.7) Multiple Sequence Alignments

! clustalw option list:-

! -help

 -options

 -infile=filename

 -outfile=filename

 -type=protein OR dna

 -output=gcg OR gde OR pir OR phylip

10Sunday, October 23, 2011

Build a command line from the options you need

USE OF OPTIONS

! All parameters of Clustalw can be used as options
with a "-" That permits to use Clustalw in a script or
in batch.

! $ clustalw -options

! CLUSTAL W (1.7) Multiple Sequence Alignments

! clustalw option list:-

! -help

 -options

 -infile=filename

 -outfile=filename

 -type=protein OR dna

 -output=gcg OR gde OR pir OR phylip

Command line would be:
% clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna

11Sunday, October 23, 2011

Running a command line from perl

Command line
clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna

Script
#!/usr/bin/perl
use strict; use warnings;

my $file = ‘ExDNA.fasta’;
my $clustFile = ‘ExDNA.aln’;
build command line
my $cmd = “clustalw -infile=$file -outfile=$clustFile -type=dna”;
print “Call to clustalw $cmd\n”; # show command
my $oops = system $cmd; # system call and save return
 # value in $oops
die “FAILED $!” if $oops; # $oops true if failed

12Sunday, October 23, 2011

Util.pm package

package Util;
use strict;
our @EXPORT = qw(do_or_die); # allow do_or_die() to be exported
! ! ! ! ! ! ! ! ! # without specifying
 !! ! ! ! ! ! ! ! # Util::do_or_die()
use Exporter;
use base 'Exporter';

--
sub do_or_die {
 my $cmd = shift;
 print "CMD: $cmd\n";
 my $oops = system $cmd;
 die "Failed" if $oops;
}
--

1;

13Sunday, October 23, 2011

Util.pm in a script

#!/usr/bin/perl
use strict; use warnings;
use lib ‘lib’; # you might need to tell perl where to find
Util.pm
 # or with something like this
 # use lib ‘/Users/simonp/lib’;
use Util;

my $file = ‘ExDNA.fasta’;
my $clustFile = ‘ExDNA.aln’;
my $cmd = “clustalw -infile=$file -outfile=$clustFile
 -type=dna”; # build command line
print “Call to clustalw $cmd\n”; # show command

do_or_die($cmd);! ! # I use this all the time

14Sunday, October 23, 2011

How do we find out how to parse the clustalw alignment file?

The output is a clustalw multiple sequence alignment in the
file ExDNA.aln
Look in bioperl documentation for help.
See HOWTOs
http://www.bioperl.org/wiki/HOWTOs

...

15Sunday, October 23, 2011

Help on AlignIO from bioperl

16Sunday, October 23, 2011

More help on AlignIO from bioperl

Here’s a more useful synopsis

Let’s add this to our script

17Sunday, October 23, 2011

Use bioperl to parse the clustalw alignment

Command line
clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna

Script
#!/usr/bin/perl
use strict; use warnings;
use Bio::AlignIO;
my $file = ‘ExDNA.fasta’;
my $clustFile = ‘ExDNA.aln’;
my $cmd = “clustalw -infile=$file -outfile=$clustFile
 -type=dna”; # build command line
print “Call to clustalw $cmd\n”; # show command
my $oops = system $cmd; # system call and save return
 # value in $oops
die “FAILED $!” if $oops; # $oops true if failed
my $in = Bio::AlignIO->new(-file => $clustFile,
 -format => 'clustalw');
while (my $aln = $in->next_aln()) {
 ...
 }

18Sunday, October 23, 2011

Wait, I haven’t told you what a clustalw file looks like

CLUSTAL W (1.74) multiple sequence alignment

 seq1 -----------------------KSKERYKDENGGNYFQLREDWWDANRETVWKAITCNA
 seq2 ---------------YEGLTTANGXKEYYQDKNGGNFFKLREDWWTANRETVWKAITCGA
 seq3 ----KRIYKKIFKEIHSGLSTKNGVKDRYQN-DGDNYFQLREDWWTANRSTVWKALTCSD
 seq4 ------------------------SQRHYKD-DGGNYFQLREDWWTANRHTVWEAITCSA
 seq5 --------------------NVAALKTRYEK-DGQNFYQLREDWWTANRATIWEAITCSA
 seq6 ------FSKNIX--QIEELQDEWLLEARYKD--TDNYYELREHWWTENRHTVWEALTCEA
 seq7 ---KELWEALTCSR

 seq1 --GGGKYFRNTCDG--GQNPTETQNNCRCIG----------ATVPTYFDYVPQYLRWSDE
 seq2 P-GDASYFHATCDSGDGRGGAQAPHKCRCDG---------ANVVPTYFDYVPQFLRWPEE
 seq3 KLSNASYFRATC--SDGQSGAQANNYCRCNGDKPDDDKP-NTDPPTYFDYVPQYLRWSEE
 seq4 DKGNA-YFRRTCNSADGKSQSQARNQCRC---KDENGKN-ADQVPTYFDYVPQYLRWSEE
 seq5 DKGNA-YFRATCNSADGKSQSQARNQCRC---KDENGXN-ADQVPTYFDYVPQYLRWSEE
 seq6 P-GNAQYFRNACS----EGKTATKGKCRCISGDP----------PTYFDYVPQYLRWSEE
 seq7 P-KGANYFVYKLD-----RPKFSSDRCGHNYNGDP---------LTNLDYVPQYLRWSDE

• That’s the point of bioperl

• You don’t need to know the details of the file format to be
able to work with it

• Here’s a sample file in case you are curious

19Sunday, October 23, 2011

bioperl-run can run clustalw and many other programs

• The Run package (bioperl-run) provides wrappers for executing some 60
common bioinformatics applications (bioperl-run in the repository system
Git, see link below)

• Bio::Tools::Run::Alignment::clustalw

• There are several pieces to bioperl these are all listed here

• http://www.bioperl.org/wiki/Using_Git

• bioperl-live Core modules including parsers and main objects

• bioperl-run Wrapper modules around key applications

• bioperl-ext Ext package has C extensions including alignment routines and link to
staden IO library for sequence trace reads.

• bioperl-pedigree

• bioperl-microarray

• bioperl-gui

• bioperl-db

20Sunday, October 23, 2011

Smart Essential coding practices

• use strict; use warnings. ALWAYS. Do it!

• Put all the hard stuff in subroutines.

• This makes the code easy to read and understand.

• It keeps the code on a single screen, which prevents bugs.

• Each subroutine should have similar design.

• If you want to re-use a subroutine several times, put it in a module
and re-use the module eg Util.pm

• don’t copy and paste code: bugs multiply, corrections get
complicated;

• #comments (ESC-; makes a comment in EMACS)

• what a subroutine expects and returns

• anything new to you or unusual

• Use tab indentation for loops, logic, subroutines

• it’s so much easier to spot bugs and follow the code

21Sunday, October 23, 2011

Coding strategy

• Use the simplest tool for the job: it will be faster to code

• Re-use and modify existing code as much as possible

• Turn to bigger/more complicated tools if and only if you need
them:

• is it going to take less time to wait for your code to finish than learning
about a complex tool?

• is it going to take more time to write a complex tool or search for it on the
web or ask your friends what they use?

• Write your code in small pieces and test each piece as you go.

• Check your input data

• weird characters, line returns (\r or \n ?), whitespace at the end of lines,
spaces instead of tabs. You can use

• % od -c mydatafile | more

• are there missing pieces, duplicated IDs?

• use a small piece of (real or fake) data to test your code

• Is the output exactly what you expect?

22Sunday, October 23, 2011

gene_pred_pipe.pl (by Scott Cain) part I

#!/usr/bin/perl -w

use strict;

use Bio::DB::GenBank;
use Bio::Tools::Run::RepeatMasker;
use Bio::Tools::Run::Genscan;
use Bio::Tools::GFF;

my $acc = $ARGV[0]; # read argument from command line

main functions in simple subroutines
my $seq_obj = acc_to_seq_obj($acc);
my $masked_seq = repeat_mask($seq_obj);
my @predictions = run_genscan($masked_seq);
predictions_to_gff(@predictions);
warn "Done!\n";
exit(0);
#--------------------------------------

23Sunday, October 23, 2011

gene_pred_pipe.pl (by Scott Cain) part II

sub acc_to_seq_obj {
 #takes a genbank accession, fetches the seq from
 #genbank and returns a Bio::Seq object
 #parent script has to `use Bio::DB::Genbank`
 my $acc = shift;
 my $db = new Bio::DB::GenBank;
 return $db->get_Seq_by_id($acc);
}
sub repeat_mask {
 #takes a Bio::Seq object and runs RepeatMasker locally.
 #Parent script must `use Bio::Tools::Run::RepeatMasker`
 my $seq = shift;
 #BTRRM->new() takes a hash for configuration parameters
 #You'll have to set those up appropriately
 my $factory = Bio::Tools::Run::RepeatMasker->new();
 return $factory->masked_seq($seq);
}

24Sunday, October 23, 2011

gene_pred_pipe.pl (by Scott Cain) part III

sub run_genscan {
 #takes a Bio::Seq object and runs Genscan locally and returns
 #a list of Bio::SeqFeatureI objects
 #Parent script must `use Bio::Tools::Run::Genscan`
 my $seq = shift;
 #BTRG->new() takes a hash for configuration parameters
 #You'll have to set those up appropriately
 my $factory = Bio::Tools::Run::Genscan->new();
 #produces a list of Bio::Tools::Prediction::Gene objects
 #which inherit from Bio::SeqFeature::Gene::Transcript
 #which is a Bio::SeqFeatureI with child features
 my @genes = $factory->run($seq);
 my @features;
 for my $gene (@genes) {
 push @features, $gene->features;
 }
 return @features;
}
sub predictions_to_gff {
 #takes a list of features and writes GFF2 to a file
 #parent script must `use Bio::Tools::GFF`
 my @features = @_;
 my $gff_out = Bio::Tools::GFF->new(-gff_version => 2,
 -file => '>prediction.gff');
 $gff_out->write_feature($_) for (@features);
 return;
}

25Sunday, October 23, 2011

Getting arguments from the command line with Getopt::Long and
GetOptions()

• complicated.pl -flag --pie -start 4

-expect 1e-50 -value=0.00423 -pet cat -pet dog

• order of arguments doesn’t matter

• deals with flags, integers, decimals, strings, lists

• an example:-

use Getopt::Long;

my ($flag, $count, $price, $string);

GetOptions(“flag” => \$flag,

 “count=i”,\$count, # integer

 “price=f”,\$price, # floating point 0.12,3e-49

 “name=s”,\$string, # always use trailing ‘,’

);

26Sunday, October 23, 2011

genbank_to_blast.pl (by Scott Cain) part I
#!/usr/bin/perl -w
use strict;
use lib "/home/scott/cvs_stuff/bioperl-live"; # this will change depending
! ! ! ! ! ! ! ! ! ! ! # on your machine
use Getopt::Long;
use Bio::DB::GenBank;
#use Bio::Tools::Run::RepeatMasker; # running repeat masked first is a good
! ! ! ! ! ! ! ! ! # idea, but takes a while
use Bio::Tools::Run::RemoteBlast;
use Bio::SearchIO;
use Bio::SearchIO::Writer::GbrowseGFF;
use Bio::SearchIO::Writer::HTMLResultWriter;
use Data::Dumper; # print out contents of objects etc
#take care of getting arguments
my $usage = "$0 [--html] [--gff] --accession <GB accession number>";
my ($HTML,$GFF,$ACC);
GetOptions ("html" => \$HTML,
 "gff" => \$GFF,
 "accession=s" => \$ACC);
unless ($ACC) {
 warn "$usage\n";
 exit(1);
}
#This will set GFF as the default if nothing is set but allowing both to be set
$GFF ||=1 unless $HTML;
#Now do real stuff ...

27Sunday, October 23, 2011

genbank_to_blast.pl (by Scott Cain) part II

Now do real stuff
nice and neat subroutine calls
easy to understand logic of code
my $seq_obj = acc_to_seq_obj($ACC);
my $masked_seq = repeat_mask($seq_obj);
my $blast_res = blast_seq($masked_seq);
gff_out($blast_res, $ACC) if $GFF;
html_out($blast_res, $ACC) if $HTML;
#--

28Sunday, October 23, 2011

genbank_to_blast.pl (by Scott Cain) part III

sub acc_to_seq_obj {
 print STDERR "Getting record from GenBank\n";
 my $acc = shift;
 my $db = new Bio::DB::GenBank;
 return $db->get_Seq_by_id($acc);
}
sub repeat_mask {
 my $seq = shift;
 return $seq; #short circuiting RM since we
 #don't have it installed, but this would be where
 # you would run it
my $factory = Bio::Tools::Run::RepeatMasker-
>new();
return $factory->masked_seq($seq);
}

29Sunday, October 23, 2011

genbank_to_blast.pl (by Scott Cain) part IV
sub blast_seq {
 my $seq = shift;
 my $prog = 'blastn';
 my $e_val = '1e-10';
 my $db = 'refseq_rna';
 my @params = (
 -prog => $prog,
 -expect => $e_val,
 -readmethod => 'SearchIO',
 -data => $db
);
 my $factory = Bio::Tools::Run::RemoteBlast->new(@params);
 $factory->submit_blast($seq);
 my $v = 1; # message flag
 print STDERR "waiting for BLAST..." if ($v > 0);
 while (my @rids = $factory->each_rid) {
 foreach my $rid (@rids) {
 my $rc = $factory->retrieve_blast($rid);
 if(!ref($rc)) { #waiting...
 if($rc < 0) {
 $factory->remove_rid($rid);
 }
 print STDERR "." if ($v > 0);
 sleep 25;
 }
 else {
 print STDERR "\n";
 return $rc->next_result();
 }
 }
 }
}

30Sunday, October 23, 2011

genbank_to_blast.pl (by Scott Cain) part V

sub gff_out {
 my ($result, $acc) = @_;
 my $gff_out = Bio::SearchIO->new(
 -output_format => 'GbrowseGFF',
 -output_signif => 1,
 -file => ">$acc.gff",
 -reference => 'query',
 -hsp_tag => 'match_part',
);
 $gff_out->write_result($result);
}
sub html_out {
 my ($result, $acc) = @_;
 my $writer = Bio::SearchIO::Writer::HTMLResultWriter->new();
 my $html_out = Bio::SearchIO->new(
 -writer => $writer,
 -format => 'blast',
 -file => ">$acc.html"
);
 $html_out->write_result($result);
}

31Sunday, October 23, 2011

32Sunday, October 23, 2011

33Sunday, October 23, 2011

How to approach perl pipelines

• use strict and warnings

• use (bio)perl as glue

• http://www.bioperl.org/wiki/Main_Page

• google.com

• test small pieces as you write them (debugger: perl -d)

• construct a command line and test it (catch failure ...or die...)

• convert into system call, check it worked with small sample dataset

• extend to more complex code only as needed

• if you use code more than once, put it into a subroutine in a module
e.g. Util.pm

• get command line arguments with GetOptions()

34Sunday, October 23, 2011

