
Object Oriented Programming and Perl

Prog for Biol 2011
Simon Prochnik

1Sunday, October 23, 2011

Why do we teach you about objects?

• Objects allow you to use other people’s code to do a lot in
just a few lines.

• For example, in the lecture on bioperl, you will see how to
search GenBank by a sequence Accession, parse the results
and reformat the sequence into any format you need in less
than a dozen lines of object-oriented perl. Cool!

• Someone else has already written and tested the code, so you
don’t have to.

• Most people don’t ever write an object of their own: only
create your own modules and objects if you have to

• check CPAN (www.cpan.org) to see if see if someone has
already done it for you. There were 18,534 modules on Oct
14th 2010, this has grown to 100,575 (Oct 20, 2011)! Surely
you can find a module to do what you want.

2Sunday, October 23, 2011

What are objects? A programming paradigm

• An object is a special kind of data
structure that stores specific kinds of
data and provides special functions
that can do useful things with that
data

• Objects are often designed to work
with data and functions that you
would find associated with a real-
world object or thing, for example,
we might design gene sequence
objects.

• A gene sequence object might store
its chromosomal position and
sequence data and have functions like
transcribe() and new() to create a
new object.

sequence

GeneSequence object

Functions

new()
transcribe()
location()

Data

ATGAGAGTGGAT
AGAGATTAGCTC
GCTAC

Generates
transcript object

Generates
chromosomal

coordinate object
3Sunday, October 23, 2011

Quick example with microarrays

#!/usr/bin/perl
#File: OO_script.pl
use strict;
use warnings;
use Microarray;
my $microarray = Microarray->new(gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
);
my $gene_name = $microarray->gene();
print “Gene for this microarray is $gene_name\n”;
my $tissue = $microarray->tissue();
print “The tissue is $tissue\n”;

Create a new
object and load data

Query the data
in the object

Print the
results

Tell perl you want to
use Microarray class

objects

4Sunday, October 23, 2011

Another example with statistics

#!/usr/bin/perl
#File: mean_and_variance.pl
use strict;
use warnings;

use Statistics::Descriptive;

my $stat = Statistics::Descriptive::Full->new();
$stat->add_data(1,2,3,4);
my $mean = $stat->mean();
my $var = $stat->variance();
print “mean is $mean\n”;
print “variance is $variance\n”;

Make new object
with new()

Add data

Calculate mean

Calculate variance

5Sunday, October 23, 2011

Object Oriented Programming and Perl

• To understand object-oriented syntax in perl, we need to recap three things:
references, subroutines, packages.

• These three elements of perl are recycled with slightly different uses to provide
object-oriented programming

• The OOP paradigm provides i) a solid framework for sharing code -- reuse

• and ii) a guarantee or contract or specification for how the code will work and
how it can be used -- an interface

• and iii) hides the details of implementation so you only have to know how to use
the code, not how it works -- saves you time, quick to learn, harder to introduce
bugs

• Here we are briefly introducing you to OOP and objects so that you can quickly
add code that’s already written into your scripts, rather than spend hours re-
inventing wheels. Many more people use objects than write them.

6Sunday, October 23, 2011

I: Recap references

example of syntax
$ref_to_hash = {key1=>'value1',key2=>'value2',...}
code example
my $microarray = {gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
 };

key value

gene CDC2

expression 45

tissue liver

$microarray anonymous hash

Here is the data structure in memory

We can store any
pieces of data we
would like to keep
together in a hash

scalar hash
reference

7Sunday, October 23, 2011

II: recap subroutines

#!/usr/bin/perl -w
use strict;
my $seq;
while (my $seqline = <>) { # read sequence from standard in
 my $clean = cleanup_sequence($seqline); # clean it up
 $seq .= $clean; # add it to full sequence
}
sub cleanup_sequence {
 my ($sequence) = @_; # set $sequence to first argument
 $sequence = lc $sequence; # translate everything into lower case
 $sequence =~ s/[\s\d]//g; # remove whitespace and numbers
 $sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid
 characters!";
 return $sequence;
}

• solve a problem, write code once, and re-use the code

• reusing a single piece of code instead of copying, pasting and modifying
reduces the chance you’ll make an error and simplifies bug fixing.

8Sunday, October 23, 2011

III: now let’s recap packages

#file: Sequence.pm
package Sequence;
use strict;
use base Exporter;
our @EXPORT = (‘cleanup_sequence’);
sub cleanup_sequence {
 my ($sequence) = @_; # set $sequence to first argument
 $sequence = lc $sequence; # translate everything into lower case
 $sequence =~ s/[\s\d]//g; # remove whitespace and numbers
 $sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid
characters!";
 return $sequence;
}
1;

#!/usr/bin/perl -w
#File: read_clean_sequence.pl
use strict;
use Sequence;
my $seq;
while (my $seqline = <>) { # read sequence from standard in
 my $clean = cleanup_sequence($seqline); # clean it up
 $seq .= $clean; # add it to full sequence
}

• organise code that goes together into reusable modules, packages

read_clean_sequence.pl

Sequence.pm

9Sunday, October 23, 2011

Let’s recap subroutines: new example with references

#!/usr/bin/perl
use strict;
use warnings;
my $microarray = { gene => ‘CDC2,

 expression => 45,
 tissue => ‘liver’,

 };
...
my $gene_name = gene($microarray);
...
sub gene {

my ($ref) = @_;
return $ref->{gene};

}
sub tissue {

my ($ref) = @_;
return $ref->{tissue};

}

10Sunday, October 23, 2011

recap packages

#!/usr/bin/perl
#File: script.pl
use strict; use warnings;
use Microarray;

my $microarray = {gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
}
my $gene_name = gene($microarray);
print “Gene for this microarray is
$gene\n”;

#File: Microarray.pm
package Microarray;
use strict;
use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my ($ref) = @_;
return $ref->{gene};

}
sub tissue {

my ($ref) = @_;
return $ref ->{tissue};

}
1;

script.pl

Microaray.pm

perl module file

main script
file

11Sunday, October 23, 2011

Three Little Rules

• Rule 1: To create a class, build a package

• Rule 2: To create a method, write a subroutine

• Rule 3: To create an object, bless a reference

74 CHAPTER 3 GETTING STARTED

3.1.1 Rule 1: To create a class, build a package
Perl packages already have a number of classlike features:

• They collect related code together;
• They distinguish that code from unrelated code;
• They provide a separate namespace within the program, which keeps subroutine names

from clashing with those in other packages;
• They have a name, which can be used to identify data and subroutines defined in the

package.

In Perl, those features are sufficient to allow a package to act like a class.
Suppose we wanted to build an application to track faults in a system. Here’s how to de-

clare a class named Bug in Perl:
package Bug;

That’s it! Of course, such a class isn’t very interesting or useful, since it has no attributes
or behavior. And that brings us to the second rule…

3.1.2 Rule 2: To create a method, write a subroutine
Methods are just subroutines, associated with a particular class, that exist specifically to oper-
ate on objects that are instances of that class.

Happily, in Perl, a subroutine that is declared in a particular package is associated with
that package. So to write a Perl method, we just write a subroutine within the package acting
as our class.

For example, here’s how we provide an object method to print our Bug objects:

package Bug;

sub print_me

{

The code needed to print the Bug goes here

}

package Bug;

use strict;

sub new

{

 my ($class) = @_;

 my $objref = {};

 .

 .

 bless $objref, $class;

}

sub print_me

{

 my ($self) = @_;

 .

 .

}

Rule 1:
To create a class,
build a package .

Rule 3:
To create an object,
bless a referent.

Bug.pm

Rule 2
To create a method,
write a subroutine .

Figure 3.1 Three little rules

12Sunday, October 23, 2011

Rule 1: To create a class, build a package

• all the code that goes with an object (methods, special
vaiables) goes inside a special package

• perl packages are just files whose names end with ‘.pm’ e.g.
Microarray.pm

• package filenames should start with a capital letter

• the name of the perl package tells us the class of the object. This is
really the type or kind of object we are dealing with.

• Micorarray.pm is a package, so it will be easy to
convert into object-oriented code

13Sunday, October 23, 2011

Rule 2: To create a method, write a subroutine

• we already have gene() in Microarray.pm

• this can be turned into a method

• we need one extra subroutine to create new objects

• the creator method is called new() and has one piece of magic...

14Sunday, October 23, 2011

Rule 3: To create an object, bless a reference

• The new() subroutine uses the bless function to create an object

• full details coming up... but here’s the skeleton of a new() method

sub new {
...
my $self = {};
bless $self, $class;
...

}

create a reference, a
hashref {} is the most
common seen in perl

bless a reference
into a class

15Sunday, October 23, 2011

Let’s recap packages

#!/usr/bin/perl -w
#File: script.pl
use strict;
use Microarray;

my $microarray = { gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
 };
my $gene_name = gene($microarray);
print “Gene for this microarray is $gene\n”;

#File: Microarray.pm
package Microarray;
use strict;
use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my $ref = shift;
return $ref->{gene};

}
sub tissue {

my $ref = shift;
return $ref ->{tissue};

}
1;

16Sunday, October 23, 2011

Transforming a package into an object-oriented module or class

#File: Microarray.pm
package Microarray;
use strict;
use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my ($ref) = @_;
return $ref->{gene};

}
sub tissue {

my ($ref) = @_;
return $ref ->{tissue};

}
1;

procedural perl package
(what you saw yesterday)

...transforming the package into a class...

#File: Microarray.pm
package Microarray;
use strict;

sub gene {
my $self = shift; # same as my ($self) = @_;
return $self->{gene};

}
sub tissue {

my $self = shift;
return $self ->{tissue};

}
1;

17Sunday, October 23, 2011

sub new {
! my $class = shift;
! my %args = @_;!
! my $self = {};
! foreach my $key (keys %args) {!
! ! $self -> {$key} =
! ! ! ! $args{$key};!
! }
! # the magic happens here
! bless $self, $class;
! return $self;
}

The new() method is a subroutine that creates a
new object

the first argument is always the
class of the object you are
making. perl gives you this as
the first argument
automatically

a hash reference is the data
structure you build an object from
in perl

bless makes the object $self (which is
a hash reference) become a member
of the class $class

here we initialize variables in the
object (in case there are any)

18Sunday, October 23, 2011

bless associates an object with its class

Make an anonymous hash in the debugger
$a = {};
p ref $a;
HASH

Make a MySequence object in the debugger

$self = {};
$class = ‘MySequence’;
bless $self , $class;

x $self
0 MySequence=HASH(0x18bd7cc)
 empty hash
p ref $a
MySequence

19Sunday, October 23, 2011

final step

object-oriented module or class
#File: Microarray.pm
package Microarray;
use strict;

sub new {
my $class = shift;
my %args = @_;!
my $self = {};
foreach my $key (keys %args) {!

! $self -> {$key} = $args{$key};!
}
the magic happens here
bless $self, $class;
return $self;

}

sub gene {
my $self = shift;
return $self->{gene};

}
sub tissue {

my $self = shift;
return $self ->{tissue};

}
1;

20Sunday, October 23, 2011

OOP script

#!/usr/bin/perl
use strict; use warnings;
#File: script.pl
my $microarray = { gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
 };
my $gene_name = gene($microarray);
print “Gene for this microarray is $gene\n”;

#!/usr/bin/perl
#File: OO_script.pl
use strict; use warnings;
use Microarray;
my $microarray = Microarray->new(gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
);
my $gene_name = $microarray->gene();
print “Gene for this microarray is $gene_name\n”;
my $tissue = $microarray->tissue();
print “The tissue is $tissue\n”;

procedural version

OO version

21Sunday, October 23, 2011

Lastly, did I mention “code lazy”?

• This lecture has introduced you to object-oriented
programming

• You only need to use other people’s objects (beg, borrow,
buy, steal).

• Only create your own modules and objects if you have to.

22Sunday, October 23, 2011

Aside on inheritance

• If you want to make an object that is a special case or subclass of another,
more general, object, you can have it inherit all the general data storage
and functions of the more general object.

• This saves coding time by re-using existing code. This also avoids copying
and pasting existing code into the new object, a process that makes code
harder to maintain and debug.

• For example, a MicroRNA_gene object is a special case of a Gene object
and might have some specific functions like cut_RNA_hairpin() as well as
general functions like transcribe() it can inherit from the general gene
object.

• More formally, a subclass inherits variables and functions from its
superclass (like a child and a parent). Here are some examples

package MicroRNA;
use base ‘Gene’; # Gene is a parent
use base ‘Exporter’; # Exporter is another parent

23Sunday, October 23, 2011

Problems

1.Take a look at the Statistics::Descriptive module on cpan here http://search.cpan.org/
~shlomif/Statistics-Descriptive-3.0202/lib/Statistics/Descriptive.pm

2.Write a script that uses the methods in Statistics::Descriptive to calculate the
standard deviation, median, min and max of the following numbers

12,-13,-12,7,11,-4,-12,9,6,7,-9

Optional questions

4. Add a method to Microarray.pm called expression() which returns the expression
value

5. Curently calling $a = $m->gene() gets the value of gene in the object $m. Modify the
gene() method so that it can also set the value of gene if you call gene() with an
argument, e.g.
$m->gene(‘FOXP1’); # this should set the gene name to
‘FOXP1’
print $m->gene(); # this should print the value ‘FOXP1’

24Sunday, October 23, 2011

