
UNIX - Command-Line Survival Guide
Files, directories, commands, text editors

Simon Prochnik & Lincoln Stein

Lecture Notes
What is the Command Line?
Logging In
The Desktop
The Shell
Home Sweet Home
Getting Around
Running Commands
Command Redirection
Pipes

What is the Command Line?
Underlying the pretty Mac OSX GUI is a powerful command-line operating system. The command line gives you
access to the internals of the OS, and is also a convenient way to write custom software and scripts.

Many bioinformatics tools are written to run on the command line and have no graphical interface. In many cases, a
command line tool is more versatile than a graphical tool, because you can easily combine command line tools into
automated scripts that accomplish tasks without human intervention.

In this course, we will be writing Perl scripts that are completely command-line based.

Logging into Your Workstation
Your workstation is an iMac. To log into it, provide the following information:

Your username: the initial of your first name, followed by your full last name. For example, my
username is srobb for sofia robb
Your password: changeme

Bringing up the Command Line
To bring up the command line, use the Finder to navigate to Applications->Utilities and double-click on the Terminal
application. This will bring up a window like the following:

OSX Terminal

You will be using this application a lot, so I suggest that you drag the Terminal icon into the shortcuts bar at the
bottom of your screen.

OK. I've Logged in. What Now?
The terminal window is running a shell called "bash." The shell is a loop that:

1. Prints a prompt
2. Reads a line of input from the keyboard
3. Parses the line into one or more commands
4. Executes the commands (which usually print some output to the terminal)
5. Go back 1.

There are many different shells with bizarre names like bash, sh, csh, tcsh, ksh, and zsh. The "sh" part means
shell. Each shell was designed for the purpose of confusing you and tripping you up. We have set up your accounts
to use bash. Stay with bash and you'll get used to it, eventually.

Command-Line Prompt
Most of bioinformatics is done with command-line software, so you should take some time to learn to use the shell
effectively.

This is a command line prompt:

bush202>

This is another:

(~) 51%

This is another:

srobb@bush202 1:12PM>

What you get depends on how the system administrator has customized your login. You can customize yourself
when you know how.

The prompt tells you the shell is ready to accept a command. When a long-running command is going, the prompt
will not reappear until the system is ready to deal with your next request.

Issuing Commands
Type in a command and press the <Enter> key. If the command has output, it will appear on the screen. Example:

(~) 53% ls -Fls -F
GNUstep/ cool_elegans.movies.txt man/
INBOX docs/ mtv/
INBOX~ etc/ nsmail/
Mail@ games/ pcod/
News/ get_this_book.txt projects/
axhome/ jcod/ public_html/
bin/ lib/ src/
build/ linux/ tmp/
ccod/
(~) 54%

The command here is ls -F, which produces a listing of files and directories in the current directory (more on which
later). After its output, the command prompt appears agin.

Some programs will take a long time to run. After you issue their command name, you won't recover the shell prompt
until they're done. You can either launch a new shell (from Terminal's File menu), or run the command in the
background using the ampersand:

(~) 54% long_running_application&long_running_application&
(~) 55%

The command will now run in the background until it is finished. If it has any output, the output will be printed to the
terminal window. You may wish to redirect the output as described later.

Command Line Editing
Most shells offer command line entering. Up until the comment you press <Enter>, you can go back over the
command line and edit it using the keyboard. Here are the most useful keystrokes:

Backspace

Delete the previous character and back up one.
Left arrow, right arrow

Move the text insertion point (cursor) one character to the left or right.
control-A (^A)

Move the cursor to the beginning of the line. Mnemonic: A is first letter of alphabet
control-E (^E)

Move the cursor to the end of the line. Mnemonic: <E> for the End (^Z was already taken for something else).
control-D (^D)

Delete the character currently under the cursor. D=Delete.
control-K (^K)

Delete the entire line from the cursor to the end. K=Kill. The line isn't actually deleted, but put into a temporary
holding place called the "kill buffer".

control-Y (^Y)
Paste the contents of the kill buffer onto the command line starting at the cursor. Y=Yank.

Up arrow, down arrow
Move up and down in the command history. This lets you reissue previous commands, possibly after
modifying them.

There are also some useful shell commands you can issue:

history
Show all the commands that you have issued recently, nicely numbered.

!<number>
Reissue an old command, based on its number (which you can get from history)

!!
Reissue the immediate previous command.

!<partial command string>
Reissue the previous command that began with the indicated letters. For example !l would reissue the ls -F
command from the earlier example.

bash offers automatic command completion and spelling correction. If you type part of a command and then the tab
key, it will prompt you with all the possible completions of the command. For example:

(~) 51% fd<tab>fd<tab>
(~) 51% fd
fd2ps fdesign fdformat fdlist fdmount fdmountd fdrawcmd fdumount
(~) 51%

If you hit tab after typing a command, but before pressing <Enter>, bash will prompt you with a list of file names.
This is because many commands operate on files.

Wildcards
You can use wildcards when referring to files. "*" refers to zero or more characters. "?" refers to any single character.
For example, to list all files with the extension ".txt", run ls with the pattern "*.txt":

(~) 56% ls -F *.txtls -F *.txt
final_exam_questions.txt genomics_problem.txt
genebridge.txt mapping_run.txt

There are several more advanced types of wildcard patterns which you can read about in the tcsh manual page. For
example, you can refer to files beginning with the characters "f" or "g" and ending with ".txt" this way:

(~) 57% ls -F [f-g]*.txtls -F [f-g]*.txt
final_exam_questions.txt genebridge.txt genomics_problem.txt

Home Sweet Home
When you first log in, you'll be placed in a part of the system that is your personal domain, called the home directory.
You are free to do with this area what you will: in particular you can create and delete files and other directories. In
general, you cannot create files elsewhere in the system.

Your home directory lives somewhere way down deep in the bowels of the system. On our iMacs, it is a directory
with the same name as your login name, located in /Users. The full directory path is therefore /Users/username.
Since this is a pain to write, the shell allows you to abbreviate it as ~username (where "username" is your user
name), or simply as ~. The weird character (technically called the "twiddle") is usually hidden at the upper left corner
of your keyboard.

To see what is in your home directory, issue the command ls -F:

(~) % ls -Fls -F
INBOX Mail/ News/ nsmail/ public_html/

This shows one file "INBOX" and four directories ("Mail", "News") and so on. (The "-F" in the command turns on
fancy mode, which appends special characters to directory listings to tell you more about what you're seeing. "/"
means directory.)

In addition to the files and directories shown with ls -F, there may be one or more hidden files. These are files and
directories whose names start with a "." (technically called the "dot" character). To see these hidden files, add an "a"
to the options sent to the ls command:

(~) % ls -aFls -aF
./ .cshrc .login Mail/
../ .fetchhost .netscape/ News/
.Xauthority .fvwmrc .xinitrc* nsmail/
.Xdefaults .history .xsession@ public_html/
.bash_profile .less .xsession-errors
.bashrc .lessrc INBOX

Whoa! There's a lot of hidden stuff there. But don't go deleting dot files willy-nilly. Many of them are esential
configuration files for commands and other programs. For example, the .profile file contains configuration information
for the bash shell. You can peek into it and see all of bash's many options. You can edit it (when you know what
you're doing) in order to change things like the command prompt and command search path.

Getting Around
You can move around from directory to directory using the cd command. Give the name of the directory you want to
move to, or give no name to move back to your home directory. Use the pwd command to see where you are (or rely
on the prompt, if configured):

(~/docs/grad_course/i) 56% cdcd
(~) 57% cd /cd /
(/) 58% ls -Fls -F
bin/ dosc/ gmon.out mnt/ sbin/

boot/ etc/ home@ net/ tmp/
cdrom/ fastboot lib/ proc/ usr/
dev/ floppy/ lost+found/ root/ var/
(/) 59% cd ~/docs/cd ~/docs/
(~/docs) 60% pwdpwd
/usr/home/lstein/docs
(~/docs) 62% cd ../projects/cd ../projects/
(~/projects) 63% lsls
Ace-browser/ bass.patch
Ace-perl/ cgi/
Foo/ cgi3/
Interface/ computertalk/
Net-Interface-0.02/ crypt-cbc.patch
Net-Interface-0.02.tar.gz fixer/
Pts/ fixer.tcsh
Pts.bak/ introspect.pl*
PubMed/ introspection.pm
SNPdb/ rhmap/
Tie-DBI/ sbox/
ace/ sbox-1.00/
atir/ sbox-1.00.tgz
bass-1.30a/ zhmapper.tar.gz
bass-1.30a.tar.gz
(~/projects) 64%

Each directory contains two special hidden directories named "." and "..". "." refers always to the directory in which it
is located. ".." refers always to the parent of the directory. This lets you move upward in the directory hierarchy like
this:

(~/docs) 64% cd ..cd ..

and to do arbitrarily weird things like this:

(~/docs) 65% cd ../../docscd ../../docs

The latter command moves upward to levels, and then into a directory named "docs".

If you get lost, the pwd command prints out the full path to the current directory:

(~) 56% pwdpwd
/Users/lstein

Essential Unix Commands
With the exception of a few commands that are built directly into the shell, all Unix commands are standalone
executable programs. When you type the name of a command, the shell will search through all the directories listed
in the PATH environment variable for an executable of the same name. If found, the shell will execute the command.

Otherwise, it will give a "command not found" error.

Most commands live in /bin, /usr/bin, or /usr/local/bin.

Getting Information About Commands
The man command will give a brief synopsis of the command:

(~) 76% man wcman wc
Formatting page, please wait...
WC(1) WC(1)

NAME
 wc - print the number of bytes, words, and lines in files

SYNOPSIS
 wc [-clw] [--bytes] [--chars] [--lines] [--words] [--help]
 [--version] [file...]

DESCRIPTION
 This manual page documents the GNU version of wc. wc
 counts the number of bytes, whitespace-separated words,
...

Finding Out What Commands are There
The apropos command will search for commands matching a keyword or phrase:

(~) 100% apropos columnapropos column
showtable (1) - Show data in nicely formatted columns
colrm (1) - remove columns from a file
column (1) - columnate lists
fix132x43 (1) - fix problems with certain (132 column) graphics
modes

Arguments and Command Switches
Many commands take arguments. Arguments are often (but not inevitably) the names of one or more files to operate
on. Most commands also take command-line "switches" or "options" which fine-tune what the command does. Some
commands recognize "short switches" that consist of a single character, while others recognize "long switches"
consisting of whole words.

The wc (word count) program is an example of a command that recognizes both long and short options. You can
pass it the -c, -w and/or -l options to count the characters, words and lines in a text file, respectively. Or you can use
the longer but more readable, --chars, --words or --lines options. Both these examples count the number of
characters and lines in the text file /var/log/messages:

(~) 102% wc -c -l /var/log/messageswc -c -l /var/log/messages
 23 941 /var/log/messages

(~) 103% wc --chars --lines /var/log/messageswc --chars --lines /var/log/messages
 23 941 /var/log/messages

You can cluster short switches by concatenating them together, as shown in this example:

(~) 104% wc -cl /var/log/messageswc -cl /var/log/messages
 23 941 /var/log/messages

Many commands will give a brief usage summary when you call them with the -h or --help switch.

Spaces and Funny Characters

The shell uses whitespace (spaces, tabs and other nonprinting characters) to separate arguments. If you want to
embed whitespace in an argument, put single quotes around it. For example:

mail -s 'An important message' 'Bob Ghost <bob@ghost.org>'

This will send an e-mail to the fictitious person Bob Ghost. The -s switch takes an argument, which is the subject line
for the e-mail. Because the desired subject contains spaces, it has to have quotes around it. Likewise, my e-mail
address, which contains embedded spaces, must also be quoted in this way.

Certain special non-printing characters have escape codes associated with them:

Escape Code Description
\n new line character

\t tab character

\r carriage return character

\a bell character (ding! ding!)

\nnn the character whose ASCII code in octal is nnn

Useful Commands
Here are some commands that are used extremely frequently. Use man to learn more about them. Some of these
commands may be useful for solving the problem set ;-)

Manipulating Directories

ls
Directory listing. Most frequently used as ls -F (decorated listing) and ls -l (long listing).

mv
Rename or move a file or directory.

cp
Copy a file.

rm
Remove (delete) a file.

mkdir
Make a directory

rmdir
Remove a directory

ln
Create a symbolic or hard link.

chmod

Change the permissions of a file or directory.

Manipulating Files

cat
Concatenate program. Can be used to concatenate multiple files together into a single file, or, much more
frequently, to send the contents of a file to the terminal for viewing.

more
Scroll through a file page by page. Very useful when viewing large files. Works even with files that are too big
to be opened by a text editor.

less
A version of more with more features.

head
View the head (top) of a file. You can control how many lines to view.

tail
View the tail (bottom) of a file. You can control how many lines to view. You can also use tail to view a
growing file.

wc
Count words, lines and/or characters in one or more files.

tr
Substitute one character for another. Also useful for deleting characters.

sort
Sort the lines in a file alphabetically or numerically.

uniq
Remove duplicated lines in a file.

cut
Remove sections from each line of a file or files.

fold
Wrap each input line to fit in a specified width.

grep
Filter a file for lines matching a specified pattern. Can also be reversed to print out lines that don't match the
specified pattern.

gzip (gunzip)
Compress (uncompress) a file.

tar
Archive or unarchive an entire directory into a single file.

emacs
Run the Emacs text editor (good for experts).

Networking

ssh
A secure (encrypted) way to log into machines.

ping
See if a remote host is up.

ftp and the secure version sftp
Transfer files using the File Transfer Protocol.

who
See who else is logged in.

lp
Send a file or set of files to a printer.

Standard I/O and Command Redirection
Unix commands communicate via the command line interface. They can print information out to the terminal for you

to see, and accept input from the keyboard (that is, from you!)

Every Unix program starts out with three connections to the outside world. These connections are called "streams"
because they act like a stream of information (metaphorically speaking):

standard input
This is a communications stream initially attached to the keyboard. When the program reads from standard
input, it reads whatever text you type in.

standard output
This stream is initially attached to the command window. Anything the program prints to this channel appears
in your terminal window.

standard error
This stream is also initially attached to the command window. It is a separate channel intended for printing
error messages.

The word "initially" might lead you to think that standard input, output and error can somehow be detached from their
starting places and reattached somewhere else. And you'd be right. You can attach one or more of these three
streams to a file, a device, or even to another program. This sounds esoteric, but it is actually very useful.

A Simple Example
The wc program counts lines, characters and words in data sent to its standard input. You can use it interactively like
this:

(~) 62% wcwc
Mary had a little lamb,Mary had a little lamb,
little lamb,little lamb,
little lamb.little lamb.

Mary had a little lamb,Mary had a little lamb,
whose fleece was white as snow.whose fleece was white as snow.
^D^D
 6 20 107

In this example, I ran the wc program. It waited for me to type in a little poem. When I was done, I typed the END-
OF-FILE character, control-D (^D for short). wc then printed out three numbers indicating the number of lines, words
and characters in the input.

More often, you'll want to count the number of lines in a big file; say a file filled with DNA sequences. You can do this
by redirecting wc's standard input from a file. This uses the < metacharacter:

(~) 63% wc <big_file.fastawc <big_file.fasta
 2943 2998 419272

If you wanted to record these counts for posterity, you could redirect standard output as well using the >
metacharacter:

(~) 64% wc <big_file.fasta >count.txtwc <big_file.fasta >count.txt

Now if you cat the file count.txt, you'll see that the data has been recorded. cat works by taking its standard input
and copying it to standard output. We redirect standard input from the count.txt file, and leave standard output at its
default, attached to the terminal:

(~) 65% cat <count.txtcat <count.txt

 2943 2998 419272

Redirection Meta-Characters
Here's the complete list of redirection commands for bash:
<filename Redirect standard input to file

>filename Redirect standard output to file

1>filename Redirect just standard output to file (same as above)

2>filename Redirect just standard error to file

>filename 2>&1 Redirect both stdout and stderr to file

These can be combined. For example, this command redirects standard input from the file named /etc/passwd,
writes its results into the file search.out, and writes its error messages (if any) into a file named search.err. What
does it do? It searches the password file for a user named "root" and returns all lines that refer to that user.

(~) 66% grep root </etc/passwd >search.out 2>search.errgrep root </etc/passwd >search.out 2>search.err

Filters, Filenames and Standard Input
Many Unix commands act as filters, taking data from a file or standard input, transforming the data, and writing the
results to standard output. Most filters are designed so that if they are called with one or more filenames on the
command line, they will use those files as input. Otherwise they will act on standard input. For example, these two
commands are equivalent:

(~) 66% grep 'gatttgc' <big_file.fastagrep 'gatttgc' <big_file.fasta
(~) 67% grep 'gatttgc' big_file.fastagrep 'gatttgc' big_file.fasta

Both commands use the grep command to search for the string "gatttgc" in the file big_file.fasta. The first one
searches standard input, which happens to be redirected from the file. The second command is explicitly given the
name of the file on the command line.

Sometimes you want a filter to act on a series of files, one of which happens to be standard input. Many filters let you
use "-" on the command line as an alias for standard input. Example:

(~) 68% grep 'gatttgc' big_file.fasta bigger_file.fasta -grep 'gatttgc' big_file.fasta bigger_file.fasta -

This example searches for "gatttgc" in three places. First it looks in big_file.fasta, then in bigger_file.fasta, and lastly
in standard input (which, since it isn't redirected, will come from the keyboard).

Standard I/O and Pipes
The coolest thing about the Unix shell is its ability to chain commands together into pipelines. Here's an example:

(~) 65% grep gatttgc big_file.fasta | wc -lgrep gatttgc big_file.fasta | wc -l
22

There are two commands here. grep searches a file or standard input for lines containing a particular string. Lines
which contain the string are printed to standard output. wc -l is the familiar word count program, which counts words,

lines and characters in a file or standard input. The -l command-line option instructs wc to print out just the line
count. The | character, which is known as the "pipe" character, connects the two commands together so that the
standard output of grep becomes the standard input of wc.

What does this pipe do? It prints out the number of lines in which the string "gatttgc" appears in the file big_file.fasta.

More Pipe Idioms
Pipes are very powerful. Here are some common command-line idioms.

Count the Number of Times a Pattern does NOT Appear in a File

The example at the top of this section showed you how to count the number of lines in which a particular string
pattern appears in a file. What if you want to count the number of lines in which a pattern does not appear?

Simple. Reverse the test with the grep -v switch:

(~) 65% grep -v gatttgc big_file.fasta | wc -lgrep -v gatttgc big_file.fasta | wc -l
2921

Uniquify Lines in a File

If you have a long list of names in a text file, and you are concerned that there might be some duplicates, this will
weed out the duplicates:

(~) 66% sort long_file.txt | uniq > unique.outsort long_file.txt | uniq > unique.out

This works by sorting all the lines alphabetically and piping the result to the uniq program, which removes duplicate
lines that occur together. The output is placed in a file named unique.out.

Concatenate Several Lists and Remove Duplicates

If you have several lists that might contain repeated entries among them, you can combine them into a single unique
list by cating them together, then uniquifying them as before:

(~) 67% cat file1 file2 file3 file4 | sort | uniqcat file1 file2 file3 file4 | sort | uniq

Count Unique Lines in a File

If you just want to know how many unique lines there are in the file, add a wc to the end of the pipe:

(~) 68% sort long_file.txt | uniq | wc -lsort long_file.txt | uniq | wc -l

Page Through a Really Long Directory Listing

Pipe the output of ls to the more program, which shows a page at a time. If you have it, the less program is even
better:

(~) 69% ls -l | morels -l | more

Monitor a Rapidly Growing File for a Pattern

Pipe the output of tail -f (which monitors a growing file and prints out the new lines) to grep. For example, this will
monitor the /var/log/syslog file for the appearance of e-mails addressed to mzhang:

(~) 70% tail -f /var/log/syslog | grep mzhangtail -f /var/log/syslog | grep mzhang

Beginning Perl Scripting
Simple scripts, Expressions, Operators, Statements, Variables

Simon Prochnik & Lincoln Stein

Suggested Reading
Chapters 1, 2 & 5 of Learning Perl.

Lecture Notes
1. What is Perl?
2. Some simple Perl scripts
3. Mechanics of creating a Perl script
4. Statements
5. Literals
6. Operators
7. Functions
8. Variables
9. Processing the Command Line

Problems

What is Perl?
Perl is a Programming Language
Written by Larry Wall in late 80's to process mail on Unix systems and since extended by a huge cast of characters. The name
is said to stand for:

1. Pathologically Eclectic Rubbish Lister
2. Practical Extraction and Report Language

Perl Properties
1. Interpreted Language
2. "Object-Oriented"
3. Cross-platform
4. Forgiving
5. Great for text
6. Extensible, rich set of libraries
7. Popular for web pages
8. Extremely popular for bioinformatics

Other Languages Used in Bioinformatics
C, C++

Compiled languages, hence very fast.
Used for computation (BLAST, FASTA, Phred, Phrap, ClustalW)
Not very forgiving.

Java
Interpreted, fully object-oriented language.

Built into web browsers.
Supposed to be cross-platform, getting better.

Python , Ruby
Interpreted, fully object-oriented language.
Rich set of libraries.
Elegant syntax.
Smaller user community than Java or Perl.

Some Simple Scripts
Here are some simple scripts to illustrate the "look" of a Perl program.

Print a Message to the Terminal
Code:

 #!/usr/bin/perl
 # file: message.pl
 use strict;
 use warnings;
 print "When that Aprill with his shoures soote\n";
 print "The droghte of March ath perced to the roote,\n";
 print "And bathed every veyne in swich licour\n";
 print "Of which vertu engendered is the flour...\n";

Output:

(~) 50% perl message.plperl message.pl
When that Aprill with his shoures soote
The droghte of March ath perced to the roote,
And bathed every veyne in swich licour
Of which vertu engendered is the flour...

Do Some Math
Code:

 #!/usr/bin/perl
 # file: math.pl
 use strict;
 use warnings;
 print "2 + 2 =", 2+2, "\n";
 print "log(1e23)= ", log(1e23), "\n";
 print "2 * sin(3.1414)= ", 2 * sin(3.1414), "\n";

Output:

(~) 51% perl math.plperl math.pl
2 + 2 =4
log(1e23)= 52.9594571388631

2 * sin(3.1414)= 0.000385307177203065

Run a System Command
Code:

 #!/usr/bin/perl
 # file: system.pl
 use strict;
 use warnings;
 system "ls";

Output:

(~/docs/grad_course/perl) 52% perl system.plperl system.pl
index.html math.pl~ problem_set.html~ what_is_perl.html
index.html~ message.pl simple.html what_is_perl.html~
math.pl problem_set.html simple.html~

Return the Time of Day
Code:

 #!/usr/bin/perl
 # file: time.pl
 use strict;
 use warnings;
 $time = localtime;
 print "The time is now $time\n";

Output:

(~) 53% perl time.plperl time.pl
The time is now Thu Sep 16 17:30:02 1999

Mechanics of Writing Perl Scripts
Some hints to help you get going.

Creating the Script
A Perl script is just a text file. Use any text (programmer's) editor. Don't use word processors like Word.

By convention, Perl script files end with the extension .pl.

The Emacs text editor has a Perl mode that will auto-format your Perl scripts and highlight keywords. Perl mode will be
activated automatically if you end the script name with .pl.

Running the Script
Option 1 (quick)

Run the perl program from the command line, giving it the name of the script file to run.

 (~) 50% perl time.plperl time.pl
 The time is now Thu Sep 16 18:09:28 1999

Option 2 (as shown in examples above)
Put the magic comment #!/usr/bin/perl at the top of the script. And always add
use strict;
use warnings;
to the top of your script like in the example below

#!/usr/bin/perl
file: time.pl
$time = localtime;
print "The time is now $time\n";

Now make the script executable with chmod +x time.pl:

 (~) 51% chmod +x time.plchmod +x time.pl

Run the script as if it were a command:

 (~) 52% ./time.pl./time.pl
 The time is now Thu Sep 16 18:12:13 1999

Note that you have to type "./time.pl" rather than "time.pl" because, by default, bash does not search the current
directory for commands to execute. To avoid this, you can add the current directory (".") to your search PATH
environment variable. To do this, create a file in your home directory named .profile and enter the following line
in it:

export PATH=$PATH:.

The next time you log in, your path will contain the current directory and you can type "time.pl" directly.

Common Errors
Every script goes through a few iterations before you get it right. Here are some common errors:

Syntax Errors

Code:

 #!/usr/bin/perl
 # file: time.pl
 use strict;
 use warnings;
 time = localtime;
 print "The time is now $time\n";

Output:

(~) 53% time.pltime.pl
Can't modify time in scalar assignment at time.pl line 3, near "localtime;"
Execution of time.pl aborted due to compilation errors.

Runtime Errors

Code:

 #!/usr/bin/perl
 # file: math.pl
 use strict;
 use warnings;

 $six_of_one = 6;
 $half_dozen = 12/2;
 $result = $six_of_one/($half_dozen - $six_of_one);
 print "The result is $result\n";

Output:

(~) 54% math.plmath.pl
Illegal division by zero at math.pl line 6.

Forgetting to Make the Script Executable

(~) 55% test.pltest.pl
test.pl: Permission denied.

Getting the Path to Perl Wrong on the #! line

Code:

 #!/usr/local/bin/pearl
 # file: time.pl
 use strict;
 use warnings;
 $time = localtime;
 print "The time is now $time\n";

(~) 55% time.pltime.pl
time.pl: Command not found.

This gives a very confusing error message because the command that wasn't found is 'pearl' not time.pl

Useful Perl Command-Line Options

You can call Perl with a few command-line options to help catch errors:

-c
Perform a syntax check, but don't run.

-w
Turn on verbose warnings. Same as

use warnings;

-d
Turn on the Perl debugger.

Usually you will invoke these from the command-line, as in perl -cw time.pl (syntax check time.pl with verbose warnings). You
can also put them in the top line: #!/usr/bin/perl -w.

Perl Statements
A Perl script consists of a series of statements and comments. Each statement is a command that is recognized by the Perl
interpreter and executed. Statements are terminated by the semicolon character (;). They are also usually separated by a
newline character to enhance readability.

A comment begins with the # sign and can appear anywhere. Everything from the # to the end of the line is ignored by the
Perl interpreter. Commonly used for human-readable notes.

Some Statements

$sum = 2 + 2; # this is a statement

$f = <STDIN>; $g = $f++; # these are two statements

$g = $f
 /
 $sum; # this is one statement, spread across 3 lines

The Perl interpreter will start at the top of the script and execute all the statements, in order from top to bottom, until it reaches
the end of the script. This execution order can be modified by loops and control structures.

Blocks
It is common to group statements into blocks using curly braces. You can execute the entire block conditionally, or turn it into
a subroutine that can be called from many different places.

Example blocks:

{ # block starts
 my $EcoRI = 'GAATTC';
 my $sequence = <STDIN>;
 print "Sequence contains an EcoRI site" if $sequence=~/$EcoRI/;
} # block ends

my $sequence2 = <STDIN>;
if (length($sequence) < 100) { # another block starts
 print "Sequence is too small. Throw it back\n";
 exit 0;
} # and ends

foreach $sequence (@sequences) { # another block
 print "sequence length = ",length($sequence),"\n";
}

Literals
Literals are constant values that you embed directly in the program code. Perl supports both string literals and numeric literals.

String Literals
String literals are enclosed by single quotes (') or double quotes ("):

'The quality of mercy is not strained.'; # a single-quoted string
"The quality of mercy is not strained."; # a double-quoted string

The difference between single and double-quoted strings is that variables and certain special escape codes are interpolated
into double quoted strings, but not in single-quoted ones. Here are some escape codes:

\n New line

\t Tab

\r Carriage return

\f Form feed

\a Ring bell

\040 Octal character (octal 040 is the space character)

\0x2a Hexadecimal character (hex 2A is the "*" character)

\cA Control character (This is the ^A character)

\u Uppercase next character

\l Lowercase next character

\U Uppercase everything until \E

\L Lowercase everything until \E

\Q Quote non-word characters until \E

\E End \U, \L or \Q operation

"Here goes\n\tnothing!";
 # evaluates to:
 # Here goes
 # nothing!

'Here goes\n\tnothing!';

 # evaluates to:
 # Here goes\n\tnothing!

"Here goes \unothing!";
 # evaluates to:
 # Here goes Nothing!

"Here \Ugoes nothing\E";
 # evaluates to:
 # Here GOES NOTHING!

"Alert! \a\a\a";
 # evaluates to:
 # Alert! (ding! ding! ding!)

Putting backslashes in strings is a problem because they get interpreted as escape sequences. To inclue a literal backslash in
a string, double it:

"My file is in C:\\Program Files\\Accessories\\wordpad.exe";

 # evaluates to: C:\Program Files\Accessories\wordpad.exe

Put a backslash in front of a quote character in order to make the quote character part of the string:

"She cried \"Oh dear! The parakeet has flown the coop!\"";

 # evaluates to: She cried "Oh dear! The parakeet has flown the coop!"

Numeric Literals
You can refer to numeric values using integers, floating point numbers, scientific notation, hexadecimal notation, and octal.
With some help from the Math::Complex module, you can refer to complex numbers as well:

123; # an integer

1.23; # a floating point number

-1.23; # a negative floating point number

1_000_000; # you can use _ to improve readability

1.23E45; # scientific notation

0x7b; # hexadecimal notation (decimal 123)

0173; # octal notation (decimal 123)

use Math::Complex; # bring in the Math::Complex module

12+3*i; # complex number 12 + 3i

Backtick Strings
You can also enclose a string in backtics (`). This has the unusual property of executing whatever is inside the string as a Unix
system command, and returning its output:

`ls -l`;
evaluates to a string containing the output of running the
ls -lls -l command

Lists
The last type of literal that Perl recognizes is the list, which is multiple values strung together using the comma operator (,)
and enclosed by parentheses. Lists are closely related to arrays, which we talk about later.

('one', 'two', 'three', 1, 2, 3, 4.2);
 # this is 7-member list contains a mixure of strings, integers
 # and floats

Operators
Perl has numerous operators (over 50 of them!) that perform operations on string and numberic values. Some operators will
be familiar from algebra (like "+", to add two numbers together), while others are more esoteric (like the "." string
concatenation operator).

Numeric & String Operators
The "." operator acts on strings. The "!" operator acts on strings and numbers. The rest act on numbers.

Operator Description Example Result
. String concatenate 'Teddy' . 'Bear' TeddyBear

= Assignment $a = 'Teddy' $a variable contains 'Teddy'

+ Addition 3+2 5

- Subtraction 3-2 1

- Negation -2 -2

! Not !1 0

* Multiplication 3*2 6

/ Division 3/2 1.5

% Modulus 3%2 1

** Exponentiation 3**2 9

<FILEHANDLE> File input <STDIN> Read a line of input from standard input

>> Right bit shift 3>>2 0 (binary 11>>2=00)

<< Left bit shift 3<<2 12 (binary 11<<2=1100)

| Bitwise OR 3|2 3 (binary 11|10=11

& Bitwise AND 3&2 2 (binary 11&10=10

^ Bitwise XOR 3^2 1 (binary 11^10=01

Operator Precedence

When you have an expression that contains several operators, they are evaluated in an order determined by their
precedence. The precedence of the mathematical operators follows the rules of arithmetic. Others follow a precedence that
usually does what you think they should do. If uncertain, use parentheses to force precedence:

2+3*4; # evaluates to 14, multiplication has precedence over addition
(2+3)*4; # evaluates to 20, parentheses force the precedence

Logical Operators
These operators compare strings or numbers, returning TRUE or FALSE:

Numeric Comparison String Comparison
3 == 2 equal to 'Teddy' eq 'Bear' equal to

3 != 2 not equal to 'Teddy' ne 'Bear' not equal to

3 < 2 less than 'Teddy' lt 'Bear' less than

3 > 2 greater than 'Teddy' gt 'Bear' greater than

3 <= 2 less or equal 'Teddy' le 'Bear' less than or equal

3 >= 2 greater than or equal 'Teddy' ge 'Bear' greater than or equal

3 <=> 2 compare 'Teddy' cmp 'Bear' compare

 'Teddy' =~ /Bear/ pattern match

The <=> and cmp operators return:

-1 if the left side is less than the right side
0 if the left side equals the right side
+1 if the left side is greater than the right side

File Operators
Perl has special file operators that can be used to query the file system. These operators generally return TRUE or FALSE.

Example:

print "Is a directory!\n" if -d '/usr/home';
print "File exists!\n" if -e '/usr/home/lstein/test.txt';

print "File is plain text!\n" if -T '/usr/home/lstein/test.txt';

There are many of these operators. Here are some of the most useful ones:

-e filename file exists

-r filename file is readable

-w filename file is writable

-x filename file is executable

-z filename file has zero size

-s filename file has nonzero size (returns size)

-d filename file is a directory

-T filename file is a text file

-B filename file is a binary file

-M filename age of file in days since script launched

-A filename same for access time

Functions
In addition to its operators, Perl has many functions. Functions have a human-readable name, such as print and take one or
more arguments passed as a list. A function may return no value, a single value (AKA "scalar"), or a list (AKA "array"). You
can enclose the argument list in parentheses, or leave the parentheses off.

A few examples:

 # The function is print. Its argument is a string.
 # The effect is to print the string to the terminal.
print "The rain in Spain falls mainly on the plain.\n";

 # Same thing, with parentheses.
print("The rain in Spain falls mainly on the plain.\n");

 # You can pass a list to print. It will print each argument.
 # This prints out "The rain in Spain falls 6 times in the plain."
print "The rain in Spain falls ",2*4-2," times in the plain.\n";

 # Same thing, but with parentheses.
print ("The rain in Spain falls ",2*4-2," times in the plain.\n");

 # The length function calculates the length of a string,
 # yielding 45.
length "The rain in Spain falls mainly on the plain.\n";

 # The split function splits a string based on a delimiter pattern

 # yielding the list ('The','rain in Spain','falls mainly','on the plain.')
split '/','The/rain in Spain/falls mainly/on the plain.';

Often Used Functions (alphabetic listing)
For specific information on a function, use perldoc -f function_name to get a concise summary.

abs absolute value

chdir change current directory

chmod change permissions of file/directory

chomp remove terminal newline from string variable

chop remove last character from string variable

chown change ownership of file/directory

close close a file handle

closedir close a directory handle

cos cosine

defined test whether variable is defined

delete delete a key from a hash

die exit with an error message

each iterate through keys & values of a hash

eof test a filehandle for end of file

eval evaluate a string as a perl expression

exec quit Perl and execute a system command

exists test that a hash key exists

exit exit from the Perl script

glob expand a directory listing using shell wildcards

gmtime current time in GMT

grep filter an array for entries that meet a criterion

index find location of a substring inside a larger string

int throw away the fractional part of a floating point number

join join an array together into a string

keys return the keys of a hash

kill send a signal to one or more processes

last exit enclosing loop

lc convert string to lowercase

lcfirst lowercase first character of string

length find length of string

local temporarily replace the value of a global variable

localtime return time in local timezone

log natural logarithm

m// pattern match operation

map perform on operation on each member of array or list

mkdir make a new directory

my create a local variable

next jump to the top of enclosing loop

open open a file for reading or writing

opendir open a directory for listing

pack pack a list into a compact binary representation

package create a new namespace for a module

pop pop the last item off the end of an array

print print to terminal or a file

printf formatted print to a terminal or file

push push a value onto the end of an array

q/STRING/ generalized single-quote operation

qq/STRING/ generalized double-quote operation

qx/STRING/ generalized backtick operation

qw/STRING/ turn a space-delimited string of words into a list

rand random number generator

read read binary data from a file

readdir read the contents of a directory

readline read a line from a text file

readlink determine the target of a symbolic link

redo restart a loop from the top

ref return the type of a variable reference

rename rename or move a file

require load functions defined in a library file

return return a value from a user-defined subroutine

reverse reverse a string or list

rewinddir rewind a directory handle to the beginning

rindex find a substring in a larger string, from right to left
rmdir remove a directory

s/// pattern substitution operation

scalar force an expression to be treated as a scalar

seek reposition a filehandle to an arbitrary point in a file

select make a filehandle the default for output

shift shift a value off the beginning of an array

sin sine

sleep put the script to sleep for a while

sort sort an array or list by user-specified criteria

splice insert/delete array items

split split a string into pieces according to a pattern

sprintf formatted string creation

sqrt square root

stat get information about a file

sub define a subroutine

substr extract a substring from a string

symlink create a symbolic link

system execute an operating system command, then return to Perl

tell return the position of a filehandle within a file

tie associate a variable with a database

time return number of seconds since January 1, 1970

tr/// replace characters in a string

truncate truncate a file (make it smaller)

uc uppercase a string

ucfirst uppercase first character of a string

umask change file creation mask

undef undefine (remove) a variable

unlink delete a file

unpack the reverse of pack

untie the reverse of tie

unshift move a value onto the beginning of an array

use import variables and functions from a library module

values return the values of a hash variable

wantarray return true in an array context

warn print a warning to standard error

write formatted report generation

Creating Your Own Functions
You can define your own functions or redefine the built-in ones using the sub function. This is described in more detail in the
lesson on creating subroutines, which you'll be seeing soon..

Variables
A variable is a symbolic placeholder for a value, a lot like the variables in algebra. Perl has several built-in variable types:

Scalars: $variable_name
A single-valued variable, always preceded by a $ sign.

Arrays: @array_name
A multi-valued variable indexed by integer, preceded by an @ sign.

Hashes: %hash_name
A multi-valued variable indexed by string, preceded by a % sign.

Filehandle: FILEHANDLE_NAME
A file to read and/or write from. Filehandles have no special prefix, but are usually written in all uppercase.

We discuss arrays, hashes and filehandles later.

Scalar Variables
Scalar variables have names beginning with $. The name must begin with a letter or underscore, and can contain as many
letters, numbers or underscores as you like. These are all valid scalars:

$foo
$The_Big_Bad_Wolf
$R2D2
$_____A23
$Once_Upon_a_Midnight_Dreary_While_I_Pondered_Weak_and_Weary

You assign values to a scalar variable using the = operator (not to be confused with ==, which is numeric comparison). You
read from scalar variables by using them wherever a value would go.

A scalar variable can contain strings, floating point numbers, integers, and more esoteric things. You don't have to predeclare
scalars. A scalar that once held a string can be reused to hold a number, and vice-versa:

Code:

 $p = 'Potato'; # $p now holds the string "potato"
 $bushels = 3; # $bushels holds the value 3
 $potatoes_per_bushel = 80; # $potatoes_per_bushel contains 80;

 $total_potatoes = $bushels * $potatoes_per_bushel; # 240

 print "I have $total_potatoes $p\n";

Output:

I have 240 Potato

Scalar Variable String Interpolation
The example above shows one of the interesting features of double-quoted strings. If you place a scalar variable inside a
double quoted string, it will be interpolated into the string. With a single-quoted string, no interpolation occurs.

To prevent interpolation, place a backslash in front of the variable:

 print "I have \$total_potatoes \$p\n";

 # prints: I have $total_potatoes $p

Operations on Scalar Variables
You can use a scalar in any string or numeric expression like $hypotenuse = sqrt($x**2 + $y**2) or $name = $first_name
. ' ' . $last_name. There are also numerous shortcuts that combine an operation with an assignment:

$a++
Increment $a by one

$a--
Decrement $a by one

$a += $b
Modify $a by adding $b to it.

$a -= $b
Modify $a by subtracting $b from it.

$a *= $b
Modify $a by multiplying $b to it.

$a /= $b
Modify $a by dividing it by $b.

$a .= $b
Modify the string in $a by appending $b to it.

Example Code:

 $potatoes_per_bushel = 80; # $potatoes_per_bushel contains 80;

 $p = 'one';
 $p .= ' '; # append a space
 $p .= 'potato'; # append "potato"

 $bushels = 3;
 $bushels *= $potatoes_per_bushel; # multiply

 print "From $p come $bushels.\n";

Output:

From one potato come 240.

String Functions that Come in Handy for Dealing with Sequences
Reverse the Contents of a String

 $name = 'My name is Lincoln';
 $reversed_name = reverse $name;
 print $reversed_name,"\n";
 # prints "nlocniL si eman yM"

Translating one set of letters into another set

 $name = 'My name is Lincoln';
 # swap a->g and c->t
 $name =~ tr/ac/gt/;
 print $name,"\n";
 # prints "My ngme is Lintoln"

Can you see how a combination of these two operators might be useful for computing the reverse complement?

Processing Command Line Arguments
When a Perl script is run, its command-line arguments (if any) are stored in an automatic array called @ARGV. You'll learn
how to manipulate this array later. For now, just know that you can call the shift function repeatedly from the main part of the
script to retrieve the command line arguments one by one.

Printing the Command Line Argument
Code:

 #!/usr/bin/perl
 # file: echo.pl
 use strict;
 use warnings;
 $argument = shift;
 print "The first argument was $argument.\n";

Output:

(~) 50% chmod +x echo.plchmod +x echo.pl
(~) 51% echo.pl tunaecho.pl tuna
The first argument was tuna.
(~) 52% echo.pl tuna fishecho.pl tuna fish

The first argument was tuna.
(~) 53% echo.pl 'tuna fish'echo.pl 'tuna fish'
The first argument was tuna fish.
(~) 53% echo.plecho.pl
The first argument was.

Computing the Hypotenuse of a Right Triangle
Code:

 #!/usr/bin/perl
 # file: hypotense.pl
 use strict;
 use warnings;
 $x = shift;
 $y = shift;
 $x>0 and $y>0 or die "Must provide two positive numbers";

 print "Hypotenuse=",sqrt($x**2+$y**2),"\n";

Output:

(~) 82% hypotenuse.pl
Must provide two positive numbers at hypotenuse.pl line 6.
(~) 83% hypotenuse.pl 1
Must provide two positive numbers at hypotenuse.pl line 6.
(~) 84% hypotenuse.pl 3 4
Hypotenuse=5
(~) 85% hypotenuse.pl 20 18
Hypotenuse=26.9072480941474
(~) 86% hypotenuse.pl -20 18
Must provide two positive numbers at hypotenuse.pl line 6.

Perl II
Operators, truth, control structures, functions, and

processing the command line

Dave Messina

1Monday, October 17, 2011

say

print "x is $x\n";

say "x is $x";

Most of the time when you print, you
will end the print statement with a
newline (\n). say is shorthand for
that.

These statements are equivalent:

2Monday, October 17, 2011

say

use strict;
use warnings;
use 5.10.0;

say "x is $x";

But for say to work, you have to have the
line
 use 5.10.0;

in your script. There are other things we will
teach you that need use 5.10.0;, too,

3Monday, October 17, 2011

Math

1 + 2 = 3 # kindergarten

x = 1 + 2 # algebra

my $x = 1 + 2; # Perl

What are the differences between the
algebra version and the Perl version?

4Monday, October 17, 2011

Math

my $x = 5;

my $y = 2;

my $z = $x + $y;

5Monday, October 17, 2011

Math

my $sum = $x + $y;

my $difference = $x - $y;

my $product = $x * $y;

my $quotient = $x / $y;

my $remainder = $x % $y;

6Monday, October 17, 2011

Math

my $x = 5;

my $y = 2;

my $sum = $x + $y;

my $product = $x - $y;

Variable names are arbitrary. Pick good ones!

7Monday, October 17, 2011

What are these called?

my $sum = $x + $y;

my $difference = $x - $y;

my $product = $x * $y;

my $quotient = $x / $y;

my $remainder = $x % $y;

8Monday, October 17, 2011

Numeric operators

Operator Meaning
+ add 2 numbers

- subtract left number from right number

* multiply 2 numbers

/ divide left number from right number

% divide left from right and take remainder

** take left number to the power
of the right number

9Monday, October 17, 2011

Numeric comparison operators

Operator Meaning
< Is left number smaller than right number?

> Is left number bigger than right number?

<= Is left number smaller or equal to right?

>= Is left number bigger or equal to right?

== Is left number equal to right number?

!= Is left number not equal to right number?

Why == ?

10Monday, October 17, 2011

Comparison operators are
yes or no questions

or, put another way, true or false questions

True or false:
> Is left number smaller than right number?

2 > 1 # true

1 > 3 # false

11Monday, October 17, 2011

Comparison operators are
true or false questions

 5 > 3

-1 <= 4

 5 == 5

 7 != 4

12Monday, October 17, 2011

What is truth?

0 the number 0 is false

"0" the string 0 is false

"" and '' an empty string is false

my $x; an undefined variable is false

everything else is true

13Monday, October 17, 2011

Examples of truth

my $a; # FALSE (not yet defined)
$x = 1; # TRUE
$x = 0; # FALSE
$x = ""; # FALSE
$x = 'true'; # TRUE
$x = 'false'; # TRUE (watch out! "false" is a nonempty string)
$x = ' '; # TRUE (a single space is non-empty)
$x = "\n"; # TRUE (a single newline is non-empty)
$x = 0.0; # FALSE (converts to string "0")
$x = '0.0'; # TRUE (watch out! The string "0.0" is not the
 # same as "0")

14Monday, October 17, 2011

Sidebar: = vs ==

my $x; # x is undefined

my $x = 1; # x is now defined

if ($x == 1) # is $x equal to 1?

if ($x = 1) # (wrong)

1 equals sign to make the left side equal the right side.
2 equals signs to test if the left side is equal to the right.

use warnings will catch this error.
15Monday, October 17, 2011

Logical operators

Use and and or to combine comparisons.

Operator Meaning

and TRUE if left side is TRUE and right side is TRUE

or TRUE if left side is TRUE or right side is TRUE

16Monday, October 17, 2011

Logical operator examples

if ($i < 100 and $i > 0) {
 say "$i is the right size";
}
else {
 say "out of bounds error!";
}

if ($age < 10 or $age > 65) {
 say "Your movie ticket is half price!";
}

Let’s test some more

17Monday, October 17, 2011

Logical operators

Use not to reverse the truth.

$ok = ($i < 100 and $i > 0);
print "a is too small\n" if not $ok;

same as this:
print "a is too small\n" unless $ok;

18Monday, October 17, 2011

defined and undef

defined lets you test whether a variable is defined.

undef lets you empty a variable, making it undefined.

if (defined $x) {

 say "$x is defined";

}

undef $x;

say $x if defined $x;

19Monday, October 17, 2011

if not

if (defined $x) {

 say "$x is defined";

}

Testing for defined-ness:

What if you wanted to test for undefined-ness?

if (not defined $x) {

 say "x is undefined";

}

20Monday, October 17, 2011

if not

unless (defined $x) {

 say "$x is undefined";

}

or you could use unless:

21Monday, October 17, 2011

Sidebar: operator precedence

Some operators have higher
precedence than others.

my $result = 3 + 2 * 5;

force addition before multiplication
my $result = (3 + 2) * 5 = 25;

The universal precedence rule is this:
multiplication comes before addition,
use parentheses for everything else.

22Monday, October 17, 2011

String operators

Operator Meaning

eq Is the left string same as the right string?

ne Is the left string not the same as the right string?

lt Is the left string alphabetically before the right?

gt Is the left string alphabetically after the right?

. add the right string to the end of the left string

23Monday, October 17, 2011

String operator examples
my $his_first = 'Barry';

my $his_last = 'White';

my $her_first = 'Betty';

my $her_last = 'White';

my $his_full = $his_first . ' ' . $his_last;

if ($his_last eq $her_last) {

 print "Same\n";

}

if ($his_first lt $her_first) {

 print "$his_first before $her_first\n";

}

24Monday, October 17, 2011

Comparing numeric and
string operators

Numeric Meaning String

== equal to eq

!= not equal to ne

> greater than gt

< less than lt

+ addition/concatenation .

25Monday, October 17, 2011

Control structures

Control structures allow you to control if
and how a line of code is executed.

You can create alternative branches in which
different sets of statements are executed
depending on the circumstances.

You can create various types of repetitive
loops.

26Monday, October 17, 2011

Control structures

my $x = 1;
my $y = 2;
my $z = $x + $y;
print "$x + $y = $z\n";

So far you’ve seen a basic program,
where every line is executed, in
order, and only once.

27Monday, October 17, 2011

Control structures

my $x = 1;
my $y = 2;
if ($x == $y) {
 print "$x and $y are equal\n";
}

Here, the print statement is only
executed some of the time.

28Monday, October 17, 2011

Components of a control structure

if ($x == $y) {

 print "$x and $y are equal\n";

}

3. squiggly brackets

2. a statement in parentheses

1. a keyword

The part enclosed by the squiggly brackets is called a block.
29Monday, October 17, 2011

Components of a control structure

if ($x == $y) {

 print "$x and $y are equal\n";

}

3. squiggly brackets

2. a statement in parentheses

1. a keyword

When you program, build the structure first and then fill in.

4. now add the print statement
30Monday, October 17, 2011

if
if ($x == $y) {

 print "$x and $y are equal\n";

}

If $x is the same as $y, then the print
statement will be executed.

If ($x == $y) is true, then the print
statement will be executed.

or said another way:

31Monday, October 17, 2011

if — a common mistake

if ($x = $y) {

 print "$x and $y are equal\n";

}

What happens if we write it this way?

32Monday, October 17, 2011

else

if ($x == $y) {

 print "$x and $y are equal\n";

}

else {

 print "$x and $y aren't equal\n";

}

If the if statement is false, then the first
print statement will be skipped and only the
second print statement will be executed.

33Monday, October 17, 2011

elsif

if ($x == $y) {

 print "$x and $y are equal\n";

}

elsif ($x > $y) {

 print "$x is bigger than $y\n";

}

elsif ($x < $y) {

 print "$x is smaller than $y\n";

}

Sometimes you want to test a series of
conditions.

34Monday, October 17, 2011

elsif

if (1 == 1) {

 print "$x and $y are equal\n";

}

elsif (2 > 0) {

 print "2 is positive\n";

}

elsif (2 < 10) {

 print "2 is smaller than 10\n";

}

What if more than one condition is true?

35Monday, October 17, 2011

given-when

my $x = 3;

given($x) {

 when ($x % 2 == 0) {

 say '$x is even';

 }

 when ($x < 10) {

 say '$x is less than 10';

 }

 default {

 die q(I don't know what to do with $x);

 }

}

is another way to test a series of conditions
(whose full power you'll learn later).

36Monday, October 17, 2011

unless

if ($x > 0) {

 print "$x is positive\n";

}

unless ($x < 0) {

 print "$x is positive\n";

}

If the statement($x < 0) is false, then the print
statement will be executed.

It's exactly the opposite of if (something) *
These statements are equivalent:

*except you can't unless..else or unless..elsif
37Monday, October 17, 2011

while

while ($x == $y) {

 print "$x and $y are equal\n";

}

As long as ($x == $y) is true, the
print statement will be executed over
and over again.

Why might you want to execute a block repeatedly?
38Monday, October 17, 2011

one line conditionals

print "x is less than y\n" if $x < $y;

print "x is less than y\n" unless $x >= $y;

However, you can execute only one statement
because there's no longer brackets to enclose
multiple lines. Only works for if and unless.

An alternative form that sometimes
reads better. The conditional comes at
the end and parentheses are optional.

39Monday, October 17, 2011

functions
Functions are like operators — they do
something with the data you give them. They
have a human-readable name, such as print
and take one or more arguments.

print "The rain in Spain falls mainly on the plain.\n";

40Monday, October 17, 2011

functions

The function is print. Its argument is a string.
The effect is to print the string to the
terminal.

print "The rain in Spain falls mainly on the plain.\n";

41Monday, October 17, 2011

functions

You can enclose the argument list in
parentheses, or leave the parentheses off.

Same thing, with parentheses.

print("The rain in Spain falls mainly on the plain.\n");

42Monday, October 17, 2011

function examples

This prints out "The rain in Spain falls 6 times in the plain."
print "The rain in Spain falls ", 2*4-2, " times in the plain.\n";

Same thing, but with parentheses.
print ("The rain in Spain falls ", 2*4-2, " times in the plain.\n");

You can pass multiple values
separated by commas to print,
and it will print each argument.

43Monday, October 17, 2011

functions

A function may return no value, a single
value, or multiple values.

print returns nothing.

print "The rain in Spain falls mainly on the plain.\n";

The length function calculates the length of a string
and returns the answer.

my $length = length "The rain in Spain falls mainly on the
plain.\n";

44Monday, October 17, 2011

processing the
command line

Often when you run a program, you
want to pass it some information. For
example, some numbers, or a filename.

These are called arguments.

$ add 1 2

$ parse_blast.pl mydata.blast

What are the command-line
arguments in these examples?

45Monday, October 17, 2011

processing the
command line

You can give arguments to Perl
programs you write, and you can see
those arguments inside your script
using the shift function.

#!/usr/bin/perl

my $arg1 = shift;
my $arg2 = shift;
say "my command-line arguments were $arg1 and $arg2";

46Monday, October 17, 2011

Perl III
File I/O, more on system calls

Dave Messina

1Tuesday, October 18, 2011

File I/O

I/O stands for input/output.

It's how get computer programs talk
to the rest of the world.

2Tuesday, October 18, 2011

Perl has magic

Perl has a magic way that makes it
super easy to get data from files and
into your program.

It looks like this: <>

3Tuesday, October 18, 2011

<>

<> will:

read filenames that are arguments on the
command line

open each file in turn

read each line from the file

4Tuesday, October 18, 2011

<>

#!/usr/bin/perl
how to read a file with <>
use warnings;
use strict;

while (my $line = <>) {
 chomp $line;
 print "Here's a line: ", $line, "\n";
}

5Tuesday, October 18, 2011

Sidebar: chomp

chomp removes the newline from the end of a
string (if there is a newline).

my $string = "hey there!\n";
print "my string is: ", $string, "\n";
chomp $string;
print "after chomp : ", $string, "\n";

When you read a file, the first thing you always
want to do is chomp.

6Tuesday, October 18, 2011

<>

% perl read_from_file.pl myfile.txt

Let's make a file and read from it.
We'll call it myfile.txt

And now we're giving the name myfile.txt as a
command-line argument to our Perl script.

7Tuesday, October 18, 2011

<> line count

my $line_count;
while (my $line = <>) {
 chomp $line;
 $line_count++;
}
say "There are $line_count lines";

Let's do something more interesting than
printing the line back out. Let's count how
many lines there are in the file.

8Tuesday, October 18, 2011

Sidebar: increment operators

Yesterday we learned several numeric operators.
Here are a couple more common ones:

my $x = 1;
$x++; # add 1 to $x

exactly the same as
$x = $x + 1;

++ the increment operator

9Tuesday, October 18, 2011

Sidebar: decrement operators

my $x = 1;
$x--; # subtract 1 from $x

exactly the same as
$x = $x - 1;

-- the decrement operator

10Tuesday, October 18, 2011

<> line count

my $line_count;
while (my $line = <>) {
 chomp $line;
 $line_count++;
}
say "There are $line_count lines";

With ++, we're counting each time we go
through the loop.

11Tuesday, October 18, 2011

<> multiple files

% perl read_from_file.pl myfile.txt another.txt

If there is more than one argument, each one is
opened and read completely, one after the
other.

So let's create another file and try it.

12Tuesday, October 18, 2011

<> mistakes

% perl read_from_file.pl 2 9

Remember how yesterday we had command-
line arguments that were numbers?

Does Perl know that the arguments are files?

Let's try it and see what happens.

13Tuesday, October 18, 2011

the input loop

my $line_count;
while (my $line = <>) {
 chomp $line;
 $line_count++;
}
say "There are $line_count lines";

Let's step back for a moment and think about
why <> works. What is while? What is it
testing?

14Tuesday, October 18, 2011

the input loop

while (my $line = <>) {

What exactly is going on on this line?

The <> is a function.
It returns a line of input.
We assign that line to a variable, $line.
While tests that assignment for truth:
"Can we assign a value to $line?"

15Tuesday, October 18, 2011

the input loop

If there is another line in the file, the answer is
"yes, we can, it's TRUE."

If we've hit the end of the file, there are no
more lines to read, and so the answer is "no",
or FALSE.

When the expression in parentheses is false, we
exit the loop.

16Tuesday, October 18, 2011

the input loop

my $line_count;
while (my $line = <>) {
 chomp $line;
 $line_count++;
}
say "There are $line_count lines";

Once we've exited the loop, the say statement
gets executed.

17Tuesday, October 18, 2011

the input loop

To summarize:

The while loop will read one line of text after
another. At the end of input, the <> operator
returns undef and the while loop terminates.

Remember that even blank lines in a file are
TRUE, because they consist of a single newline
character.

18Tuesday, October 18, 2011

STDOUT and STDERR

Every Perl script by default has two
places it knows where to write to:

STDOUT and STDERR

19Tuesday, October 18, 2011

STDOUT

Standard output, used to write data
out. Initially connected to the
terminal, but can be redirected to a
file or other program from the shell
using redirection or pipes.

STDOUT and STDERR

20Tuesday, October 18, 2011

STDERR

Standard error, used for diagnostic
messages. Initially connected to the
terminal.

STDOUT and STDERR

21Tuesday, October 18, 2011

say "Well, how did I get here?";
say STDOUT "Well, how did I get here?";

You've actually been usually STDOUT all along.
It's the default place where your program's
output goes.

STDOUT and STDERR

When you use say or print, you're actually
writing to STDOUT.

These are equivalent:

22Tuesday, October 18, 2011

say STDOUT "You may ask yourself:";
say STDERR "Well, how did I get here?";

But you can also specify other places to write to.

STDOUT and STDERR

Like STDERR:

23Tuesday, October 18, 2011

$ perl test.pl > output.txt
Well, how did I get here?

At first it looks exactly the same as STDOUT,
but if we use output redirection on the
command line, we can see that the output is
actually going to a different place:

STDOUT and STDERR

24Tuesday, October 18, 2011

open for reading

my $file = shift;

open(FILE, '<', $file) or die "can't open $file: $!\n";

<> is great, but often you want to read from a
specific file. You can do that using open.

25Tuesday, October 18, 2011

open
my $file = shift;

open(FILE, '<', $file) or die "can't open $file: $!\n";

Let's break this down into pieces:

my $file = shift;

reads the filename from the command line.

26Tuesday, October 18, 2011

open

open is a function, which is taking 3 arguments:

The first argument is a filehandle. Filehandles
are how you refer to a file within Perl.
STDOUT and STDERR are filehandles.

open(FILE, '<', $file)

27Tuesday, October 18, 2011

open

The second argument is a mode. The modes are
borrowed from redirection on the command
line.

< for reading from a file
> for writing to a file

open(FILE, '<', $file)

28Tuesday, October 18, 2011

open

The third argument is the name of a file to
open. It can either be a literal name:

open(FILE, '<', $file)

open(FILE, '<', 'myfile.txt')

or a variable containing a filename:

open(FILE, '<', $file)

Where can you go for more information on open?
29Tuesday, October 18, 2011

open or die

open or die is a Perl idiom. die is a function
that exits the program immediately and prints
the specified string to STDERR.

 or die "can't open $file: $!\n";

Why or? What is being tested for truth?

30Tuesday, October 18, 2011

open — $!

$! is a special Perl variable that contains error
messages from the system. If there was a
problem with opening your file, there will be an
error message in $!, and we can include it in
our error string.

 or die "can't open $file: $!\n";

Let's try it.

31Tuesday, October 18, 2011

open for writing

Open also can be used to open files for writing
by using '>' as the second argument to open.

Be careful! If you open an existing file for writing, you
will erase everything inside that file!

my $out = shift;

open(FILE, '>', $out) or die "can't open $out: $!\n";

Now specify that filehandle when you say or print:
say FILE "I'm writing to a file!";

32Tuesday, October 18, 2011

open

You can open more than one file in a script —
just give them different filehandles.

my $in = shift;

my $out = shift;

open(IN, '<', $in) or die "can't open $in: $!\n";

open(OUT, '>', $out) or die "can't open $out: $!\n";

33Tuesday, October 18, 2011

open

To read from a filehandle line by line, you put
the name of the filehandle inside <>, like this:

my $in = shift;

open(IN, '<', $in) or die "can't open $in: $!\n";

while (my $line = <IN>) {

 chomp $line;

 print "This line is from the file $in: $line\n";

}

34Tuesday, October 18, 2011

a quick word on system

We saw yesterday that there were two ways of
executing a command line from within Perl:

with system

system("sort $file");

or with backticks

`sort $file`;

35Tuesday, October 18, 2011

a quick word on system

With backticks, you can capture the output
from the command into a variable:

open(OUT, '>', 'sorted.txt') or die "error:$!";

my $sorted_output = `sort $file`;

print OUT "sorted output:\n", $sorted_output;

36Tuesday, October 18, 2011

Arrays
Sofia Robb

1

What is an Array?

• An array is a named list.

• What is a list?

• (‘cat’, ‘dog’, ‘narwhal’)

• A named list:

• @animals = (‘cat’, ‘dog’, ‘narwhal’);

2

Arrays

• Arrays are denoted with ‘@’ symbol

3

Arrays

• Each element of an array is a scalar variable

• number

• letter

• word

• sentence

• $scalar_variable

4

An array of colors.

my @colors = (‘red’, $favorite_color,
‘cornflower blue’, 5);

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

5

Accessing each element of an array by its index.

my @colors = (‘red’, $favorite_color,
‘cornflower blue’, 5);

my $first = $color[0];
my $second = $color[1];
my $third = $color[2];
my $last = $color[-1];

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

6

my $first = $color[0];
my $second = $color[1];
my $third = $color[2];
my $last = $color[-1];

Each element of the array is a scalar
variable therefore we use the ‘$’ when we

refer to an individual element.

7

A common MISTAKE is to try to access
an element in array context (meaning
using the ‘@’).

my @colors = (‘red’, $favorite_color,
‘cornflower blue’, 5);

This is wrong:
my $first = @color[0];

This is correct:
my $first = $color[0];

8

Changing values at a specific array index.

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

$color[1] = ‘black’;

The value at position $color[1] is changed from $favorite_color to
‘black’.

Original
Array

‘red’ ‘black’ ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

Edited
Array

9

Calculate length of an array with scalar

my @colors = (‘red’, $favorite_color,
‘cornflower blue’, 5);

my $length = scalar @colors;
print “$length\n”;
4

my $length = @colors;
print “$length\n”;
4

10

Quick print of an array

my @colors = (‘red’, $favorite_color,
‘cornflower blue’, 5);

print “@colors”;
red purple cornflower blue 5

When double quotes are used around “@array” in a
print statement, the array elements are printed with a

single space separating each element.

11

 Converting an array to a string using join()

my $new_string = join(string , @array);

my @colors = (‘red’, $favorite_color,
‘cornflower blue’, 5);

my $new_string = join (‘--’ , @colors);
print “$new_string\n”;
red--purple--cornflower blue--5

The join() function concatenates each element of
the array with the provided 1st argument ‘--’ into a

string.

12

Arrays are Dynamic

Arrays can grow and shrink

push

popshift

unshift

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

13

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

push

push (@array, list of values);

#add one element to the end
push (@colors, ‘black’);

print join (‘--’, @colors) , “\n”;
red--purple--cornflower blue--5--black

Add elements to the end with push();

14

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

push

push (@array, list of values);

#add two elements to the end
push (@colors, ‘black’ , ‘blue’);

print join(‘--’,@colors), “\n”;
red--purple--cornflower blue--black--blue

Add elements to the end with push();

15

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

push

push (@array, list of values);

#add an array of elements
my @more_colors =
(‘yellow’,‘pink’,‘white’,‘orange’);

push (@colors, @more_colors);

print join(‘--’,@colors) , “\n”;
red--purple--cornflower blue--5--yellow--pink--white--orange

Add elements to the end with push();

16

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

pop

my $last_element = pop @colors;

print “$last_element\n”;
5
print join (‘--’, @colors) , “\n”;
red--purple--cornflower blue

Remove an element from the end with pop();

17

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

shift

Remove an element from the beginning with shift();

my $first_element = shift(@colors);

print “$first_element\n”;
red

print join (‘--’, @colors) , “\n”;
purple--cornflower blue--5

18

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]unshift

Add elements to the beginning with unshift();

unshift (@array, list of values);

#add one element to the beginning
unshift (@colors, ‘black’);

print join (‘--’, @colors) , “\n”;
black--red--purple--cornflower blue--5

19

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]unshift

Add elements to the beginning with unshift();

unshift (@array, list of values);

#add one element to the beginning
unshift (@colors, ‘black’);

print join (‘--’, @colors) , “\n”;
black--red--purple--cornflower blue--5

20

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]unshift

Add elements to the beginning with unshift();

unshift (@array, list of values);

#add two elements to the beginning
unshift (@colors, ‘black’ , ‘blue’);

print join(‘--’,@colors), “\n”;
black--blue--red--purple--cornflower blue

21

‘red’ $favorite_color ‘cornflower
blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]unshift

Add elements to the beginning with unshift();

unshift (@array, list of values);

#add an array of elements to the beginning
my @more_colors =
(‘yellow’,‘pink’,‘white’,‘orange’);

unshift (@colors, @more_colors);

print join(‘--’,@colors) , “\n”;
yellow--pink--white--orange--red--purple--cornflower blue--5

22

Dynamic Arrays

Function Meaning

push(@array, a list of values) add value(s) to the end of the list

$popped_value = pop(@array) remove a value from the end of the list

$shifted_value = shift(@array) remove a value from the front of the list

unshift(@array, a list of values) add value(s) to the front of the list

splice(...) everything above and more!

23

Converting a string into an array

my @array = split(pattern , string);

my $string = “I do not like green eggs and ham”;
my @words = split(‘ ’,$string);

print join(‘--’,@words),“\n”;
I--do--not--like--green--eggs--and--ham

split() is splitting the string on ‘ ’ (a single white
space) into individual array elements.

24

Sorting the elements of an array

my @words = qw(I do not like green eggs and ham);

my @sorted_words = sort @words;

print join(@sorted_words),“\n”;
I--and--do--eggs--green--ham--like--not
##ascii sort order. 0-9 then A-Z then a-z

The array sorts in ascii order not ABC order.

25

Sorting using the cmp operator

my @words = qw(I do not like green eggs and ham);

##sort {$a cmp $b} is default sort behavior
my @sorted_words = sort {$a cmp $b} @words;

print join(@sorted_words),“\n”;
I--and--do--eggs--green--ham--like--not

26

The comparison operator and strings

$result is:

 -1 if the ascii value of the left side is less than the right side
 0 if the ascii value of the left side equals the right side
+1 if the ascii value of the left side is greater than the right side

my $x = 'sid';
my $y = 'nancy';
my $result = $x cmp $y;

27

Reverse sorting of arrays using the cmp operator

my @words = qw(I do not like green eggs and ham);

my @sorted_words = sort {$b cmp $a} @words;

print join(‘--’,@sorted_words),“\n”;
not--like--ham--green--eggs--do--and--I

28

The comparison operator for numbers

my $x = 2;
my $y = 3.14;
my $result = $x <=> $y;

$result is:

 -1 if the value of the left side is less than the right side
 0 if the value of the left side equals the right side
+1 if the value of the left side is greater than the right side

29

Numeric sorting of arrays using the <=> operator

my @numbers = (15,2,10,20,11,1);

default sorting is ascii
my @sorted_numbers = sort @numbers;
print “@sorted_numbers\n”;
1 10 11 15 2 20

@sorted_numbers = sort {$a <=> $b}@numbers;
print “@sorted_numbers\n”;
1 2 10 11 15 20

With the <=> the numbers of the array sort by numeric
value and not ascii value.

30

Using the map function with arrays

my @words = qw(I do not like green eggs and ham);

my @ABC_words = map { uc }@words;
print join('--',@ABC_words),"\n";
I--DO--NOT--LIKE--GREEN--EGGS--AND--HAM

my @sorted_words = sort (@ABC_words);
print join('--',@sorted_words),"\n";
AND--DO--EGGS--GREEN--HAM--I--LIKE--NOT

After converting to uppercase the array sorts in ABC
order.

31

Accessing Each Element of an Array

• Loops

• foreach

• for

• while

32

foreach loop

iterate thru @array
foreach my $one_element(@array){
##do something to each $one_element

}

33

Iterating through an array with a foreach loop

my @words = qw(I do not like green eggs and ham);

foreach my $word (@words){
print “$word\n”;

}
I
do
not
like
green
eggs
and
ham

34

Sorting an array using cmp and iterating through
each element

my @words = qw(I do not like green eggs and ham);

foreach my $word (sort {uc($a)cmp uc($b)}@words){
print “$word\n”;

}
and
do
eggs
green
ham
I
like
not

35

for (my $i=0; $i<5 ; $i++){
print “$i\n”;

}
0
1
2
3
4

for(initialization; test; increment){
 statements;
}

for loop iterations

36

for loop iterations

for (my $i=0; $i<5 ; $i++){
print “$i\n”;

}
0
1
2
3
4

$i $i<5 print “$i\n”; $i++

0 yes 0 1

1 yes 1 2

2 yes 2 3

3 yes 3 4

4 yes 4 5

5 no

37

while loop iterations

my $i = 0;
while ($i<5){

print “$i\n”;
 $i++;

}
0
1
2
3
4

while(condition){
 statements;
}

38

my $i = 0;
while ($i<5){

print “$i\n”;
 $i++;

}
0
1
2
3
4

$i $i<5 print “$i\n”; $i++

0 yes 0 1

1 yes 1 2

2 yes 2 3

3 yes 3 4

4 yes 4 5

5 no

while loop iterations

39

Loop Control: next

execution of next() will cause the loop to jump to the
next iteration.

my @words = qw(I do not like green eggs and ham);

foreach my $word (sort {uc($a) cmp uc($b)}@words){
next if $word eq ‘and’;
print “$word\n”;

}
do
eggs
green
ham
I
like
not

40

my @words = qw(I do not like green eggs and ham);

foreach my $word (sort {uc($a) cmp uc($b)}@words){
print “$word\n”;
last if $word eq ‘and’;

}
and

Loop Control: last

execution of last() will cause the loop to exit the loop.

41

my @seqs = qw(TTT CGG ATG TAA CCC ACC TGA);

my $count = 0;
foreach my $seq (@seqs){
if ($seq eq ‘TAA’ or $seq eq ‘TGA’ or $seq eq ‘TAG’){
print “*\n”;

}else {
$count++;

}
}
print “$count non-stop codons\n”;

Example use of a loop to count the occurrences of
a specific strings

42

print “@ARGV\n”;

print “\$ARGV[0]: $ARGV[0]\n”;
print “\$ARGV[1]: $ARGV[1]\n”;

my $arg1 = shift;
my $arg2 = shift;

print “arg1: $arg1\n”;
print “arg2: $arg2\n”;

print “\$ARGV[0]: $ARGV[0]\n”;
print “\$ARGV[1]: $ARGV[1]\n”;

@ARGV holds command line arguments
./sample_usr_input.pl 5 five

5 five
$ARGV[0]: 5
$ARGV[1]: five
arg1: 5
arg2: five $ARGV
[0]:
$ARGV[1]:

@ARGV contains the 2 command line
arguments 5 and five

The 2 command line arguments 5 and
five are shifted off sequentially

@ARGV now is empty

43

Hashes
Sofia Robb

1

Hashes

• Perl hashes are denoted with a ‘%’ symbol like this
%data

• Each key and each value contains a scalar value for
example this could be

• a number

• a letter

• a word

• a sentence

• a scalar variable like $scalar_variable

• a gene ID

• a sequence

2

What is a hash?

• A hash is an associative array
made up of key/value pairs.

• Like a dictionary

• And unlike an array a hash is
unordered.

Met‘ATG’

valuekey
Lys

Pro

‘AAA’

‘CCA’

3

A key is like a descriptive array index.

 The array index [0] is similar to the key
‘ATG’.

The key ‘ATG’ is used to access the
value ‘Met’, just as [0] is used to access
‘red’

But the key/value pairs are not stored in
order

‘red’
$favorite_

color
‘cornflower

blue’

$colors[0] $colors[1] $colors[2]

5

$colors[3]

An array

Met‘ATG’

Lys

Pro

‘AAA’

‘CCA’

A hash

4

my %genetic_code = (
 'ATG' => 'Met',
 'AAA' => 'Lys',
 'CCA' => 'Pro',
);

Met‘ATG’

valuekey

The hash %genetic_code is built with key/value pairs

Creating a hash

5

my %genetic_code = (
 'ATG' => 'Met',
 'AAA' => 'Lys',
 'CCA' => 'Pro',
);

my $aa = $genetic_code{'ATG'};
print “ATG translates to $aa\n”;
ATG translates to Met

Each value of the hash is a scalar therefore we use
the ‘$’ when we refer to an individual value.

Hash keys are surrounded by squiggly brackets {}

Accessing a hash value using a key

6

keys() returns an unordered list of the keys of a
hash

@array_of_keys = keys (%hash);

my %genetic_code = (
 'ATG' => 'Met',
 'AAA' => 'Lys',
 'CCA' => 'Pro',
);

my @codons = keys (%genetic_code);
print join(‘--’,@codons), “\n”;
CCA--AAA--ATG

7

Iterating through a hash by looping through an
list of hash keys.

foreach my $codon (keys %genetic_code){
 my $aa = $genetic_code{$codon};
 print “$codon translates to $aa\n”;
}
CCA translates to Pro
AAA translates to Lys
ATG translates to Met

my %genetic_code = (
 'ATG' => 'Met',
 'AAA' => 'Lys',
 'CCA' => 'Pro',
);

Remember: the key is used to access
the value

$value = $hash{$key}

8

Sorting and iterating through the keys of a hash

foreach my $codon (sort keys %genetic_code){
 my $aa = $genetic_code{$codon};
 print “$codon translates to $aa\n”;
}
AAA translates to Lys
ATG translates to Met
CCA translates to Pro

my %genetic_code = (
 'ATG' => 'Met',
 'AAA' => 'Lys',
 'CCA' => 'Pro',
);

Remember: hash keys are
unordered so we use sort to be
sure that the order is always the

same.

9

Iterating through a hash and sorting by the
values

foreach my $codon (sort {$genetic_code{$a} cmp $genetic_code{$b}}
keys %genetic_code){
 my $aa = $genetic_code{$codon};
 print “$codon translates to $aa\n”;
}
AAA translates to Lys
ATG translates to Met
CCA translates to Pro

my %genetic_code = (
 'ATG' => 'Met',
 'AAA' => 'Lys',
 'CCA' => 'Pro',
);

we can create a custom
sort function using {$a cmp

$b}

Remember: the key is used to access
the value

$value = $hash{$key}

10

values() returns an unordered list of values
@array_of_values = values(%hash);

my %genetic_code = (
 'ATG' => 'Met',
 'AAA' => 'Lys',
 'CCA' => 'Pro',
);

my @amino_acids = values(%genetic_code);
print join(‘--’,@amino_acids), “\n”;
Pro--Lys--Met

You can use sort values to be
sure that the order of the values is

always the same.

11

Adding additional key/value pairs

my %genetic_code = (
 'ATG' => 'Met',
 'AAA' => 'Lys',
 'CCA' => 'Pro',
);

$genetic_code{‘TGT’} = 'Cys';

foreach my $codon (keys %genetic_code){
 print “$codon -- $genetic_code{$codon}\n”;
}
CCA -- Pro
AAA -- Lys
ATG -- Met
TGT -- Cys

12

Deleting key/value pairs

my %genetic_code = (
 'ATG' => 'Met',
 'AAA' => 'Lys',
 'CCA' => 'Pro',
);

delete $genetic_code{‘AAA’};

foreach my $codon (keys %genetic_code){
 print “$codon -- $genetic_code{$codon}\n”;
}
CCA -- Pro
ATG -- Met

13

Use exists() to test if a key exists.

my %genetic_code = (
 'ATG' => 'Met',
 'AAA' => 'Lys',
 'CCA' => 'Pro',
);

my $codon = 'ATG';
if (exists $genetic_code{$codon}){
 print "$codon -- $genetic_code{$codon}\n";
}else{
 print "key: $codon does not exist\n";
}
ATG -- Met
##when $codon=‘TTT’, code prints “key: TTT does not exist”

key exists? return value

yes 1

no ‘’ empty string
is false

14

Using hashes for keeping count

my $seq = "ATGGGCGTATGCAATT";
my @nucs = split "", $seq;
print "@nucs\n";
#A T G G G C G T A T G C A A T T

my %nt_count;
foreach my $nt (@nucs){
 $nt_count{$nt}++;
}

foreach my $nt (keys %nt_count){
 my $count = $nt_count{$nt};
 print "$nt\t$count\n";
}

A 4
T 5
C 2
G 5

A lot happens here:
$hash{key}++;

If a key/value does not exist and perl
sees it in a script, it creates the key/
value pair and sets the value to undef.

If we add 1 to undef with ++, the
resulting value will be 1.

This is equivalent to perl code
$hash{$key} = undef;
$value = $hash{$key};
$hash{$key} = $value +1;
$hash{$key} is now 1

If a key exists and its value is a
number the value will be incremented
by 1.

15

my $file = shift;
open (INFILE, '<', $file)
or die "can't open file $file $!\n";

my %hash;
while (my $line = <INFILE>){
 chomp $line;
 my ($key, $value) = split /\t/, $line;
 $hash{$key} = $value;
}
foreach my $key (sort keys %hash){
 my $value = $hash{$key};
 print "key:$key value:$value\n";
}

Creating a hash from variable input like data from a file

16

Regular Expressions
Sofia Robb

1

What is a regular expression?

A regular expression is a string template against which
you can match a piece of text.

They are something like shell wildcard expressions, but
much more powerful.

2

 my $sites = 0;
 while (my $line = <>) {
 chomp $line;
 if ($line =~ /GAATTC/){
 print "Found an EcoRI site!\n";
 $sites++;
 }
 }
 print "$sites EcoRI sites total.\n"

Examples of Regular Expressions

This bit of code loops through @ARGV files or STDIN. Finds all lines containing an EcoRI
site, and bumps up a counter:

3

my $sites = 0;
 while (my $line = <>) {
 chomp $line;
 if ($line =~ /[GA]C.?G/) { # more conventional if block
 print "Found a methylation site!\n";
 $sites++;
 }
 }
 print "$sites methylation sites total.\n"

Examples of Regular Expressions

This does the same thing, but counts one type of methylation site (Pu-C-X-G) instead:

4

my $h = "Who's afraid of Virginia Woolf?";
print "I'm afraid!\n" if $h =~ /Woo?lf/;

Specifying the String to Search

To specify which string variable to search, use the =~ operator:

5

1.Ordinary characters: a-z, A-Z, 0-9 and some punctuation. These
match themselves.

2.The "." character, which matches everything except the newline.
3.A bracket list of characters, such as [AaGgCcTtNn], [A-F0-9], or
[^A-Z] (the last means anything BUT A-Z).

4.Certain predefined character sets: \d
The digits [0-9]
\w
A word character [A-Za-z_0-9]
\s
White space [\t\n\r]
\D
A non-digit
\W
A non-word
\S
Non-whitespace

5.Anchors: ^
Matches the beginning of the string
$
Matches the end of the string
\b
Matches a word boundary (between a \w and a \W)

Regular Expression Atoms
A regular expression is normally delimited by two slashes ("/"). Everything between
the slashes is a pattern to match. A pattern is composed of one or more atoms:

6

• /g..t/ matches "gaat", "goat", and "gotta get a goat" (twice)

• /g[gatc][gatc]t/ matches "gaat", "gttt", "gatt", and "gotta get
an agatt" (once)

• /\d\d\d-\d\d\d\d/ matches 376-8380, and 5128-8181, but not
055-98-2818.

• /^\d\d\d-\d\d\d\d/ matches 376-8380 and 376-83801, but not
5128-8181.

• /^\d\d\d-\d\d\d\d$/ only matches telephone numbers.

• /\bcat/ matches "cat", "catsup" and "more catsup please" but
not "scat".

• /\bcat\b/ only text containing the word "cat".

Regular Expression Atoms

Examples

7

? atom matches zero or exactly once
* atom matches zero or more times
+ atom matches one or more times
{3} atom matches exactly three times
{2,4} atom matches between two and four times, inclusive
{4,} atom matches at least four times

Quantifiers
By default, an atom matches once. This can be modified by following the atom with a quantifier:

Examples:

• /goa?t/ matches "goat" and "got". Also any text that contains
these words.

• /g.+t/ matches "goat", "goot", and "grant", among others.
• /g.*t/ matches "gt", "goat", "goot", and "grant", among
others.

• /^\d{3}-\d{4}$/ matches US telephone numbers (no extra text
allowed.

8

/wolf|sheep/; # matches "wolf" or "sheep"

/big bad (wolf|sheep)/; # matches "big bad wolf" or "big bad sheep"

You can combine parenthesis and quantifiers to quantify entire subpatterns:

/Who's afraid of the big (bad)?wolf\?/;

matches "Who's afraid of the big bad wolf?" and
"Who's afraid of the big wolf?"

This also shows how to literally match the special characters -- put a backslash (\) in front of them.
There's also an equivalent "not match" operator !~, which reverses the sense of the match:

$h = "Who's afraid of Virginia Woolf?";
print "I'm not afraid!\n" if $h !~ /Woo?lf/;

Alternatives and Grouping
A set of alternative patterns can be specified with the | symbol:

9

$pattern = '/usr/local';
print "matches" if $file =~ /^$pattern/;

Matching with a Variable Pattern

You can use a scalar variable for all or part of a regular expression. For example:

Look up o flag or important information about using variables inside patterns.

10

/Who's afraid of the big bad w(.+)f/

Subpatterns

You can extract and manipulate subpatterns in regular expressions.

To designate a subpattern, surround its part of the pattern with parenthesis (same as with
the grouping operator). This example has just one subpattern, (.+) :

11

Once a subpattern matches, you can refer to it later within the same regular expression. The
first subpattern becomes \1, the second \2, the third \3, and so on.

Matching Subpatterns

 while (my $line = <>) {
 chomp $line;
 print "I'm scared!\n" if $line =~ /Who's afraid of the big bad w(.)\1f/
 }

This loop will print "I'm scared!" for the following matching lines:

• Who's afraid of the big bad woof
• Who's afraid of the big bad weef
• Who's afraid of the big bad waaf

but not
• Who's afraid of the big bad wolf
• Who's afraid of the big bad wife

In a similar vein,

/\b(\w+)s love \1 food\b/

will match "dogs love dog food", but not "dogs love monkey food".

12

Using Subpatterns Outside the Regular Expression
Match

Outside the regular expression match statement, the matched subpatterns (if any) can be
found the variables $1, $2, $3, and so forth.

Example. Extract 50 base pairs upstream and 25 base pairs downstream of the TATTAT
consensus transcription start site:

 while (my $line = <>) {
 chomp $line;
 next unless $line =~ /(.{50})TATTAT(.{25})/;
 my $upstream = $1;
 my $downstream = $2;
 }

13

Extracting Subpatterns Using Arrays
If you assign a regular expression match to an array, it will return a list of all the subpatterns that
matched. Alternative implementation of previous example:

while (my $line = <>) {
 chomp $line;
 my ($upstream,$downstream) = $line =~ /(.{50})TATTAT(.{25})/;
 }

If the regular expression doesn't match at all, then it returns an empty list. Since an
empty list is FALSE, you can use it in a logical test:

 while (my $line = <>) {
 chomp $line;
 next unless my ($upstream,$downstream) = $line =~ /(.{50})TATTAT(.{25})/;
 print "upstream = $upstream\n";
 print "downstream = $downstream\n";
 }

14

Grouping without Making Subpatterns

Because parentheses are used both for grouping (a|ab|c) and for matching subpatterns, you may
match subpatterns that don't want to. To avoid this, group with (?:pattern):

/big bad (?:wolf|sheep)/;

matches "big bad wolf" or "big bad sheep",
but doesn't extract a subpattern.

15

Subpatterns and Greediness

Because of the greediness of the match, $subpattern will contain "fox ate my box"
rather than just "fox".

By default, regular expressions are "greedy". They try to match as much as they can. For example:

$h = 'The fox ate my box of doughnuts';
$h =~ /(f.+x)/;
$subpattern = $1;

$h = 'The fox ate my box of doughnuts';
$h =~ /(f.+?x)/;
$subpattern = $1;

Now $subpattern will contain "fox". This is called lazy matching.
Lazy matching works with any quantifier, such as +?, *?, ?? and {2,50}?.

To match the minimum number of times, put a ? after the qualifier, like this:

16

$h = "Who's afraid of the big bad wolf?";
$i = "He had a wife.";

$h =~ s/w.+f/goat/; # yields "Who's afraid of the big bad
goat?"
$i =~ s/w.+f/goat/; # yields "He had a goate."

If you extract pattern matches, you can use them in the replacement part of the
substitution:

$h = "Who's afraid of the big bad wolf?";

$h =~ s/(\w+) (\w+) wolf/$2 $1 wolf/;
yields "Who's afraid of the bad big wolf?"

String Substitution

String substitution allows you to replace a pattern or character range with another one using the
s/// and tr/// functions.

The s/// Function

s/// has two parts: the regular expression and the string to replace it with: s/expression/replacement/.

17

$animal = 'hyena';
$h =~ s/(\w+) (\w+) wolf/$2 $1 $animal/;
yields "Who's afraid of the bad big hyena?"

Using a Variable in the Substitution Part

Yes you can:

18

Translating Character Ranges
The tr/// function allows you to translate one set of characters into another. Specify the source
set in the first part of the function, and the destination set in the second part:

$h = "Who's afraid of the big bad wolf?";
$h =~ tr/ao/AO/; # yields "WhO's AfrAid Of the big bAd
wOlf?";

tr/// returns the number of characters transformed, which is sometimes handy for
counting the number of a particular character without actually changing the string.

19

Output:

(~) 50% count_Ns.pl
sequence_list.txt
Sequence 1 contains 0 Ns
Sequence 2 contains 3 Ns
Sequence 3 contains 1 Ns
Sequence 4 contains 0 Ns
...

This example counts N's in a series of DNA
sequences:

while (my $line = <>) {
 chomp $line; # assume one sequence per line
 my $count = $line =~ tr/Nn/Nn/;
 print "Sequence $line contains $count Ns\n";
 }

Code:

Input:

AGCTGGGAAAGT
AGCNGNNAAAGT
TAGCNGTTAAAT
GAATCAGCTGGG
...

20

i
Case insensitive match.

g
Global match.

Common Regular Expression Modifiers

Regular expression matches and substitutions have a whole set of options which you can use
by appending one or more modifiers to the end of the operation.

21

my $string = 'Big Bad WOLF!';
print "There's a wolf in the closet!" if $string =~ /wolf/i;
#case insensitive match

Case insensitive Matches

22

Code:

 my $sequence = 'GTTGCCTGAAATGGCGGAACCTTGAA';
 while ($sequence =~ /(.{3})/g) {
 print $1,"\n";
 }

Output:

GTT
GCC
TGA
AAT
GGC
GGA
ACC
TTG

Global Matches
Adding the g modifier to the pattern causes the match to be global. Called in a scalar
context (such as an if or while statement), it will match as many times as it can.

This will match all codons in a DNA sequence, printing them out on
separate lines:

The pos() function retrieves the position where the next
attempt begins

$position_of_next_attempt = pos($sequence)

23

@frame1 = $sequence =~ /(.{3})/g;
@frame2 = substr($sequence,1) =~ /(.{3})/g;
@frame3 = substr($sequence,2) =~ /(.{3})/g;

If you perform a global match in a list context (e.g. assign its
result to an array), then you get a list of all the subpatterns that

matched from left to right. This code fragment gets arrays of
codons in three reading frames:

24

o
Only compile variable patterns once.

m
Treat string as multiple lines. ^ and $ will match at start and end of internal lines, as well as at beginning and
end of whole string. Use \A and \Z to match beginning and end of whole string when this is turned on.

s
Treat string as a single line. "." will match any character at all, including newline.

x
Allow extra whitespace and comments in pattern.

Additional regular expression modifiers

25

10/20/11 

1 

Subrou+nes 

Ed Lee 

#!/usr/bin/perl

use strict;
use warnings;

my $seq1 = "ac ggTtAa";
my $seq2 = "tTcC aaA tgg";

clean up $seq1
1) make it all lower case
$seq1 = lc $seq1;
2) remove white space
$seq1 =~ s/\s//g;

clean up $seq2
1) make it all lower case
$seq2 = lc $seq2;
2) remove white space
$seq2 =~ s/\s//g;

print cleaned up sequences
print "seq1: $seq1\n";
print "seq2: $seq2\n";

10/20/11 

2 

Problems With This Code 

•  The same cleanup statements are run for 
$seq1 and $seq2 

•  Duplica+on of code (BAD!) 
•  Subrou+nes to the rescue 

Subrou+nes 

•  Blocks of code that you can call in different 
places 

•  Code resides in one place 
– Only need to write the code once 
– Easier to maintain 

•  Take arguments and return results 

•  Make code easier to read 

•  Like a mini‐program within your program 

10/20/11 

3 

Crea+ng a Subrou+ne 

1. Turn the code of interest into a block 

{
 # clean up $seq
 # 1) make it all lower case
 $seq = lc $seq;
 # 2) remove white space
 $seq =~ s/\s//g; 

}

Crea+ng a Subrou+ne 

2. Label the block with
 sub subroutine_name

sub cleanup_sequence {
 # clean up $seq
 # 1) make it all lower case
 $seq = lc $seq;
 # 2) remove white space
 $seq =~ s/\s//g; 

}

10/20/11 

4 

Crea+ng a Subrou+ne 

3. Add statements to read the subrou+ne 
argument(s) and return the subrou+ne 
result(s) 

sub cleanup_sequence {
 # get the sequence argument to the
 # subroutine – note that just like shift gets
 # an argument for your program, shift gets an
 # argument to your subroutine
 my $seq = shift;

 # clean up $seq
 # 1) make it all lower case
 $seq = lc $seq;
 # 2) remove white space
 $seq =~ s/\s//g;

 # return cleaned up sequence
 return $seq; 

}

10/20/11 

5 

Passing Arguments to a Subrou+ne 

•  Arguments are passed in @_ a special array 
created by Perl 
– Analogous to @ARGV for program arguments 

•  Can use shift to take one argument at a 
+me 
take the first argument
my $arg1 = shift;

take the second argument

my $arg2 = shift; 

Passing Arguments to a Subrou+ne 

•  Can copy the contents of @_ into a list of 
named variables 
my ($arg1, $arg2) = @_;

10/20/11 

6 

Returning Subrou+ne Results 

•  Use return operator to return results 
– Usually return at the end of the subrou+ne but 
can use it to exit the subrou+ne earlier 

– Return a single value 
 return $single_value; #scalar 
– Return a list 
 return ($variable, “string”, 3); #list
 return @array_of_values; #array

Returning Subrou+ne Results 

•  Return an empty list or undef depending on 
context 

 return; #empty list or undef 

10/20/11 

7 

Calling a Subrou+ne 

•  Calling our subrou+ne is just like calling an 
exis+ng built‐in Perl func+on 
my $result = my_sub($arg1, $arg2, $arg3, …);

Loca+on of Subrou+nes 

•  Usually at the boZom of the script 
– Allows to visually separate main program from the 
subrou+nes 

10/20/11 

8 

#!/usr/bin/perl

use strict;
use warnings;

my $seq1 = "ac ggTtAa";
my $seq2 = "tTcC aaA tgg";

call cleanup_sequence for each sequence
$seq1 = cleanup_sequence($seq1);
$seq2 = cleanup_sequence($seq2);

print cleaned up sequences
print "seq1: $seq1\n";
print "seq2: $seq2\n";

sub cleanup_sequence {
 # get the sequence argument
 my $seq = shift;
 # cleanup $seq
 # 1) make it all lower case
 $seq = lc $seq;
 # 2) remove white space
 $seq =~ s/\s//g;
 # return cleaned up sequence
 return $seq;

}

Scope 

10/20/11 

9 

#!/usr/bin/perl

use strict;
use warnings;

my $x = 100;
my $y = 20;

if ($x > $y) {
 my $z = 10;
 $x = 30;
 print "x (inside if block): $x\n";
 print "y (inside if block): $y\n";
 print "z (inside if block): $z\n";
}

print "x (outside if block): $x\n";
print "y (outside if block): $y\n";
print "z (outside if block): $z\n";

Global symbol "$z" requires explicit package 
name at ./scope.pl line 19. 
Execu+on of ./scope.pl aborted due to 
compila+on errors. 

Blocks 

•  That’s because $z was declared inside the if 
block, so it’s only accessible inside that block 

•  Any +me we see { }, we’re crea+ng a block 

•  Blocks are like boxes that have one way 
mirrors – you can see outside the box from 
inside, but not inside the box from the outside 

•  To fix that error, we need to declare $z outside 
the if block 

10/20/11 

10 

Blocks 

•  Variables declared inside of a block only exist 
inside the block – once the block is finished, 
they will be destroyed 

#!/usr/bin/perl

use strict;
use warnings;

my $x = 100;
my $y = 20;
my $z = 5;

if ($x > $y) {
 my $z = 10;
 $x = 30;
 print "x (inside if block): $x\n";
 print "y (inside if block): $y\n";
 print "z (inside if block): $z\n";
}

print "x (outside if block): $x\n";
print "y (outside if block): $y\n";
print "z (outside if block): $z\n";

Output: 
x (inside if block): 30 
y (inside if block): 20 
z (inside if block): 10 
x (outside if block): 30 
y (outside if block): 20 
z (outside if block): 5 

10/20/11 

11 

Scope 

•  Does the program give the expected behavior? 
•  By declaring “my $z = 10;” inside the if block, 
we’re crea+ng a new variable called $z only 
accessible within the block 

•  This new variable will not modify the outside 
variable! 

•  Note that we can create a new $z variable 
inside the block with no problems – if we do it 
outside, we’ll get a warning 

Scope 

•  If we remove “my” from that line, the 
modifica+on to $z will show outside the block 

10/20/11 

12 

#!/usr/bin/perl

use strict;
use warnings;

my $x = 100;
my $y = 20;
my $z = 5;

if ($x > $y) {
 $z = 10;
 $x = 30;
 print "x (inside if block): $x\n";
 print "y (inside if block): $y\n";
 print "z (inside if block): $z\n";
}

print "x (outside if block): $x\n";
print "y (outside if block): $y\n";
print "z (outside if block): $z\n";

Output: 
x (inside if block): 30 
y (inside if block): 20 
z (inside if block): 10 
x (outside if block): 30 
y (outside if block): 20 
z (outside if block): 10 

Using Modules
Programming for Biology 2011

1Thursday, October 20, 2011

Why use modules?

• Sometimes you may want to use the same
functions over and over again in different programs

• Bad way: Copy and paste

• Good way: Make a module

• There are also many many modules that other
people have written that you can use!

• To use modules they must be properly installed
and called with the “use” command

2Thursday, October 20, 2011

File::Basename
basename
• Input = long UNIX path name

•i.e. ʻ/bush_home/bush1/lstein/dna.faʼ
• Output = file name

•i.e. ʻdna.faʼ

•dirname
•Input = long UNIX path name

•i.e. ʻ/bush_home/bush1/lstein/dna.faʼ
•Output = directory

•ʻ/bush_home/bush1/lstein/ʼ

3Thursday, October 20, 2011

File::Basename

 #!/usr/bin/perl
 # file: basename.pl

 use strict;
 use File::Basename;

 my $path = '/bush_home/bush1/lstein/dna.fa';
 my $base = basename($path);
 my $dir = dirname($path);

 print "The base is $base and the directory is $dir.\n";

Undefined subroutine &main::basename called at basename.pl
line 8.

The base is dna.fa and the directory is /bush_home/bush1/
lstein.

Output:

Common
error:

4Thursday, October 20, 2011

Env

• This standard module imports a set of scalar variables that describe
your environment

•$HOME
•$PATH
•$USER

5Thursday, October 20, 2011

Env!

#!/usr/bin/perl
file env.pl

use strict;
use Env;

print "My home is $HOME\n";
print "My path is $PATH\n";
print "My username is $USER\n";

My home is /bush_home/bush1/lstein
My path is /bush_home/bush1/lstein/pfb2011
My username is lstein

Output:

6Thursday, October 20, 2011

Installed modules

• perldoc perlmodlib

• modules installed with basic perl
installation

• http://perldoc.perl.org/perlmodlib.html

• perldoc perllocal

• Tells you modules that are installed on
your machine

7Thursday, October 20, 2011

http://perldoc.perl.org/perlmodlib.html
http://perldoc.perl.org/perlmodlib.html

Installing modules manually
% tar zxvf bioperl-1.6.1.tar.gz

bioperl-1.6.1/
bioperl-1.6.1/Bio/
...

% perl Makefile.PL
Generated sub tests. go make show_tests to see available subtests
...
Writing Makefile for Bio

% make
cp Bio/Tools/Genscan.pm blib/lib/Bio/Tools/Genscan.pm
...
Manifying blib/man3/Bio::Location::CoordinatePolicyI.3
Manifying blib/man3/Bio::SeqFeature::Similarity.3

% make test
PERL_DL_NONLAZY=1 /net/bin/perl -Iblib/arch -Iblib/lib
 -I/net/lib/perl5/5.6.1/i686-linux -I/net/lib/perl5/5.6.1 -e 'use
 Test::Harness qw(&runtests $verbose); $verbose=0; runtests @ARGV;' t/*.t
t/AAChange..........ok
...
All tests successful, 95 subtests skipped.
Files=60, Tests=1011, 35 wallclock secs (25.47 cusr + 1.60 csys = 27.07 CPU)

% make install
Installing /net/lib/perl5/site_perl/5.6.1/bioback.pod
Installing /net/lib/perl5/site_perl/5.6.1/biostart.pod
...

8Thursday, October 20, 2011

Installing Modules Using the
CPAN Shell

Perl has a CPAN module installer built into it. You run it like this:

% cpan

cpan shell -- CPAN exploration and modules installation (v1.59_54)
ReadLine support enabled

cpan>
From this shell, there are commands for searching for modules, downloading them, and installing them.

[The first time you run the CPAN shell, it will ask you a lot of configuration questions. Generally, you can just hit return to accept the
defaults. The only trick comes when it asks you to select CPAN mirrors to download from. Choose any ones that are in your
general area on the Internet and it will work fine.]

To search for a module:

cpan> i /Wrap/
Going to read /bush_home/bush1/lstein/.cpan/sources/authors/01mailrc.txt.gz
CPAN: Compress::Zlib loaded ok
Going to read /bush_home/bush1/lstein/.cpan/sources/modules/02packages.details.txt.gz
 Database was generated on Tue, 16 Oct 2001 22:32:59 GMT
...

Module Text::Wrap (M/MU/MUIR/modules/Text-Tabs+Wrap-2001.0929.tar.gz)
...
41 items found

cpan> install Text::Wrap
Running install for module Text::Wrap

quit
quit 9Thursday, October 20, 2011

Where are module installed?
Module files end with the extension .pm. If the module name is a simple one, like Env, then Perl will look for a file named Env.pm. If the
module name is separated by :: sections, Perl will treat the :: characters like directories. So it will look for the module File::Basename in
the file File/Basename.pm

Perl searches for module files in a set of directories specified by the Perl library path. This is set when Perl is first installed. You can find
out what directories Perl will search for modules in by issuing perl -V from the command line:

 % perl -V
 Summary of my perl5 (revision 5.0 version 6 subversion 1) configuration:
 Platform:
 osname=linux, osvers=2.4.2-2smp, archname=i686-linux
 ...
 Compiled at Oct 11 2001 11:08:37
 @INC:
 /usr/lib/perl5/5.6.1/i686-linux
 /usr/lib/perl5/5.6.1
 ...
You can modify this path to search in other locations by placing the use lib command somewhere at the top of your script:

 #!/usr/bin/perl

 use lib '/home/lstein/lib';
 use MyModule;
 ...
This tells Perl to look in /home/lstein/lib for the module MyModule before it looks in the usual places. Now you can install module files in
this directory and Perl will find them.

Sometimes you really need to know where on your system a module is installed. Perldoc to the rescue again -- use the -l command-line
option:

% perldoc -l File::Basename
/System/Library/Perl/5.8.8/File/Basename.pm

10Thursday, October 20, 2011

Making modules
Programming for Biology 2011

11Thursday, October 20, 2011

What is a module?

continue

12Thursday, October 20, 2011

package MySequence;

#file: MySequence.pm

use strict;
our $EcoRI = 'ggatcc';

sub reverseq {

 my $sequence = shift;
 $sequence = reverse $sequence;

 $sequence =~tr/gatcGATC/ctagCTAG/;

 return $sequence;

}

sub seqlen {

 my $sequence = shift;
 $sequence =~ s/[^gatcnGATCN]//g;

 return length $sequence;

}

1;
A Perl module must end with a

true value.

A package (or namespace) is an abstract
container or environment created to hold a

logical grouping of unique symbols
(i.e.,subroutines).

Module

13Thursday, October 20, 2011

#!/usr/bin/perl

#file: sequence.pl

use strict;

use warnings;
use MySequence;

my $sequence ='gattccggatttccaaagggttcccaatttggg';

my $complement = MySequence::reverseq($sequence);

print "original = $sequence\n";

print "complement = $complement\n";

Must explicitly qualify each MySequence function by
using the notation

 MySequence::function_name

*

Script

14Thursday, October 20, 2011

package MySequence;
#file: MySequence.pm

use strict;
use base 'Exporter';

our @EXPORT = qw(reverseq seqlen);
our @EXPORT_OK = qw($EcoRI);
our $EcoRI = 'ggatcc';

sub reverseq {
 my $sequence = shift;
 $sequence = reverse $sequence;
 $sequence =~ tr/gatcGATC/ctagCTAG/;
 return $sequence;
}

sub seqlen {
 my $sequence = shift;
 $sequence =~ s/[^gatcnGATCN]//g;
 return length $sequence;
}

1; *

Module using Exporter

15Thursday, October 20, 2011

#!/usr/bin/perl

#file: sequence.pl

use strict;

use warnings;
use MySequence;

my $sequence ='gattccggatttccaaagggttcccaatttggg';

my $complement = reverseq($sequence);

print "original = $sequence\n";

print "complement = $complement\n";

*

Script using Exporter

16Thursday, October 20, 2011

use base 'Exporter' Tells Perl that this module is
a type of "Exporter" module

our @EXPORT = qw(reverseq seqlen) line tells
Perl to export the functions reverseq and seqlen
automatically.

Also, can export qw(afunc $scalar @array %hash);

our @EXPORT_OK = qw($EcoRI) tells Perl that it
is OK for the user to import the $EcoRI
variable, but not to export it automatically.

Exporter - Implements default import method
for modules

use base 'Exporter';

our @EXPORT = qw(reverseq seqlen);
our @EXPORT_OK = qw($EcoRI);

17Thursday, October 20, 2011

Command line operated programs traditionally take their
arguments from the command line, for example filenames.

Besides arguments, these programs often take command line
options as well. Options are not necessary for the program to
work, hence the name 'option', but are used to modify its
default behaviour.

Getopt::Long - Extended processing
of command line options

Example:

courses:~ srynearson$ grep -i ‘AGCG’ > capture.txt

courses:~ srynearson$ perl GVF_Parser.pl -data file.txt

18Thursday, October 20, 2011

*

Script using Getopt::long
#!/usr/bin/perl -w
use strict;
use lib '/Users/srbio/GVF_DB_Variant/lib';
use Utils;
use GVF_DB_Connect;
use IO::File;
use GVF::DB::Variant;
use Getopt::Long;

my $usage = "\n

DESCRIPTION:
	
 Parsing script which takes gvf file and stores metadata and
	
 	
 gvf line in data structures.
	
 Options allow you to added to specific/all table in GVF_Variant
	
 	
 database or none if just working with data structures.

USAGE:	
 	
 	
 ./Gvf_Parser.pl -option <GVF_file>

OPTIONS(required):
	
 	
 	
 Each option corresponds to a table in the database.

	
 	
 	
 -- all 	
 	
 Option will add all areas of GVF file to database.

	
 	
 	
 -- data	
	
 Will print out the data structures to view.

\n";

my ($all, $data);
my $input = $ARGV[1] || die $usage;

GetOptions(
	
 'all' => \$all,
	
 'data' => \$data,

) || die $usage;

19Thursday, October 20, 2011

References and
multidimensional data

Simon Prochnik, Dave Messina, Lincoln Stein, Steve Rozen
PfB 2011

1Friday, October 21, 2011

What good are references?

Sometimes you need a more complex data structure
than a list.

What if you want to keep together several related
pieces of information?

Gene Sequence Organism

HOXB2 ATCAGCAATATACAATTATAAAGGCCTAAATTTAAAA mouse
HDAC1 GAGCGGAGCCGCGGGCGGGAGGGCGGACGGAC human

2Friday, October 21, 2011

What is a reference?

Well first, what is a variable?

A variable is a labeled memory address that
holds a value. The location's label is the name
of the variable.

$x=1; really means 1

0x84048ec

SCALAR x:

hexadecimal
memory
location

3Friday, October 21, 2011

What is a list?

@y = (1, ‘a’, 23);

really means

1 ‘a’ 23

0x82056b4

ARRAY y:

4Friday, October 21, 2011

A variable is a labeled memory address.

When we read the contents of the variable, we
are reading the contents of the memory
address.

0x82056b4

ARRAY y: 1 ‘a’ 23

5Friday, October 21, 2011

So, what is a reference?

A reference is a variable that contains the
memory address of some data.

It does not contain the data itself. It contains
the memory address where some data is
stored.

6Friday, October 21, 2011

Making a reference to an array

We can create a reference to named variable
@y this way:

0x82056b4

y:

ref_to_y: 0x82056b4

1 ‘a’ 23

SCALAR

ARRAY

7Friday, October 21, 2011

Printing a reference

If we try to print out $ref_to_y, we see
the raw memory address:

print $ref_to_y,"\n";
ARRAY(0x82056b4)

ref_to_y: 0x82056b4SCALAR

8Friday, October 21, 2011

To see the contents of what $ref_to_y points to,
we have to dereference it:

print join ' ',@{$ref_to_y};
1 a 23

0x82056b4

y:

ref_to_y: 0x82056b4

1 ‘a’ 23

SCALAR

ARRAY

9Friday, October 21, 2011

You can create references to scalars, arrays and
hashes

dereference your references:
$count_copy = ${$scalar_ref};
@array_copy = @{$array_ref};
%hash_copy = %{$hash_ref};

create some references
$scalar_ref = \$count;
$array_ref = \@array;
$hash_ref = \%hash;

To dereference a reference, place the
appropriate symbol ($, @, %) in front of the
reference:

10Friday, October 21, 2011

A reference is a pointer to the data. It isn't a copy of
the data.

When you make a reference to a variable, you have
only created another way to get at the data.

There is still only one copy of the data.

@y = (1,'a',23);
$ref_to_y = \@y;
print join ' ',@{$ref_to_y};
1 a 23

push @{$ref_to_y},'new1','new2';

print join ' ',@y;
1 a 23 new1 new2

References are pointers

11Friday, October 21, 2011

@y = (1,'a',23);
@z = @y;
push @y,'new1','new2';

print join ' ',@y;
1 a 23 new1 new2

print join ' ',@z;
1 a 23

This is in contrast to doing a direct copy from
one variable to another, which creates a new
data structure in a new memory location.

12Friday, October 21, 2011

If you have a reference to an array or a
hash, you can access any element.

$value = $y[2];

$value = ${$ref_to_y}[2];

${$ref_to_y}[2] = 'new';
print join ' ',@y;
1 a new

directly access the 3rd
element in @y

dereference the
reference, then
access the 3rd
element in @y

change the value of the
3rd element in @y

13Friday, October 21, 2011

%z = (‘dog’ => 'animal',
 ‘potato’ => 'vegetable',
 ‘quartz’ => 'mineral',
 ‘tomato’ => 'vegetable');

$ref_to_z = \%z;

$value = $z{‘dog’};

$value = ${$ref_to_z}{‘dog’};

${$ref_to_z}{‘tomato’} = 'fruit';
print join ' ', values %z;
animal vegetable mineral fruit

directly access the value
associated with the key
‘dog’ in the hash %z

dereference the
reference, then get the
value associated with the
key ‘dog’ in the hash %z

change the value
associated with the key
‘tomato’ in the hash %z

14Friday, October 21, 2011

Anonymous Hashes and Arrays

You will not usually make references to existing
variables. Instead you will create anonymous hashes and
arrays. These have a memory location, but no symbol or
name, i.e. you can't write @my_data. The reference is

the only way to address them.

To create an anonymous array use the form:
$ref_to_arry = ['item1','item2'...]

To create an anonymous hash, use the form:
$ref_to_hash =

{key1=>'value1',key2=>'value2',...}

Remember
[] goes with arrays
$a[0] etc and
 { } goes with

hashes $hash
{$key} etc

15Friday, October 21, 2011

$y_gene_families = ['DAZ', 'TSPY', 'RBMY', 'CDY1',
'CDY2'];

$y_gene_family_counts = { 'DAZ' => 4,
 'TSPY' => 20,
 'RBMY' => 10,
 'CDY2' => 2 };

$third_item_of_arry = $y_gene_families->[2];
$daz_count = $y_gene_family_counts->{DAZ};

$y_gene_families gets (i.e. is assigned) a reference to an
array, and $y_gene_family_counts gets a reference to a

hash.

16Friday, October 21, 2011

Multidimensional Data: Making a Hash of Hashes

The beauty of anonymous arrays and hashes is that you can nest them:

my %y_gene_data = (‘DAZ’ => {‘family_size’ => 4,
 ‘description’ => 'deleted in azoospermia' },
 ‘TSPY’ => {‘family_size’ => 20,
 ‘description’ => 'testis specific protein Y-
linked' },
 ‘RBMY’ => {‘family_size’ => 10,
 ‘description’ => 'RNA-binding motif Y'},
 ‘CDY2’ => {‘family_size’ => 2,
 ‘description’ => 'chromodomain protein, Y-linked' }
);

what is the size of the RBMY family?
my $size = $y_gene_data{‘RBMY’}{‘family_size’};

what is the description of TSPY?
my $desc = $y_gene_data{‘TSPY’}{‘description’};

17Friday, October 21, 2011

Multidimensional Data: Making an Array of Arrays

my @spotarray = (
 [0.124, 43.2, 0.102, 80.4],
 [0.113, 60.7, 0.091, 22.6],
 [0.084, 112.2, 0.144, 35.3]
);
my $cell_1_0 = $spotarray[1][0];
print $cell_1_0;

0.113

18Friday, October 21, 2011

Examining References

Inside a Perl script, the ref function tells you what kind
of value a reference points to:

print ref($y_gene_data), "\n";
HASH

print ref($spotarray), "\n";
ARRAY

$x = 1;
print ref($x), "\n";
(empty string)

19Friday, October 21, 2011

Examining complex data structures in the debugger

Inside the Perl debugger, the "x" command will pretty-print the
contents of a complex reference:

DB<3> x $y_gene_data
0 HASH(0x8404bb0)
 'CDY2' => HASH(0x8404b80)
 'description' => 'chromodomain protein, Y-linked'
 'family_size' => 2
 'DAZ' => HASH(0x84047fc)
 'description' => 'deleted in azoospermia'
 'family_size' => 4
 'RBMY' => HASH(0x8404b50)
 'description' => 'RNA-binding motif Y'
 'family_size' => 10
 'TSPY' => HASH(0x8404b20)
 'description' => 'testis specific protein Y-linked'
 'family_size' => 20

20Friday, October 21, 2011

Scripting Example: Creating a Hash of Hashes

We are presented with a table of sequences in the following format:
the ID of the sequence, followed by a tab, followed by the sequence
itself.

2L52.1 atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattggaagtaag...
4R79.2 tcaaatacagcaccagctcctttttttatagttcgaattaatgtccaact...
AC3.1 atggctcaaactttactatcacgtcatttccgtggtgtcaactgttattt...
...

For each sequence calculate the length of the sequence and the count
for each nucleotide. Store the results into hash of hashes in which the
outer hash's key is the ID of the sequence, and the inner hashes' keys
are the names and counts of each nucleotide.

21Friday, October 21, 2011

#!/usr/bin/perl -w

use strict;

tabulate nucleotide counts, store into %sequences

my %seqs; # initialize hash
while (my $line = <>) {
 chomp $line;
 my ($id,$sequence) = split "\t",$line;
 my @nucleotides = split '', $sequence; # array of base pairs
 foreach my $n (@nucleotides) {
 $seqs{$id}{$n}++; # count nucleotides and keep tally
 }
}

print table of results
print join("\t",'id','a','c','g','t'),"\n";

foreach my $id (sort keys %seqs) {
 print join("\t",$id,
 $seqs{$id}{a},
 $seqs{$id}{c},
 $seqs{$id}{g},
 $seqs{$id}{t},
),"\n";
}

22Friday, October 21, 2011

The output will look something like this:

id a! c! g! t
2L52.1! 23! 4! 12 11
4R79.2! 15! 12 ! 5! 18
AC3.1! 11! 11! 8! 20
...

23Friday, October 21, 2011

Object Oriented Programming and Perl

Prog for Biol 2011
Simon Prochnik

1Friday, October 21, 2011

Why do we teach you about objects?

• Objects allow you to use other people’s code to do a lot in
just a few lines.

• For example, in the lecture on bioperl, you will see how to
search GenBank by a sequence Accession, parse the results
and reformat the sequence into any format you need in less
than a dozen lines of object-oriented perl. Cool!

• Someone else has already written and tested the code, so you
don’t have to.

• Most people don’t ever write an object of their own: only
create your own modules and objects if you have to

• check CPAN (www.cpan.org) to see if see if someone has
already done it for you. There were 18,534 modules on Oct
14th 2010, this has grown to 100,575 (Oct 20, 2011)! Surely
you can find a module to do what you want.

2Friday, October 21, 2011

What are objects? A programming paradigm

• An object is a special kind of data
structure that stores specific kinds of
data and provides special functions
that can do useful things with that
data

• Objects are often designed to work
with data and functions that you
would find associated with a real-
world object or thing, for example,
we might design gene sequence
objects.

• A gene sequence object might store
its chromosomal position and
sequence data and have functions like
transcribe() and new() to create a
new object.

sequence

GeneSequence object

Functions

new()
transcribe()
location()

Data

ATGAGAGTGGAT
AGAGATTAGCTC
GCTAC

Generates
transcript object

Generates
chromosomal

coordinate object
3Friday, October 21, 2011

Quick example with microarrays

#!/usr/bin/perl
#File: OO_script.pl
use strict;
use warnings;
use Microarray;
my $microarray = Microarray->new(gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
);
my $gene_name = $microarray->gene();
print “Gene for this microarray is $gene_name\n”;
my $tissue = $microarray->tissue();
print “The tissue is $tissue\n”;

Create a new
object and load data

Query the data
in the object

Print the
results

Tell perl you want to
use Microarray class

objects

4Friday, October 21, 2011

Another example with statistics

#!/usr/bin/perl
#File: mean_and_variance.pl
use strict;
use warnings;

use Statistics::Descriptive;

$stat = Statistics::Descriptive::Full->new();
$stat->add_data(1,2,3,4);
$mean = $stat->mean();
$var = $stat->variance();
print “mean is $mean\n”;
print “variance is $variance\n”;

Make new object
with new()

Add data

Calculate mean

Calculate variance

5Friday, October 21, 2011

Object Oriented Programming and Perl

• To understand object-oriented syntax in perl, we need to recap three things:
references, subroutines, packages.

• These three elements of perl are recycled with slightly different uses to provide
object-oriented programming

• The OOP paradigm provides i) a solid framework for sharing code -- reuse

• and ii) a guarantee or contract or specification for how the code will work and
how it can be used -- an interface

• and iii) hides the details of implementation so you only have to know how to use
the code, not how it works -- saves you time, quick to learn, harder to introduce
bugs

• Here we are briefly introducing you to OOP and objects so that you can quickly
add code that’s already written into your scripts, rather than spend hours re-
inventing wheels. Many more people use objects than write them.

6Friday, October 21, 2011

I: Recap references

example of syntax
$ref_to_hash = {key1=>'value1',key2=>'value2',...}
code example
my $microarray = {gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
 };

key value

gene CDC2

expression 45

tissue liver

$microarray anonymous hash

Here is the data structure in memory

We can store any
pieces of data we
would like to keep
together in a hash

scalar hash
reference

7Friday, October 21, 2011

II: recap subroutines

#!/usr/bin/perl -w
use strict;
my $seq;
while (my $seqline = <>) { # read sequence from standard in
 my $clean = cleanup_sequence($seqline); # clean it up
 $seq .= $clean; # add it to full sequence
}
sub cleanup_sequence {
 my ($sequence) = @_; # set $sequence to first argument
 $sequence = lc $sequence; # translate everything into lower case
 $sequence =~ s/[\s\d]//g; # remove whitespace and numbers
 $sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid
 characters!";
 return $sequence;
}

• solve a problem, write code once, and re-use the code

• reusing a single piece of code instead of copying, pasting and modifying
reduces the chance you’ll make an error and simplifies bug fixing.

8Friday, October 21, 2011

III: now let’s recap packages

#file: Sequence.pm
package Sequence;
use strict;
use base Exporter;
our @EXPORT = (‘cleanup_sequence’);
sub cleanup_sequence {
 my ($sequence) = @_; # set $sequence to first argument
 $sequence = lc $sequence; # translate everything into lower case
 $sequence =~ s/[\s\d]//g; # remove whitespace and numbers
 $sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid
characters!";
 return $sequence;
}
1;

#!/usr/bin/perl -w
#File: read_clean_sequence.pl
use strict;
use Sequence;
my $seq;
while (my $seqline = <>) { # read sequence from standard in
 my $clean = cleanup_sequence($seqline); # clean it up
 $seq .= $clean; # add it to full sequence
}

• organise code that goes together into reusable modules, packages

read_clean_sequence.pl

Sequence.pm

9Friday, October 21, 2011

Let’s recap subroutines: new example with references

#!/usr/bin/perl
use strict;
use warnings;
my $microarray = { gene => ‘CDC2,

 expression => 45,
 tissue => ‘liver’,

 };
...
my $gene_name = gene($microarray);
...
sub gene {

my ($ref) = @_;
return $ref->{gene};

}
sub tissue {

my ($ref) = @_;
return $ref->{tissue};

}

10Friday, October 21, 2011

recap packages

#!/usr/bin/perl
#File: script.pl
use strict; use warnings;
use Microarray;

my $microarray = {gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
}
my $gene_name = gene($microarray);
print “Gene for this microarray is
$gene\n”;

#File: Microarray.pm
package Microarray;
use strict;
use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my ($ref) = @_;
return $ref->{gene};

}
sub tissue {

my ($ref) = @_;
return $ref ->{tissue};

}
1;

script.pl

Microaray.pm

perl module file

main script
file

11Friday, October 21, 2011

Three Little Rules

• Rule 1: To create a class, build a package

• Rule 2: To create a method, write a subroutine

• Rule 3: To create an object, bless a reference

74 CHAPTER 3 GETTING STARTED

3.1.1 Rule 1: To create a class, build a package
Perl packages already have a number of classlike features:

• They collect related code together;
• They distinguish that code from unrelated code;
• They provide a separate namespace within the program, which keeps subroutine names

from clashing with those in other packages;
• They have a name, which can be used to identify data and subroutines defined in the

package.

In Perl, those features are sufficient to allow a package to act like a class.
Suppose we wanted to build an application to track faults in a system. Here’s how to de-

clare a class named Bug in Perl:
package Bug;

That’s it! Of course, such a class isn’t very interesting or useful, since it has no attributes
or behavior. And that brings us to the second rule…

3.1.2 Rule 2: To create a method, write a subroutine
Methods are just subroutines, associated with a particular class, that exist specifically to oper-
ate on objects that are instances of that class.

Happily, in Perl, a subroutine that is declared in a particular package is associated with
that package. So to write a Perl method, we just write a subroutine within the package acting
as our class.

For example, here’s how we provide an object method to print our Bug objects:

package Bug;

sub print_me

{

The code needed to print the Bug goes here

}

package Bug;

use strict;

sub new

{

 my ($class) = @_;

 my $objref = {};

 .

 .

 bless $objref, $class;

}

sub print_me

{

 my ($self) = @_;

 .

 .

}

Rule 1:
To create a class,
build a package .

Rule 3:
To create an object,
bless a referent.

Bug.pm

Rule 2
To create a method,
write a subroutine .

Figure 3.1 Three little rules

12Friday, October 21, 2011

Rule 1: To create a class, build a package

• all the code that goes with an object (methods, special
vaiables) goes inside a special package

• perl packages are just files whose names end with ‘.pm’ e.g.
Microarray.pm

• package filenames should start with a capital letter

• the name of the perl package tells us the class of the object. This is
really the type or kind of object we are dealing with.

• Micorarray.pm is a package, so it will be easy to
convert into object-oriented code

13Friday, October 21, 2011

Rule 2: To create a method, write a subroutine

• we already have gene() in Microarray.pm

• this can be turned into a method

• we need one extra subroutine to create new objects

• the creator method is called new() and has one piece of magic...

14Friday, October 21, 2011

Rule 3: To create an object, bless a reference

• The new() subroutine uses the bless function to create an object

• full details coming up... but here’s the skeleton of a new() method

sub new {
...
my $self = {};
bless $self, $class;
...

}

create a reference, a
hashref {} is the most
common seen in perl

bless a reference
into a class

15Friday, October 21, 2011

Let’s recap packages

#!/usr/bin/perl -w
#File: script.pl
use strict;
use Microarray;

my $microarray = { gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
 };
my $gene_name = gene($microarray);
print “Gene for this microarray is $gene\n”;

#File: Microarray.pm
package Microarray;
use strict;
use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my $ref = shift;
return $ref->{gene};

}
sub tissue {

my $ref = shift;
return $ref ->{tissue};

}
1;

16Friday, October 21, 2011

Transforming a package into an object-oriented module or class

#File: Microarray.pm
package Microarray;
use strict;
use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my ($ref) = @_;
return $ref->{gene};

}
sub tissue {

my ($ref) = @_;
return $ref ->{tissue};

}
1;

procedural perl package
(what you saw yesterday)

...transforming the package into a class...

#File: Microarray.pm
package Microarray;
use strict;

sub gene {
my $self = shift; # same as my ($self) = @_;
return $self->{gene};

}
sub tissue {

my $self = shift;
return $self ->{tissue};

}
1;

17Friday, October 21, 2011

sub new {
! my $class = shift;
! my %args = @_;!
! my $self = {};
! foreach my $key (keys %args) {!
! ! $self -> {$key} =
! ! ! ! $args{$key};!
! }
! # the magic happens here
! bless $self, $class;
! return $self;
}

The new() method is a subroutine that creates a
new object

the first argument is always the
class of the object you are
making. perl gives you this as
the first argument
automatically

a hash reference is the data
structure you build an object from
in perl

bless makes the object $self (which is
a hash reference) become a member
of the class $class

here we initialize variables in the
object (in case there are any)

18Friday, October 21, 2011

bless associates an object with its class

Make an anonymous hash in the debugger
$a = {};
p ref $a;
HASH

Make a MySequence object in the debugger

$self = {};
$class = ‘MySequence’;
bless $self , $class;

x $self
0 MySequence=HASH(0x18bd7cc)
 empty hash
p ref $a
MySequence

19Friday, October 21, 2011

final step

object-oriented module or class
#File: Microarray.pm
package Microarray;
use strict;

sub new {
my $class = shift;
my %args = @_;!
my $self = {};
foreach my $key (keys %args) {!

! $self -> {$key} = $args{$key};!
}
the magic happens here
bless $self, $class;
return $self;

}

sub gene {
my $self = shift;
return $self->{gene};

}
sub tissue {

my $self = shift;
return $self ->{tissue};

}
1;

20Friday, October 21, 2011

OOP script

#!/usr/bin/perl
use strict; use warnings;
#File: script.pl
my $microarray = { gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
 };
my $gene_name = gene($microarray);
print “Gene for this microarray is $gene\n”;

#!/usr/bin/perl
#File: OO_script.pl
use strict; use warnings;
use Microarray;
my $microarray = Microarray->new(gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
);
my $gene_name = $microarray->gene();
print “Gene for this microarray is $gene_name\n”;
my $tissue = $microarray->tissue();
print “The tissue is $tissue\n”;

procedural version

OO version

21Friday, October 21, 2011

Lastly, did I mention “code lazy”?

• This lecture has introduced you to object-oriented
programming

• You only need to use other people’s objects (beg, borrow,
buy, steal).

• Only create your own modules and objects if you have to.

22Friday, October 21, 2011

Aside on inheritance

• If you want to make an object that is a special case or subclass of another,
more general, object, you can have it inherit all the general data storage
and functions of the more general object.

• This saves coding time by re-using existing code. This also avoids copying
and pasting existing code into the new object, a process that makes code
harder to maintain and debug.

• For example, a MicroRNA_gene object is a special case of a Gene object
and might have some specific functions like cut_RNA_hairpin() as well as
general functions like transcribe() it can inherit from the general gene
object.

• More formally, a subclass inherits variables and functions from its
superclass (like a child and a parent). Here are some examples

package MicroRNA;
use base ‘Gene’; # Gene is a parent
use base ‘Exporter’; # Exporter is another parent

23Friday, October 21, 2011

Problems

1.Take a look at the Statistics::Descriptive module on cpan here http://search.cpan.org/
~shlomif/Statistics-Descriptive-3.0202/lib/Statistics/Descriptive.pm

2.Write a script that uses the methods in Statistics::Descriptive to calculate the
standard deviation, median, min and max of the following numbers

12,-13,-12,7,11,-4,-12,9,6,7,-9

Optional questions

4. Add a method to Microarray.pm called expression() which returns the expression
value

5. Curently calling $a = $m->gene() gets the value of gene in the object $m. Modify the
gene() method so that it can also set the value of gene if you call gene() with an
argument, e.g.
$m->gene(‘FOXP1’); # this should set the gene name to
‘FOXP1’
print $m->gene(); # this should print the value ‘FOXP1’

24Friday, October 21, 2011

Perl Pipelines

Using perl as bioinformatics glue

Simon Prochnik
with code from Scott Cain

1Sunday, October 23, 2011

perldoc -f <command> to get help

% perldoc -f split

 split /PATTERN/,EXPR,LIMIT
 split /PATTERN/,EXPR
 split /PATTERN/
 split Splits the string EXPR into a list of strings and returns that
 list. By default, empty leading fields are preserved, and
 empty trailing ones are deleted. (If all fields are empty,
 they are considered to be trailing.)

2Sunday, October 23, 2011

perldoc <perl topic> to get help

% perldoc perlref

PERLREF(1) User Contributed Perl Documentation PERLREF
(1)

NAME
 perlref - Perl references and nested data structures

NOTE
 This is complete documentation about all aspects of references. For a
 shorter, tutorial introduction to just the essential features, see
 perlreftut.

DESCRIPTION
 Before release 5 of Perl it was difficult to represent complex data
 structures, because all references had to be symbolic--and even then
it
 was difficult to refer to a variable instead of a symbol table entry.
 Perl now not only makes it easier to use symbolic references to
 variables, but also lets you have "hard" references to any piece of
 data or code. Any scalar may hold a hard reference. Because arrays
 and hashes contain scalars, you can now easily build arrays of arrays,
 arrays of hashes, hashes of arrays, arrays of hashes of functions, and
 so on.

3Sunday, October 23, 2011

Get online help from perldoc.perl.org

http://perldoc.perl.org/functions/split.html

4Sunday, October 23, 2011

Running your script in the perl debugger

> perl -d myScript.pl
Loading DB routines from perl5db.pl version 1.28
Editor support available.
Enter h or `h h' for help, or `man perldebug' for more help.
main::(myScript.pl:3):	print "hello world\n";
 DB<1>

h help
q quit
n or s next line or step through next line
<return> repeat last n or s
c 45 continue to line 45
b 45 break at line 45
b 45 $a == 0 break at line 45 if $a equals 0
p $a print the value of $a
x $a unpack or extract the data structure in $a

5Sunday, October 23, 2011

The interactive perl debugger

> perl -de 4
Loading DB routines from perl5db.pl version 1.28
Editor support available.

Enter h or `h h' for help, or `man perldebug' for more help.

main::(-e:1):	4
 DB<1> $a = {foo => [1,2] , boo => [2,3] , moo => [6,7]}
 DB<2> x $a
0 HASH(0x8cd314)
 'boo' => ARRAY(0x8c3298)
 0 2
 1 3
 'foo' => ARRAY(0x8d10d4)
 0 1
 1 2
 'moo' => ARRAY(0x815a88)
 0 6
 1 7

6Sunday, October 23, 2011

More perl tricks: one line perl

> perl -e <COMMAND>

> perl -e '@a = (1..4);print join("\t",@a),"\n"'
1 2	 3	 4

#print IDs from fasta file
> perl -ne 'if (/^>(\S+)/) {print "$1\n"}' volvox_AP2EREBP.fa
vca4886446_93762
vca4887371_120236
vca4887497_89954

• see Chapter 19, p. 492-502 Perl book 3rd ed.

7Sunday, October 23, 2011

Is a module installled?

% perl -e 'use Bio::AlignIO::clustalw'

The module in the next example hasn’t been installed
(it doesn’t actually exist)
% perl -e 'use Bio::AlignIO::myformat'
Can't locate Bio/AlignIO/myformat.pm in
@INC (@INC contains: /sw/lib/perl5 /sw/
lib/perl5/darwin /Users/simonp/lib /
Users/simonp/Library/Perl/5.8.1/darwin-
thread-multi-2level /Users/simonp/
Library/Perl/5.8.1 /Users/simonp/
com_lib /Users/simonp/cvs/bdgp/software/
perl-modules ...

To install a module
% sudo cpan
install Bio::AlignIO::clustalw

all ok: no errors

perl can’t find the module in any of
the paths in the PERL5LIB list (which
is in the perl variable @INC)
You can add directories with
use lib ‘/Users/yourname/lib’;
after the use strict; at the beginning
of your script

one-line perl program with ‘-e’

this is the program in quotes

8Sunday, October 23, 2011

Toy example: Finding out how to run a small task

• Let’s assume we have a multiple fasta file and we want to
use perl to run the program clustalw to make a multiple
sequence alignment and read in the results.

• Here are some sequences

>vca4886446_93762
MSPPPTHSTTESRMAPPSQSSTPSGDVDGS
>vca4887371_120236
MAGLHSVPKLSARRPDWELPELHGDLQLAP
>vca4887497_89954
MAYKLFGTAAVLNYDLPAERRAELDAMSME
>vca4888938_93984
MLHTDLQPPRCRTSGPRPDPLRMETRARER

9Sunday, October 23, 2011

Looking for help with Google

• Google

• <program name> documentation / docs / command line

• eg google ‘clustal command line’

USE OF OPTIONS

! All parameters of Clustalw can be used as options
with a "-" That permits to use Clustalw in a script or
in batch.

! $ clustalw -options

! CLUSTAL W (1.7) Multiple Sequence Alignments

! clustalw option list:-

! -help

 -options

 -infile=filename

 -outfile=filename

 -type=protein OR dna

 -output=gcg OR gde OR pir OR phylip

10Sunday, October 23, 2011

Build a command line from the options you need

USE OF OPTIONS

! All parameters of Clustalw can be used as options
with a "-" That permits to use Clustalw in a script or
in batch.

! $ clustalw -options

! CLUSTAL W (1.7) Multiple Sequence Alignments

! clustalw option list:-

! -help

 -options

 -infile=filename

 -outfile=filename

 -type=protein OR dna

 -output=gcg OR gde OR pir OR phylip

Command line would be:
% clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna

11Sunday, October 23, 2011

Running a command line from perl

Command line
clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna

Script
#!/usr/bin/perl
use strict; use warnings;

my $file = ‘ExDNA.fasta’;
my $clustFile = ‘ExDNA.aln’;
build command line
my $cmd = “clustalw -infile=$file -outfile=$clustFile -type=dna”;
print “Call to clustalw $cmd\n”; # show command
my $oops = system $cmd; # system call and save return
 # value in $oops
die “FAILED $!” if $oops; # $oops true if failed

12Sunday, October 23, 2011

Util.pm package

package Util;
use strict;
our @EXPORT = qw(do_or_die); # allow do_or_die() to be exported
! ! ! ! ! ! ! ! ! # without specifying
 !! ! ! ! ! ! ! ! # Util::do_or_die()
use Exporter;
use base 'Exporter';

--
sub do_or_die {
 my $cmd = shift;
 print "CMD: $cmd\n";
 my $oops = system $cmd;
 die "Failed" if $oops;
}
--

1;

13Sunday, October 23, 2011

Util.pm in a script

#!/usr/bin/perl
use strict; use warnings;
use lib ‘lib’; # you might need to tell perl where to find
Util.pm
 # or with something like this
 # use lib ‘/Users/simonp/lib’;
use Util;

my $file = ‘ExDNA.fasta’;
my $clustFile = ‘ExDNA.aln’;
my $cmd = “clustalw -infile=$file -outfile=$clustFile
 -type=dna”; # build command line
print “Call to clustalw $cmd\n”; # show command

do_or_die($cmd);! ! # I use this all the time

14Sunday, October 23, 2011

How do we find out how to parse the clustalw alignment file?

The output is a clustalw multiple sequence alignment in the
file ExDNA.aln
Look in bioperl documentation for help.
See HOWTOs
http://www.bioperl.org/wiki/HOWTOs

...

15Sunday, October 23, 2011

Help on AlignIO from bioperl

16Sunday, October 23, 2011

More help on AlignIO from bioperl

Here’s a more useful synopsis

Let’s add this to our script

17Sunday, October 23, 2011

Use bioperl to parse the clustalw alignment

Command line
clustalw -infile=ExDNA.fasta -outfile=ExDNA.aln -type=dna

Script
#!/usr/bin/perl
use strict; use warnings;
use Bio::AlignIO;
my $file = ‘ExDNA.fasta’;
my $clustFile = ‘ExDNA.aln’;
my $cmd = “clustalw -infile=$file -outfile=$clustFile
 -type=dna”; # build command line
print “Call to clustalw $cmd\n”; # show command
my $oops = system $cmd; # system call and save return
 # value in $oops
die “FAILED $!” if $oops; # $oops true if failed
my $in = Bio::AlignIO->new(-file => $clustFile,
 -format => 'clustalw');
while (my $aln = $in->next_aln()) {
 ...
 }

18Sunday, October 23, 2011

Wait, I haven’t told you what a clustalw file looks like

CLUSTAL W (1.74) multiple sequence alignment

 seq1 -----------------------KSKERYKDENGGNYFQLREDWWDANRETVWKAITCNA
 seq2 ---------------YEGLTTANGXKEYYQDKNGGNFFKLREDWWTANRETVWKAITCGA
 seq3 ----KRIYKKIFKEIHSGLSTKNGVKDRYQN-DGDNYFQLREDWWTANRSTVWKALTCSD
 seq4 ------------------------SQRHYKD-DGGNYFQLREDWWTANRHTVWEAITCSA
 seq5 --------------------NVAALKTRYEK-DGQNFYQLREDWWTANRATIWEAITCSA
 seq6 ------FSKNIX--QIEELQDEWLLEARYKD--TDNYYELREHWWTENRHTVWEALTCEA
 seq7 ---KELWEALTCSR

 seq1 --GGGKYFRNTCDG--GQNPTETQNNCRCIG----------ATVPTYFDYVPQYLRWSDE
 seq2 P-GDASYFHATCDSGDGRGGAQAPHKCRCDG---------ANVVPTYFDYVPQFLRWPEE
 seq3 KLSNASYFRATC--SDGQSGAQANNYCRCNGDKPDDDKP-NTDPPTYFDYVPQYLRWSEE
 seq4 DKGNA-YFRRTCNSADGKSQSQARNQCRC---KDENGKN-ADQVPTYFDYVPQYLRWSEE
 seq5 DKGNA-YFRATCNSADGKSQSQARNQCRC---KDENGXN-ADQVPTYFDYVPQYLRWSEE
 seq6 P-GNAQYFRNACS----EGKTATKGKCRCISGDP----------PTYFDYVPQYLRWSEE
 seq7 P-KGANYFVYKLD-----RPKFSSDRCGHNYNGDP---------LTNLDYVPQYLRWSDE

• That’s the point of bioperl

• You don’t need to know the details of the file format to be
able to work with it

• Here’s a sample file in case you are curious

19Sunday, October 23, 2011

bioperl-run can run clustalw and many other programs

• The Run package (bioperl-run) provides wrappers for executing some 60
common bioinformatics applications (bioperl-run in the repository system
Git, see link below)

• Bio::Tools::Run::Alignment::clustalw

• There are several pieces to bioperl these are all listed here

• http://www.bioperl.org/wiki/Using_Git

• bioperl-live Core modules including parsers and main objects

• bioperl-run Wrapper modules around key applications

• bioperl-ext Ext package has C extensions including alignment routines and link to
staden IO library for sequence trace reads.

• bioperl-pedigree

• bioperl-microarray

• bioperl-gui

• bioperl-db

20Sunday, October 23, 2011

Smart Essential coding practices

• use strict; use warnings. ALWAYS. Do it!

• Put all the hard stuff in subroutines.

• This makes the code easy to read and understand.

• It keeps the code on a single screen, which prevents bugs.

• Each subroutine should have similar design.

• If you want to re-use a subroutine several times, put it in a module
and re-use the module eg Util.pm

• don’t copy and paste code: bugs multiply, corrections get
complicated;

• #comments (ESC-; makes a comment in EMACS)

• what a subroutine expects and returns

• anything new to you or unusual

• Use tab indentation for loops, logic, subroutines

• it’s so much easier to spot bugs and follow the code

21Sunday, October 23, 2011

Coding strategy

• Use the simplest tool for the job: it will be faster to code

• Re-use and modify existing code as much as possible

• Turn to bigger/more complicated tools if and only if you need
them:

• is it going to take less time to wait for your code to finish than learning
about a complex tool?

• is it going to take more time to write a complex tool or search for it on the
web or ask your friends what they use?

• Write your code in small pieces and test each piece as you go.

• Check your input data

• weird characters, line returns (\r or \n ?), whitespace at the end of lines,
spaces instead of tabs. You can use

• % od -c mydatafile | more

• are there missing pieces, duplicated IDs?

• use a small piece of (real or fake) data to test your code

• Is the output exactly what you expect?

22Sunday, October 23, 2011

gene_pred_pipe.pl (by Scott Cain) part I

#!/usr/bin/perl -w

use strict;

use Bio::DB::GenBank;
use Bio::Tools::Run::RepeatMasker;
use Bio::Tools::Run::Genscan;
use Bio::Tools::GFF;

my $acc = $ARGV[0]; # read argument from command line

main functions in simple subroutines
my $seq_obj = acc_to_seq_obj($acc);
my $masked_seq = repeat_mask($seq_obj);
my @predictions = run_genscan($masked_seq);
predictions_to_gff(@predictions);
warn "Done!\n";
exit(0);
#--------------------------------------

23Sunday, October 23, 2011

gene_pred_pipe.pl (by Scott Cain) part II

sub acc_to_seq_obj {
 #takes a genbank accession, fetches the seq from
 #genbank and returns a Bio::Seq object
 #parent script has to `use Bio::DB::Genbank`
 my $acc = shift;
 my $db = new Bio::DB::GenBank;
 return $db->get_Seq_by_id($acc);
}
sub repeat_mask {
 #takes a Bio::Seq object and runs RepeatMasker locally.
 #Parent script must `use Bio::Tools::Run::RepeatMasker`
 my $seq = shift;
 #BTRRM->new() takes a hash for configuration parameters
 #You'll have to set those up appropriately
 my $factory = Bio::Tools::Run::RepeatMasker->new();
 return $factory->masked_seq($seq);
}

24Sunday, October 23, 2011

gene_pred_pipe.pl (by Scott Cain) part III

sub run_genscan {
 #takes a Bio::Seq object and runs Genscan locally and returns
 #a list of Bio::SeqFeatureI objects
 #Parent script must `use Bio::Tools::Run::Genscan`
 my $seq = shift;
 #BTRG->new() takes a hash for configuration parameters
 #You'll have to set those up appropriately
 my $factory = Bio::Tools::Run::Genscan->new();
 #produces a list of Bio::Tools::Prediction::Gene objects
 #which inherit from Bio::SeqFeature::Gene::Transcript
 #which is a Bio::SeqFeatureI with child features
 my @genes = $factory->run($seq);
 my @features;
 for my $gene (@genes) {
 push @features, $gene->features;
 }
 return @features;
}
sub predictions_to_gff {
 #takes a list of features and writes GFF2 to a file
 #parent script must `use Bio::Tools::GFF`
 my @features = @_;
 my $gff_out = Bio::Tools::GFF->new(-gff_version => 2,
 -file => '>prediction.gff');
 $gff_out->write_feature($_) for (@features);
 return;
}

25Sunday, October 23, 2011

Getting arguments from the command line with Getopt::Long and
GetOptions()

• complicated.pl -flag --pie -start 4

-expect 1e-50 -value=0.00423 -pet cat -pet dog

• order of arguments doesn’t matter

• deals with flags, integers, decimals, strings, lists

• an example:-

use Getopt::Long;

my ($flag, $count, $price, $string);

GetOptions(“flag” => \$flag,

 “count=i”,\$count, # integer

 “price=f”,\$price, # floating point 0.12,3e-49

 “name=s”,\$string, # always use trailing ‘,’

);

26Sunday, October 23, 2011

genbank_to_blast.pl (by Scott Cain) part I
#!/usr/bin/perl -w
use strict;
use lib "/home/scott/cvs_stuff/bioperl-live"; # this will change depending
! ! ! ! ! ! ! ! ! ! ! # on your machine
use Getopt::Long;
use Bio::DB::GenBank;
#use Bio::Tools::Run::RepeatMasker; # running repeat masked first is a good
! ! ! ! ! ! ! ! ! # idea, but takes a while
use Bio::Tools::Run::RemoteBlast;
use Bio::SearchIO;
use Bio::SearchIO::Writer::GbrowseGFF;
use Bio::SearchIO::Writer::HTMLResultWriter;
use Data::Dumper; # print out contents of objects etc
#take care of getting arguments
my $usage = "$0 [--html] [--gff] --accession <GB accession number>";
my ($HTML,$GFF,$ACC);
GetOptions ("html" => \$HTML,
 "gff" => \$GFF,
 "accession=s" => \$ACC);
unless ($ACC) {
 warn "$usage\n";
 exit(1);
}
#This will set GFF as the default if nothing is set but allowing both to be set
$GFF ||=1 unless $HTML;
#Now do real stuff ...

27Sunday, October 23, 2011

genbank_to_blast.pl (by Scott Cain) part II

Now do real stuff
nice and neat subroutine calls
easy to understand logic of code
my $seq_obj = acc_to_seq_obj($ACC);
my $masked_seq = repeat_mask($seq_obj);
my $blast_res = blast_seq($masked_seq);
gff_out($blast_res, $ACC) if $GFF;
html_out($blast_res, $ACC) if $HTML;
#--

28Sunday, October 23, 2011

genbank_to_blast.pl (by Scott Cain) part III

sub acc_to_seq_obj {
 print STDERR "Getting record from GenBank\n";
 my $acc = shift;
 my $db = new Bio::DB::GenBank;
 return $db->get_Seq_by_id($acc);
}
sub repeat_mask {
 my $seq = shift;
 return $seq; #short circuiting RM since we
 #don't have it installed, but this would be where
 # you would run it
my $factory = Bio::Tools::Run::RepeatMasker-
>new();
return $factory->masked_seq($seq);
}

29Sunday, October 23, 2011

genbank_to_blast.pl (by Scott Cain) part IV
sub blast_seq {
 my $seq = shift;
 my $prog = 'blastn';
 my $e_val = '1e-10';
 my $db = 'refseq_rna';
 my @params = (
 -prog => $prog,
 -expect => $e_val,
 -readmethod => 'SearchIO',
 -data => $db
);
 my $factory = Bio::Tools::Run::RemoteBlast->new(@params);
 $factory->submit_blast($seq);
 my $v = 1; # message flag
 print STDERR "waiting for BLAST..." if ($v > 0);
 while (my @rids = $factory->each_rid) {
 foreach my $rid (@rids) {
 my $rc = $factory->retrieve_blast($rid);
 if(!ref($rc)) { #waiting...
 if($rc < 0) {
 $factory->remove_rid($rid);
 }
 print STDERR "." if ($v > 0);
 sleep 25;
 }
 else {
 print STDERR "\n";
 return $rc->next_result();
 }
 }
 }
}

30Sunday, October 23, 2011

genbank_to_blast.pl (by Scott Cain) part V

sub gff_out {
 my ($result, $acc) = @_;
 my $gff_out = Bio::SearchIO->new(
 -output_format => 'GbrowseGFF',
 -output_signif => 1,
 -file => ">$acc.gff",
 -reference => 'query',
 -hsp_tag => 'match_part',
);
 $gff_out->write_result($result);
}
sub html_out {
 my ($result, $acc) = @_;
 my $writer = Bio::SearchIO::Writer::HTMLResultWriter->new();
 my $html_out = Bio::SearchIO->new(
 -writer => $writer,
 -format => 'blast',
 -file => ">$acc.html"
);
 $html_out->write_result($result);
}

31Sunday, October 23, 2011

32Sunday, October 23, 2011

33Sunday, October 23, 2011

How to approach perl pipelines

• use strict and warnings

• use (bio)perl as glue

• http://www.bioperl.org/wiki/Main_Page

• google.com

• test small pieces as you write them (debugger: perl -d)

• construct a command line and test it (catch failure ...or die...)

• convert into system call, check it worked with small sample dataset

• extend to more complex code only as needed

• if you use code more than once, put it into a subroutine in a module
e.g. Util.pm

• get command line arguments with GetOptions()

34Sunday, October 23, 2011

Bioperl I
Sofia Robb

What is Bioperl?

 Collection of tools to help you get your work done

 Open source, contributed by users

 Used by GMOD, wormbase, flybase, me, you

 http://www.bioperl.org

Why use BioPerl?

 Code is already written.
 Manipulate sequences.
 Run programs (e.g., blast, clustalw and phylip).
 Parsing program output (e.g., blast and alignments).
 And much, much more. (http://www.bioperl.org/wiki/Bptutorial.pl)

Learning about bioperl

Manipulation of sequences from a file

Query a local fasta file

Creating a sequence record

File format conversions

Retrieving annotations

Parsing Blast output

Manipulating Multiple Alignments

Other Cool Things

Learning about Bioperl:

Navigating Bioperl website
Deobfuscator
Bioperl docs

www.bioperl.org Main Page

Deobfuscator

doc.bioperl.org

Bio::SeqIO module synopsis
doc.bioperl.org

Bio::SeqIO module description
doc.bioperl.org

Bio::SeqIO method list
doc.bioperl.org

Bio::SeqIO new method description
doc.bioperl.org

Manipulation of sequences from a file

Problem:

You have a sequence file and you want to do
something to each sequence.

What do you do first?
 HowTo:
 http://www.bioperl.org/wiki/HOWTOs

#!/usr/bin/perl -w
#file: inFasta_loop.pl
use strict;
use Bio::SeqIO;

my $file = shift;

my $seqIO_object = Bio::SeqIO->new(
 -file => $file,
 -format => ‘fasta’,
);

while (my $seq_object = $seqIO_object->next_seq){
 #do stuff to each sequence in the fasta
}

What is a SeqIO object?
What is a Seq object?

Objects are like boxes that hold
your data and

tools (methods) for your data

Objects

 data:

methods:

new()
next_seq()

SeqIO Object
Bio::SeqIO Object

new()

SeqIO Object

methods:

new()
translate()
length()

 seq:

Bio::Seq Object

SeqIO Object

 data:

methods:

new()
next_seq()

next_seq()

Bio::SeqIO Object

#!/usr/bin/perl -w
#file: inFasta_loop.pl
use strict;
use Bio::SeqIO;

get fasta filename from user input
my $file = shift;

create a SeqIO obj with $file as filename
$SeqIO_object contains all the individual sequence
that are in file named $file
my $seqIO_object = Bio::SeqIO->new(
 -file => $file,
 -format => ‘fasta’,
);

using while loop and next_seq method to “get to”
and create a Seq obj for each individual sequence
in the SeqIO obj of many sequences
while (my $seq_object = $seqIO_object->next_seq){
 #do stuff to each sequence in the fasta
}

#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;

my $file = shift;
my $seqIO_object = Bio::SeqIO->new(
 -file => $file,
 -format => ‘fasta’,
);
my $out = Bio::SeqIO->new(-format => ‘fasta’);

while (my $seq_object = $seqIO_object->next_seq){
 my $id = $seq_object->id;
 my $desc = $seq_object->desc;
 my $seqString = $seq_object->seq;
 my $revComp = $seq_object->revcom;
 my $alphabet = $seq_object-> alphabet;
 my $translation_seq_obj = $seq_object-> translate;
 my $translation = $translation_seq_obj -> seq;
 my $seqLen = $seq_object->length;

 print “translation: $translation\n”;
 print “alphapet: $alphabet\n”;
 print “seqLen: $seqLen\n”;

 #prints to STDOUT
 $out->write_seq($seq_object);
}

1. Get a file name from user
input (@ARGV) and stores in
$file

2. Create a new seqIO object
in $seqIO_object, using
filename $file and format
‘fasta’

3. Create a second seqIO
object in $out using format
‘fasta’

4. Loop thru each seq object
in $seqIO_object storing
information from the object in
variables.

5. Print out the stored
information

6. Print out $seq_object using
the method or tool ‘write_
seq()’ and the seqIO object
$out.

#file: inFasta_doStuff_outFasta.pl

fasta input:

output:

Table from
http://www.bioperl.org/wiki/HOWTO:Beginners

List of seq object methods

Change ‘format’ in the
new() method from ‘fasta’
to ‘genbank’ to change the
way the SeqIO object $out
is displayed in STDOUT.

#file: inFasta_outGenBank.pl
#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;

my $file = shift;
my $seqIO_object = Bio::SeqIO->new(
 -file => $file,
 -format => ‘fasta’,
);

my $out = Bio::SeqIO->new(-format => ‘genbank’);

while (my $seq_object = $seqIO_object->next_seq){
 $out->write_seq($seq_object); #prints to STDOUT
}

Query a local fasta file

Query a local fasta file

You have a fasta file that contains many records.

You want to retrieve a specific record.

You do not want to loop through all records until you
find the correct record.

Use Bio::DB::Fasta.

Can also find these pages at http://doc.bioperl.org/bioperl-live/

Bio::DB::fasta module synopsis
doc.bioperl.org

Bio::DB::fasta module description
doc.bioperl.org

Bio::DB::fasta method description
doc.bioperl.org

Query a local
fasta file

output

#file:local_seq_query.pl
#!/usr/bin/perl -w
use strict;
use Bio::DB::Fasta;

my $dbfile = ‘uniprot_sprot.fasta’;
my $db = Bio::DB::Fasta->new($dbfile);

retrieve a sequence
my $id = ‘sp|Q13547|HDAC1_HUMAN’;
my $seq_obj = $db->get_Seq_by_id($id);

if ($seq_obj) {
 print “seq: “,$seq_obj->seq,”\n”;
} else {
 warn(“Cannot find $id\n”);
}

#!/usr/bin/perl -w
use strict;
use Bio::DB::Fasta;

my $dbfile = ‘uniprot_sprot.fasta’;
my $db = Bio::DB::Fasta->new($dbfile);

retrieve a sequence
my $id = ‘sp|Q13547|HDAC1_HUMAN’;
my $seq_obj = $db->get_Seq_by_id($id);

if ($seq_obj) {
 print “seq: “,$seq_obj->seq,”\n”;
} else {
 warn(“Cannot find $id\n”);
}

Creating a sequence record

Creating a sequence record

You have a sequence and want to create a Seq object
on the fly.

Use Bio::Seq.

#!/usr/bin/perl -w
use strict;
use Bio::Seq;
use Bio::SeqIO;

my $seqObj = Bio::Seq->new(-seq => ‘ATGAATGATGAA’,
 -display_id => ‘seq_example’,
 -description=> ‘this seq is awesome’);

my $out = Bio::SeqIO->new(-format => ‘fasta’);
$out->write_seq($seqObj);

print “Id: “,$seqObj->display_id, “\n”;
print “Length: “, $seqObj->length, “\n”;
print “Seq: “,$seqObj->seq,”\n”;
print “Subseq (3..6): “, $seqObj->subseq(3,6), “\n”;
print “Translation: “, $seqObj->translate->seq, “\n”;

Create a sequence record on the fly.

1. Create a new seq
object

2. Create and print
a new seqIO object
in fasta format using
$seqObj

3. Get features of
$seqObj by using
seqObj methods

Notice the coupling of methods.

#file:createSeqOnFly.pl

Output

>seq_example this seq is awesome
ATGAATGATGAA
Id: seq_example
Length: 12
Seq: ATGAATGATGAA
Subseq (3..6): GAAT
Translation: MNDE

File format conversions

File format conversions

You have GenBank files and want to extract only the
sequence in fasta format.

Use Bio::SeqIO.

http://www.bioperl.org/wiki/HOWTO:SeqIO

LOCUS MUSIGHBA1 408 bp mRNA linear ROD 27-APR-1993
DEFINITION Mouse Ig active H-chain V-region from MOPC21, subgroup VH-II,
 mRNA.
ACCESSION J00522
VERSION J00522.1 GI:195052
KEYWORDS constant region; immunoglobulin heavy chain; processed gene; variable re-
gion; variable region subgroup VH-II.
SOURCE Mus musculus (house mouse).
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
 Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 408)
 AUTHORS Bothwell,A.L., Paskind,M., Reth,M., Imanishi-Kari,T., Rajewsky,K.
 and Baltimore,D.
 TITLE Heavy chain variable region contribution to the NPb family of
 antibodies: somatic mutation evident in a gamma 2a variable region
 JOURNAL Cell 24 (3), 625-637 (1981)
 PUBMED 6788376
COMMENT Original source text: Mouse C57Bl/6 myeloma MOPC21, cDNA to mRNA,
 clone pAB-gamma-1-4. [1] studies the response in C57Bl/6 mice to
 NP proteins. It is called the b-NP response because this mouse
 strain carries the b-IgH haplotype. See other entries for b-NP
 response for more comments.
FEATURES Location/Qualifiers
 source 1..408
 /db_xref=”taxon:10090”
 /mol_type=”mRNA”
 /organism=”Mus musculus”
 CDS <1..>408
 /db_xref=”GI:195055”
 /codon_start=1
 /protein_id=”AAD15290.1”
 /translation=”RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT
 FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSL
 RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS”
 /note=”Ig H-chain V-region from MOPC21”
 sig_peptide <1..48
 mat_peptide 49..>408
 /product=”Ig H-chain V-region from MOPC21 mature peptide”
 misc_recomb 343..344
 /note=”V-region end/D-region start (+/- 1bp)”
 misc_recomb 356..357
 /note=”D-region end/J-region start”
BASE COUNT 95 a 98 c 111 g 104 t
ORIGIN 57 bp upstream of PvuII site, chromosome 12.
 1 aggctcaatt tagttttcct tgtccttatt ttaaaaggtg tccagtgtga tgtgcagctg
 61 gtggagtctg ggggaggctt agtgcagcct ggagggtccc ggaaactctc ctgtgcagcc
 121 tctggattca ctttcagtag ctttggaatg cactgggttc gtcaggctcc agagaagggg
 181 ctggagtggg tcgcatacat tagtagtggc agtagtaccc tccactatgc agacacagtg
 241 aagggccgat tcaccatctc aagagacaat cccaagaaca ccctgttcct gcaaatgacc
 301 agtctaaggt ctgaggacac ggccatgtat tactgtgcaa gatggggtaa ctacccttac
 361 tatgctatgg actactgggg tcaaggaacc tcagtcaccg tctcctca
//

GenBank Format

>MUSIGHBA1 Mouse Ig active H-chain V-region from MOPC21,
subgroup VH-II, mRNA.
AGGCTCAATTTAGTTTTCCTTGTCCTTATTTTAAAAGGTGTCCAGTGTGATGTGCAGCTG
GTGGAGTCTGGGGGAGGCTTAGTGCAGCCTGGAGGGTCCCGGAAACTCTCCTGTGCAGCC
TCTGGATTCACTTTCAGTAGCTTTGGAATGCACTGGGTTCGTCAGGCTCCAGAGAAGGGG
CTGGAGTGGGTCGCATACATTAGTAGTGGCAGTAGTACCCTCCACTATGCAGACACAGTG
AAGGGCCGATTCACCATCTCAAGAGACAATCCCAAGAACACCCTGTTCCTGCAAATGACC
AGTCTAAGGTCTGAGGACACGGCCATGTATTACTGTGCAAGATGGGGTAACTACCCTTAC
TATGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA

Fasta Format

=

Convert from GenBank to fasta.

#file:convert_genbank2fasta.pl#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;

my ($informat,$outformat) = (‘genbank’,’fasta’);
my ($infile,$outfile) = @ARGV;

my $in = Bio::SeqIO->new(
 -format => $informat,
 -file => $infile,
);
my $out = Bio::SeqIO->new(
 -format => $outformat,
 -file => “>$outfile”
);

while (my $seqObj = $in->next_seq) {
 $out->write_seq($seqObj);
}

Retrieving annotations

Retrieving annotations

You have GenBank files and want to retrieve
annotations.

Use Bio::SeqIO.

Sample GenBank file with Features/Annotations
LOCUS MUSIGHBA1 408 bp mRNA linear ROD 27-APR-1993
DEFINITION Mouse Ig active H-chain V-region from MOPC21, subgroup VH-II,
 mRNA.
ACCESSION J00522
VERSION J00522.1 GI:195052
KEYWORDS constant region; immunoglobulin heavy chain; processed gene; variable re-
gion; variable region subgroup VH-II.
SOURCE Mus musculus (house mouse).
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
 Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 408)
 AUTHORS Bothwell,A.L., Paskind,M., Reth,M., Imanishi-Kari,T., Rajewsky,K.
 and Baltimore,D.
 TITLE Heavy chain variable region contribution to the NPb family of
 antibodies: somatic mutation evident in a gamma 2a variable region
 JOURNAL Cell 24 (3), 625-637 (1981)
 PUBMED 6788376
COMMENT Original source text: Mouse C57Bl/6 myeloma MOPC21, cDNA to mRNA,
 clone pAB-gamma-1-4. [1] studies the response in C57Bl/6 mice to
 NP proteins. It is called the b-NP response because this mouse
 strain carries the b-IgH haplotype. See other entries for b-NP
 response for more comments.
FEATURES Location/Qualifiers
 source 1..408
 /db_xref=”taxon:10090”
 /mol_type=”mRNA”
 /organism=”Mus musculus”
 CDS <1..>408
 /db_xref=”GI:195055”
 /codon_start=1
 /protein_id=”AAD15290.1”
 /translation=”RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT
 FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSL
 RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS”
 /note=”Ig H-chain V-region from MOPC21”
 sig_peptide <1..48
 mat_peptide 49..>408
 /product=”Ig H-chain V-region from MOPC21 mature peptide”
 misc_recomb 343..344
 /note=”V-region end/D-region start (+/- 1bp)”
 misc_recomb 356..357
 /note=”D-region end/J-region start”
BASE COUNT 95 a 98 c 111 g 104 t
ORIGIN 57 bp upstream of PvuII site, chromosome 12.
 1 aggctcaatt tagttttcct tgtccttatt ttaaaaggtg tccagtgtga tgtgcagctg
 61 gtggagtctg ggggaggctt agtgcagcct ggagggtccc ggaaactctc ctgtgcagcc
 121 tctggattca ctttcagtag ctttggaatg cactgggttc gtcaggctcc agagaagggg
 181 ctggagtggg tcgcatacat tagtagtggc agtagtaccc tccactatgc agacacagtg
 241 aagggccgat tcaccatctc aagagacaat cccaagaaca ccctgttcct gcaaatgacc
 301 agtctaaggt ctgaggacac ggccatgtat tactgtgcaa gatggggtaa ctacccttac
 361 tatgctatgg actactgggg tcaaggaacc tcagtcaccg tctcctca
//

primary_tag tag=value

Get annotations from a GenBank file

MUSIGHBA1(1..408) source db_xref:taxon:10090
MUSIGHBA1(1..408) source mol_type:mRNA
MUSIGHBA1(1..408) source organism:Mus musculus
MUSIGHBA1(1..408) CDS codon_start:1
MUSIGHBA1(1..408) CDS db_xref:GI:195055
MUSIGHBA1(1..408) CDS note:Ig H-chain V-region from MOPC21
MUSIGHBA1(1..408) CDS protein_id:AAD15290.1
MUSIGHBA1(1..408) CDS translation:RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFTFSSF
GMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSLRSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS
MUSIGHBA1(49..408) mat_peptide product:Ig H-chain V-region from MOPC21 mature pep-
tide
MUSIGHBA1(343..344) misc_recomb note:V-region end/D-region start (+/- 1bp)
MUSIGHBA1(356..357) misc_recomb note:D-region end/J-region start

Output

#file: get_annot_from_genbank.pl

get_SeqFeature
produces an array of
Bio::SeqFeatureI objects

#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;

my $infile = shift;
my $seqIO = Bio::SeqIO->new(
 -file => $infile,
 -format => ‘genbank’,
);
while (my $seqObj = $seqIO -> next_seq){
 my $name = $seqObj -> id;
 foreach my $feature ($seqObj->get_SeqFeatures){
 my $primary_tag = $feature->primary_tag;
 my ($start, $end) = ($feature->start , $feature->end);
 my $range = $start . “..” . $end;
 foreach my $tag (sort $feature->get_all_tags) {
 my @values = $feature->get_tag_values($tag);
 my $value_str = join “,”, @values;
 print “$name($range)\t$primary_tag\t$tag:$value_str\n”;
 }
 }
}

Manipulating Multiple Alignments

Use Bio::AlignIO

for parsing and writing multiple alignment file formats
including:

fasta, phylip, nexus, clustalw, msf, mega,
meme, pfam, psi, selex, stockholm.

Convert from fasta_aln to nexus

next_aln produces a
Bio::SimpleAlign object

#file: multi_align_convert.pl

#!/usr/bin/perl -w
use strict;
use Bio::AlignIO;

my $align_fasta = shift;
my $in_alignIO_obj = Bio::AlignIO->new(
 -format => 'fasta',
 -file => $align_fasta
);
my $out_alignIO_obj = Bio::AlignIO->new(
 -format => 'nexus',
 -file => ">$align_fasta.nex"
);
while(my $align_obj = $in_alignIO_obj->next_aln){
 $out_alignIO_obj->write_aln($align_obj);
}

Bio::SimpleAlign Object

Remove some sequences and rewrite the result

Extract or remove columns

Calculate consensus string and percent identity

Parsing BLAST Output

Parsing BLAST reports

Use Bio::SearchIO

Where do you start?

BLASTX 2.2.12 [Aug-07-2005]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
“Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs”, Nucleic Acids Res. 25:3389-3402.

Query= smed-HDAC1-1
 (1213 letters)

Database: swissprot.aa
 427,028 sequences; 157,875,145 total letters

Searching..done

 Score E
Sequences producing significant alignments: (bits) Value

sp|P56517|HDAC1_CHICK RecName: Full=Histone deacetylase 1; Short... 535 e-151

>sp|P56517|HDAC1_CHICK RecName: Full=Histone deacetylase 1; Short=HD1
 Length = 480

 Score = 535 bits (1379), Expect = e-151
 Identities = 255/343 (74%), Positives = 292/343 (85%), Gaps = 1/343 (0%)
 Frame = +3

Query: 3 CPVFDGLFEFCQLSAGGSVASAVKLNKNKADIAINWSGGLHHAKKSEASGFCYVNDIVMG 182
 CPVFDGLFEFCQLSAGGSVASAVKLNK + DIA+NW+GGLHHAKKSEASGFCYVNDIV+
Sbjct: 100 CPVFDGLFEFCQLSAGGSVASAVKLNKQQTDIAVNWAGGLHHAKKSEASGFCYVNDIVLA 159

Query: 183 ILELLKYHERVLYVDIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFPXXXXXXXXXXXXX 362
 ILELLKYH+RVLY+DIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFP
Sbjct: 160 ILELLKYHQRVLYIDIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFPGTGDLRDIGAGKG 219

Query: 363 XNYAVNFPLRDGIDDESYESIFKPVVEKVIESFKPNAIVLQCGADSLSGDRLGCFNLSLK 542
 YAVN+PLRDGIDDESYE+IFKPV+ KV+E+F+P+A+VLQCG+DSLSGDRLGCFNL++K
Sbjct: 220 KYYAVNYPLRDGIDDESYEAIFKPVISKVMETFQPSAVVLQCGSDSLSGDRLGCFNLTIK 279

Query: 543 GHGKCVEYMRQQPIPLLMLGGGGYTIRNVARCWTYETALALGTTIPNELPYNDYYEYFTP 722
 GH KCVE+++ +P+LMLGGGGYTIRNVARCWTYETA+AL T IPNELPYNDY+EYF P
Sbjct: 280 GHAKCVEFVKSFNLPMLMLGGGGYTIRNVARCWTYETAVALDTEIPNELPYNDYFEYFGP 339

Query: 723 DFKLHISPSNMANQNTPEYLERMKQKLFENLRSIPHAPSVQMQDIPEDAMDIDDGEQMDN 902
 DFKLHISPSNM NQNT EYLE++KQ+LFENLR +PHAP VQMQ IPEDA+ D G++ +
Sbjct: 340 DFKLHISPSNMTNQNTNEYLEKIKQRLFENLRMLPHAPGVQMQPIPEDAVQEDSGDE-EE 398

Query: 903 ADPDKRISILASDKYREHEADLSDSEDEGD-NRKNVDCFKSKR 1028
 DP+KRISI SDK + + SDSEDEG+ RKNV FK +
Sbjct: 399 EDPEKRISIRNSDKRISCDEEFSDSEDEGEGGRKNVANFKKAK 441

 Database: /common/data/swissprot.aa
 Posted date: Oct 4, 2009 2:02 AM
 Number of letters in database: 157,875,145
 Number of sequences in database: 427,028

Lambda K H
 0.318 0.134 0.401

Gapped
Lambda K H
 0.267 0.0410 0.140

Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Hits to DB: 281,587,467
Number of Sequences: 427028
Number of extensions: 5577736
Number of successful extensions: 16223
Number of sequences better than 1.0e-10: 1
Number of HSP’s better than 0.0 without gapping: 15290
Number of HSP’s successfully gapped in prelim test: 0
Number of HSP’s that attempted gapping in prelim test: 0
Number of HSP’s gapped (non-prelim): 16078
length of database: 157,875,145
effective HSP length: 119
effective length of database: 107,058,813
effective search space used: 30404702892
frameshift window, decay const: 40, 0.1
T: 12
A: 40
X1: 16 (7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)

Result

Hit

HSP

Result

NCBI BLAST
Report

See

http://www.bioperl.org/wiki/HOWTO:SearchIO

for a GREAT example of a blast report,

code to parse it,

a table of methods,

and the values the methods return.

Bookmark it!!

Bio::SearchIO object for BLAST reports

#!/usr/bin/perl -w
use strict;
use Bio::SearchIO;
#file: blast_parser_intro.pl

my $blast_report = shift;

my $searchIO_obj = Bio::SearchIO->new(
 -file => $blast_report,
 -format => ‘blast’
);

Result object and methods

program=BLASTX queryName=smed-HDAC1-1 queryDesc=histone deacetylase 1 queryLen=1213

Output:

#file: sample_Blast_parser_1.pl
#!/usr/bin/perl -w
use strict;
use Bio::SearchIO;

my $blast_report = shift;

my $searchIO_obj = Bio::SearchIO->new(
 -file => $blast_report,
 -format => ‘blast’
);

while (my $result_obj = $searchIO_obj ->next_result) {
 my $program = $result_obj ->algorithm;
 my $queryName = $result_obj ->query_name;
 my $queryDesc = $result_obj ->query_description;
 my $queryLen = $result_obj ->query_length;
 print “program=$program\tqueryName=$queryName\t”;
 print “queryDesc=$queryDesc\tqueryLen=$queryLen\n”;
}

http://www.bioperl.org/wiki/HOWTO:SearchIO

hitName=sp|P56517|HDAC1_CHICK hitAcc=P56517 hitLen=480 hitSig=1e-151 hitScore=535
Output:

Hit object and methods
#file: sample_Blast_parser_2.pl

must get hit objects
from a result object

#!/usr/bin/perl -w
use strict;
use Bio::SearchIO;

my $blast_report = shift;

my $searchIO_obj = Bio::SearchIO->new(
 -file => $blast_report,
 -format => ‘blast’
);

while (my $result_obj = $searchIO_obj->next_result) {
 while (my $hit_obj = $result_obj->next_hit){
 my $hitName = $hit_obj->name;
 my $hitAcc = $hit_obj->accession;
 my $hitLen = $hit_obj->length;
 my $hitSig = $hit_obj->significance;
 my $hitScore = $hit_obj->raw_score;

 print “hitName=$hitName\thitAcc=$hitAcc\thitLen=$hitLen\t”;
 print “hitSig=$hitSig\thitScore=$hitScore\n”;
 }
}

http://www.bioperl.org/wiki/HOWTO:SearchIO

#!/usr/bin/perl -w
use strict;

use Bio::SearchIO;

my $blast_report = shift;

my $searchIO_obj = Bio::SearchIO->new(
 -file => $blast_report,
 -format => ‘blast’
);

while (my $result_obj = $searchIO_obj->next_result) {
 while (my $hit_obj = $result_obj->next_hit){
 while (my $hsp_obj = $hit_obj ->next_hsp){
 my $evalue = $hsp_obj->evalue;
 my $hitString = $hsp_obj->hit_string;
 my $queryString = $hsp_obj->query_string;
 my $homologyString = $hsp_obj->homology_string;

 print “hsp evalue: $evalue\n”;
 print “HIT : “,substr($hitString,0,50),”\n”;
 print “HOMOLOGY: “,substr($homologyString,0,50),”\n”;
 print “QUERY : “,substr($queryString,0,50),”\n”;
 }
 }
} hsp evalue: 1e-151

HIT : CPVFDGLFEFCQLSAGGSVASAVKLNKQQTDIAVNWAGGLHHAKKSEASG
HOMOLOGY: CPVFDGLFEFCQLSAGGSVASAVKLNK + DIA+NW+GGLHHAKKSEASG
QUERY : CPVFDGLFEFCQLSAGGSVASAVKLNKNKADIAINWSGGLHHAKKSEASG

Output:

HSP object and methods
#file: sample_Blast_parser.pl

must get hsp objects
from a hit object

http://www.bioperl.org/wiki/HOWTO:SearchIO

Other Cool Things

Whole set of wrappers for running Bioinformatics tools
in bioperl-run

Run BLAST locally or submit remote jobs (through NCBI)

Run PAML - handles setup and take down of temporary
files and directories

Run alignment progs through similar interfaces: TCoffee, MUSCLE,
Clustalw

Relational Databases for sequence and features

Repository of scripts to do really cool things. (http://www.bioperl.org/wiki/Scripts)

HTML
10.18.2010

HTML

• HyperText Markup Language

• Not a programming language

• Stored in text files (just like Perl)

A basic page

<html>

! <head>
! ! <title>My web page title</title>
! </head>

! <body>

 Your HTML content here

! </body>
</html>

A kosher page

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
! <title>An XHTML 1.0 Strict standard template</title>
</head>

<body>

 <p>… Your HTML content here …</p>

</body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

Why use web
standards?

• Accessibility

• To robots

• To people

• Stability

<Tags />
• Most tags open and close

• Tags must be nested properly

• Some tags stand alone

 <hr />

• Some tags take attributes

The Onion

• Elements consist of start and end tags flanking content

!

! Strong and emphasis
!

!
! ! Strong and emphasis
!

Right Wrong

XHTML tags
<!--> <!

DOCTYPE> <a> <abbr> <acronym> <address> <area /> <base /> <bdo>

<big> <blockquote> <body>
 <button> <caption> <cite> <code> <col /> <colgroup>

<dd> <dfn> <div> <dl> <dt> <fieldset> <form> <frame />

<frameset> <head> <h1> - <h6> <hr /> <html> <i> <iframe> <input /> <ins>

<kbd> <label> <legend> <link /> <map> <meta /> <noframes> <noscript> <object>

 <optgroup> <option> <p> <param /> <pre> <q> <samp> <script> <select>

<small> <style> <sub> <sup> <table> <tbody> <td> <textarea>

<tfoot> <th> <thead> <title> <tr> <tt> <var>

http://www.w3schools.com/tags/

http://www.w3schools.com/tags/default.asp
http://www.w3schools.com/tags/default.asp

Text tags
• Heading tag

<h1>This is a top level heading</h1>
<h6>This is the bottom level heading</h6>

• Paragraph tag
<p>This is definitely a paragraph</p>

• Line break
This is just two lines

With a hard break

• Emphasis and Strong
That’s exactly what I mean - I am sick of
this slide

• Comment Tag
<!-- This is a comment. You won't see this on the web-->

Tables
<table border="1">
! <tr>
! ! <th>Column 1 heading</th>
! ! <th>Column 2 heading</th>
! ! <th>Column 3 heading</th>
! </tr>
! <tr>
! ! <td>Row 2, cell 1</td>
! ! <td colspan="2">Row 2, cell 2, also spanning Row 2, cell 3</td>
! </tr>
! <tr>
! ! <td rowspan="2">Row 3, cell 1, also spanning Row 4, cell 1</td>
! ! <td>Row 3, cell 2</td>
! ! <td>Row 3, cell 3</td>
! </tr>
! <tr>
! ! <td>Row 4, cell 2</td>
! ! <td>Row 4, cell 3</td>
! </tr>
</table>

output:

http://htmldog.com/guides/htmlintermediate/tables/

http://htmldog.com/guides/htmlintermediate/tables/
http://htmldog.com/guides/htmlintermediate/tables/

Lists

First things first

Who you know

Not

What you know
What you can do with it

output:

Links

• Relative
Go down a directory
Go up a directory

• Absolute
Go to the root
Go to the NY Times

• Anchors
Go to the end
<h1 id="theEnd">This is the end</h1>

http://nytimes.com
http://nytimes.com

Images

Forms

• POST vs GET

<form name="input" action="html_form_submit.pl" method="post">

Text fields
! <form name="input" action="handleMyForm.pl" method="get">
! First name:
! ! <input type="text" name="firstname" />
! !

! ! Last name:
! ! <input type="text" name="lastname" />
! ! <input type="submit" value="Submit" />
! </form>

output:

Radio buttons

! <form name="input" action="handleMyForm.pl" method="get">
! ! <input type="radio" name="sex" value="male"/> Male
! !

! ! <input type="radio" name="sex" value="female"/> Female
! !

! ! <input type="submit" value="Submit" />
! </form>

output:

xHTML + CSS = Web

+ =

Cascading Style Sheets

• Help separate content from
appearance

• One style sheet can be applied to
hundreds of web pages

• Change styles in just one location

How CSS works

• Statements consist of

• Selectors

• Declarations

• Properties: Values (units)

http://westciv.com/wiki/CSS_Guide:_How_do_style_sheets_work

http://westciv.com/wiki/CSS_Guide:_How_do_style_sheets_work
http://westciv.com/wiki/CSS_Guide:_How_do_style_sheets_work

CSS: Where do I put it?

• Embedded in the <head> of each page
<head><style type="text/css"> </style></head>

• Linked in the <head>
Advantages: templating, speed

<link rel="stylesheet" type="text/css"
href="/styles/style.css" />

• Inline (avoid this)
<p style="color: red">text</p>

http://www.westciv.com/style/style.css
http://www.westciv.com/style/style.css

CSS Selectors
• HTML selectors - raw tags in the style

sheet)

• Class selectors

• use .className in style sheet

• use class="className" in HTML

• ID selectors

• use #idName in style sheet

• use id="idName" in HTML

Divs and Spans
• Divs

• Use <div id="myDiv"> </div> to define block
elements. Useful for both formatting and
positioning.

• The id is unique. It refers to one element

• Spans

• Use when you want to apply a class to some text
inline

• This is my sequence
ACTGATCTAGCT

BlueprintCSS

• CSS framework

• grid

• “sensible typography”

• stylesheet for printing

Do Not Reinvent the
Wheel

• http://www.freecsstemplates.org

http://www.freecsstemplates.org/
http://www.freecsstemplates.org/

Where does my
website go?

• On Mac OS X

• Personal web: ~/Sites

• Main web: /Library/Webserver/Documents

• Linux: /var/www/html or /var/apache2/htdocs

• XP Home: C:\Program Files\ApacheGroup
\Apache\htdocs

• Could be elsewhere. Don’t give up!

Naming your html files

• .html .htm

• Why index.html is special

Resource: HTML

• HTML Dog
http://htmldog.com

• W3C tags
http://www.w3schools.com/tags

http://htmldog.com
http://htmldog.com
http://htmldog.com
http://htmldog.com
http://www.w3schools.com/tags/default.asp
http://www.w3schools.com/tags/default.asp

Resources: CSS

Cheat sheet:
http://www.addedbytes.com/download/css-cheat-sheet-v2/pdf/

CSS tutorial
http://westciv.com/wiki/Main_Page

Two column style sheet and tutorial
http://www.456bereastreet.com/lab/
developing_with_web_standards/csslayout/2-col/

http://www.addedbytes.com/download/css-cheat-sheet-v2/pdf/
http://www.addedbytes.com/download/css-cheat-sheet-v2/pdf/
http://westciv.com/wiki/Main_Page
http://westciv.com/wiki/Main_Page
http://westciv.com/wiki/Main_Page
http://westciv.com/wiki/Main_Page
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/

Tools of the Trade

• Web Developer Plugin
for Firefox

• CSS editors

• MacRabbit CSSEdit

• SimpleCSS

• TopStyle (Windows)

Web programming with
CGI.pm

1Sunday, October 23, 2011

Server-Client Architecture and CGI

• Wikipedia summary: The Common Gateway Interface (CGI) is a standard
method for web servers to delegate the generation of web pages to
executable files. Such files are known as CGI scripts; they are programs,
often stand-alone applications, usually written in a scripting language.

• Until now, you have run scripts from the command line.

• Your scripts are somewhere like your home directory or ~/perl/ etc and the
output is printed on the screen or in a file

• In web programming, scripts go somewhere like Public/username/cgi-bin/
on a web server

• The output of scripts is HTML and is sent to a browser running on a client
machine where it is rendered as a web page.

• This set up allows you to create dynamic web pages that are generated in
response to user input e.g. if the user enters a search query on a form on a
web page, the search terms are sent to a CGI script which runs on the web
server and returns the results of the search as HTML which is then displayed in
the web browser exactly as if it was a web page.

2Sunday, October 23, 2011

This is better explained as a diagram, which we will draw together

Web server
Client

3Sunday, October 23, 2011

Setting up and executing CGI scripts

• Here’s how you set up CGI scripts on our computers

• In Finder, use Connect to Server... (command - k)

• Select Public

• Navigate to the directory with your_username/cgi-bin/

• Save your CGI scripts in this directory.

• This directory has to be executable by ‘other’. You can use
chmod +755 <dirname>
to do this.

• Your web scripts also have to be executable by ‘other’. You can
do this with chmod +755 myscript.pl

4Sunday, October 23, 2011

10/17/10

2

A CGI Script that Creates Plain Text

 #!/usr/bin/perl!
 # file: plaintext.pl!

 print "Content-type: text/plain\n\n";!

 print "When that Aprill with his shoures soote\n";!
 print "The droghte of March hath perced to the roote,\n";!
 print "And bathed every veyne in swich licour\n";!
 print "Of which vertu engendered is the flour...\n";!

http://mckay.cshl.edu/cgi-bin/course/plaintext.pl

A CGI Script that Creates HTML

 #!/usr/bin/perl!
 # file: chaucer.pl!

 print "Content-type: text/html\n\n";!

 print "<html><head><title>Chaucer</title></head><body>\n";!
 print "<h1>Chaucer Sez</h1>\n";!

 print "When that Aprill with his shoures soote
\n";!
 print "The droghte of March hath perced to the roote,
\n";!
 print "And bathed every veyne in swich licour
\n";!
 print "Of which vertu engendered is the flour...<p>\n";!

 print "<cite>-Geoffrey Chaucer</cite>\n";!
 print "<hr>\n";!
 print "</body></html>\n";!

http://mckay.cshl.edu/cgi-bin/course/chaucer.pl

10/17/10

3

A CGI Script that Does Something Useful

http://mckay.cshl.edu/cgi-bin/course/process_genes.pl

A CGI script can do anything a Perl script can do, such as opening files and processing them.
Just print your results to STDOUT.

#!/usr/bin/perl -w !
file: process_cosmids.pl !
use strict;!

my @GENES = qw/act-1 dpy-5 unc-13 let-653 skn-1 C02D5.1/;!
my $URL = 'http://www.wormbase.org/db/gene/gene?name=';!

print "Content-type: text/html\n\n";!
print "<html><head><title>Genes</title></head><body>\n";!
print "<h1>Genes</h1>\n";!
print "\n";!

for my $gene (@GENES) {!
 print qq($gene\n);!
}!

print "\n";!
print "</body></html>\n";!

Creating Fill-Out Forms
HTML includes about a half-dozen elements for creating fill-out form
elements. A form must begin with <FORM> and end with </FORM>:

10/17/10

4

Creating Fill-Out Forms II

Creating Fill-Out Forms III

10/17/10

5

Creating Fill-Out Forms IV

Creating Fill-Out Forms V

10/17/10

6

Creating Fill-Out Forms VI

Creating Fill-Out Forms VII

10/17/10

7

What is CGI.pm?

1. Standard module in Perl distribution (>= 5.004)
2. Emits correct HTTP headers
3. HTML shortcuts
4. Parses CGI parameters
5. "Sticky" form fields
6. Creates & processes cookies
7. File uploads

Make HTML Beautiful
CGI.pm defines functions that emit HTML. The page is easier to read and write than raw HTML*

<h1>!
 Eat Your Vegetables!
</h1>!
!
 peas!
 broccoli!
 cabbage!
 !
 peppers !
 !
 red!
 yellow!
 green !
 !
 !
!
<hr>!

 #!/usr/bin/perl!
 # Script: vegetables1.pl!

 use CGI ':standard';!

 print header,!
 start_html('Vegetables'),!
 h1('Eat Your Vegetables'),!
 ol(!
 li('peas'),!
 li('broccoli'),!
 li('cabbage'),!
 li('peppers',!

! ul(!
! li('red'),!
! li('yellow'),!
! li('green')!
!)!
!),!

),!
 hr,!
 end_html;!

http://mckay.cshl.edu/cgi-bin/course/vegetables.pl * if you speak Perl!

10/17/10

8

Make HTML Concise

10/17/10

9

http://mckay.cshl.edu/cgi-bin/course/vegetables2.pl

Using CGI.pm for the Genes Script

http://mckay.cshl.edu/cgi-bin/course/process_genes2.pl

#!/usr/bin/perl -w !
file: process_genes2.pl !

use strict;!
use CGI ':standard';!

my @GENES = qw/act-1 dpy-5 unc-13 let-653 skn-1 C02D5.1/;!
my $URL = 'http://www.wormbase.org/db/gene/gene?name=';!

my @list_items;!
for my $gene (@GENES) {!
 push @list_items,a({-href=>"URLgene"},$gene);!
}!

print header(),!
 start_html('Genes'),!
 h1('Genes'),!
 ol(!
 li(\@list_items)!
),!
 end_html;!

10/17/10

10

Setting & Retrieving CGI Parameters

10/17/10

11

A Simple Form

Form Generating Functions I

10/17/10

12

Form Generating Functions II

A reverse complementation script

10/17/10

13

File Uploading
HTML: <INPUT TYPE="FILE"> CGI.pm: filefield()

Annoying complication:
You have to start the form with start_multipart_form() rather than start_form().

Let’s modify reversec.pl to support file uploads:

•  First part (script too big for one page), print the form

http://mckay.cshl.edu/cgi-bin/course/sequpload.pl

sequpload.pl continued…
If param() returns true, that means that we
have some user input

10/17/10

14

Adding Cascading Stylesheets
#!/usr/bin/perl -w !
Script: veggies_with_style.pl !
use CGI ':standard';!

my $css = <<END;!
<style type="text/css">!
 li.yellow { color: yellow }!
 li.green { color: green }!
 li.red { color: red }!
 ol {!
 background-color: gainsboro;!
 padding: 5px;!
 margin-left: 200px;!
 width: 150px;!
 }!
 ul { background-color: black }!
</style>!
END!

print header,!
 start_html(-title => 'Vegetables',!
 -head => $css);!
print!
 h1('Eat Your Vegetables'),!
 ol(!
 li(['broccoli', 'peas', 'cabbage']),!
 li('peppers',!
 ul(!
 li({-class => 'red'},'red'),!
 li({-class => 'yellow'},'yellow'),!
 li({-class => 'green'},'green')!
)!
),!
),!
 hr,!
 end_html;!

http://mckay.cshl.edu/cgi-bin/course/veggies_with_style.pl

External stylesheet

http://mckay.cshl.edu/cgi-bin/course/veggies_with_style2.pl

#!/usr/bin/perl -w !
Script: veggies_with_style.pl !
use CGI ':standard';!

my $css = '/css/veggies.css';!

print header,!
 start_html(-title => 'Vegetables',!
 -style => $css);!
print!
 h1('Eat Your Vegetables'),!
 ol(!
 li(['broccoli', 'peas', 'cabbage']),!
 li('peppers',!
 ul(!
 li({-class => 'red'},'red'),!
 li({-class => 'yellow'},'yellow'),!
 li({-class => 'green'},'green')!
)!
),!
),!
 hr,!
 end_html;!

10/17/10

15

CGI Exercises
Problem #1

Write a CGI script that prompts the user for his or her name and age. When the
user presses the submit button, convert the age into "dog years" (divide by 7) and
print the result.

Problem #2

Accept a DNA sequence and break it into codons.

Extra credit: Translate the codons into protein.

Databases	 and	 Database	 Access

1	

A	 table	 of	 genes

Gene	 ID	 Chromosome	 Start	 End	 Strand	 Class	
GRMZM2G306328	 chr2	 175194049	 175196453	 -‐1	 est	
GRMZM2G027393	 chr2	 175212542	 175213269	 -‐1	 cdna	
GRMZM2G002915	 chr2	 175243929	 175246053	 1	 est	
GRMZM2G419606	 chr2	 175320426	 175321226	 -‐1	 cdna	
GRMZM2G119906	 chr2	 175323967	 175325504	 -‐1	 cdna	
GRMZM2G119950	 chr2	 175325765	 175331607	 -‐1	 cdna	
GRMZM2G125775	 chr2	 175462240	 175463416	 -‐1	 cdna	
GRMZM2G425965	 chr2	 175482597	 175484512	 -‐1	 est	
AC195825.3_FG001	 chr2	 176152209	 176155132	 -‐1	 fgenesh	

•  Each	 row	 is	 a	 record	 of	 a	 gene	
•  Each	 column	 is	 a	 set	 of	 values	 constrained	 by	 a	 type	
•  A	 simple	 query:	 What	 is	 the	 locaOon	 of	 gene	

‘GRMZM2G42775’?	

2	

A	 more	 complex	 query

Gene$ID Go$Term
GRMZM2G002903 nucleic/acid/binding
GRMZM2G002903 intracellular
GRMZM2G002903 transport
GRMZM2G002915 DNA/binding
GRMZM2G002915 transcription/factor/activity
GRMZM2G002915 nucleus
GRMZM2G002915 transcription
GRMZM2G002915 transcription/regulator/activity
GRMZM2G002948 multicellular/organismal/development
GRMZM2G002948 cellular/process
GRMZM2G002950 nucleotide/binding
GRMZM2G002950 protein/binding

Gene$ID Chromosome Start End Strand Class
GRMZM2G306328 chr2 175194049 175196453 21 est
GRMZM2G027393 chr2 175212542 175213269 21 cdna
GRMZM2G002915 chr2 175243929 175246053 1 est
GRMZM2G419606 chr2 175320426 175321226 21 cdna
GRMZM2G119906 chr2 175323967 175325504 21 cdna
GRMZM2G119950 chr2 175325765 175331607 21 cdna
GRMZM2G125775 chr2 175462240 175463416 21 cdna
GRMZM2G425965 chr2 175482597 175484512 21 est
AC195825.3_FG001 chr2 176152209 176155132 21 fgenesh

Gene$ID Exp1 Exp2 Exp3 Exp4
GRMZM2G003109 127.24 86.973 214.73 109.8
GRMZM2G003138 124.73 119.41 125.77 107.08
GRMZM2G003165 77.78 163.4 69.063 51.56
GRMZM2G003167 231.41 420.47 82.018 88.929
GRMZM2G003179 239.6 399.86 483.38 361.11
GRMZM2G003234 107.14 99.023 125.07 84.288
GRMZM2G003246 151.39 94.289 69.389 54.414
GRMZM2G003252 374.61 966.41 560.12 464.19
GRMZM2G003354 4170.1 3378.6 1876.9 2153.5
GRMZM2G003368 13835 5958.7 77.495 100.6

Table	 1:	 GO	 Terms	 of	 genes	 Table	 2:	 Expression	 values	

Table	 3:	 Gene	 table	 “What	 are	 the	 classes	 of	 	
highly	 expressed	 genes	
in	 region	 50Mb-‐55Mb	 of	

chromosome	 5?	

3	

What	 is	 a	 database
•  A	 collecOon	 of	 data	

–  Text	 file	 with	 a	 list	 of	 genes	
–  GFF	 text	 file	
–  BAM	 file	
–  Excel	 spreadsheet	
–  Set	 of	 tables	 in	 MySQL	 	
	

4	

DBMS:	 Software	 for	 managing	 databases

•  Database	 Management	 Systems	 (DBMS)	
–  General	 term	 for	 so_ware	 for	 managing	 data	 	

•  CreaOng	 tables	
•  Loading	 data	
•  Querying	 data	

–  E.g:	 MySQL,	 SQLite,	 Oracle,	 Microso_	 Access,	 Berkley	 DB,	 MongoDB	

RDBMS:	 	
Rela<onal	 Database	 Management	 Systems	 	
•  So_ware	 for	 managing	 related	 data	 that	

is	 stored	 across	 mulOple	 tables	
	

5	

Using	 a	 DBMS	
•  Through	 a	 user-‐interface	

–  E.g:	 MySQL	 workbench,	 HeidiSQL,	 SequelPro,	 SQLite	 Manager,	 SQLite	
Spy	

•  ProgrammaOcally	 through	 SQL	
–  Structured	 Query	 Language	
–  E.g:	 “select	 gene_id	 from	 gene_table	 where	 chromosome	 =	 ‘chr2’;”	

•  ProgrammaOcally	 through	 an	 API	 in	 another	 programming	
language	
–  Perl	 DBI	
–  Java	 JDBC,	 C	 ODBC	

6	

What	 we	 will	 do	 today
•  CreaOng	 databases,	 tables	 in	 MySQL	

•  Querying	 and	 manipulaOng	 data	 in	 SQL	

•  Querying	 and	 manipulaOng	 data	 using	 Perl	 DBI	

7	

MySQL
•  A	 robust	 RDBMS	 is	 very	 popular	 for	 large	 bioinformaOcs	

databases.	 Great	 for:	
–  Very	 large,	 persistent	 datasets	
–  MulO	 users	 with	 different	 permission	 levels	
–  High	 volume	 transacOons	
	

•  To	 access	 the	 mysql	 client	 from	 the	 command	 line,	 you	 need	
4	 pieces	 of	 informaOon:	
1.  Host	 (Defaults	 to	 localhost)	
2.  Port	 	 (Defaults	 to	 3306)	
3.  Username	 	
4.  Password	

•  When	 MySQL	 is	 first	 installed,	 a	 ‘root’	 account	 for	
administraOon	 is	 iniOalized,	 without	 a	 password	
	

8	

Using	 MySQL	 shell
•  Start	 the	 MySQL	 client	 from	 the	 command	 line,	 and	 this	 will	 bring	 up	 a	

MySQL	 shell,	 connected	 to	 the	 MySQL	 server	 on	 you	 local	 machine	
$  mysql	 –u	 root	

•  For	 example,	 to	 connect	 to	 the	 public	 Ensembl	 MySQL:	
$  mysql	 –h	 	 ensembldb.ensembl.org	 –P	 5306	 –u	 anonymous	 	 	 	

•  Basic	 commands	 in	 the	 MySQL	 shell,	 line	 of	 commands	 must	 end	 with	 a	 ‘;’	
mysql>	 show	 databases;	
mysql>	 create	 database	 progbio2011;	 #	 progbio2011	 is	 the	 database	 name	
mysql>	 use	 progbio2011;	 #	 Use	 another	 database	
mysql>	 help;	
	

•  To	 quit:	
mysql>	 \q;	
	

•  To	 cancel	 a	 command:	 	
mysql>	 \c;	

9	

Creating	 a	 table
Things	 to	 consider:	
•  Table	 name	
•  Name	 of	 each	 column	
•  Data	 type	 of	 each	 column	
•  Range	 of	 values	 of	 data	 in	 each	 column	

	

10	

Basic	 Datatypes
•  Numeric	

–  INT	 :	 for	 integers	
–  Double	 :	 numerical	 data	 with	 decimals	

•  Strings	
–  CHAR	 :	 for	 strings	 up	 to	 255	 in	 length	
–  TEXT	 :	 large	 strings	

•  Lots	 more	 on	 the	 MySQL	 website	
hsp://dev.mysql.com/doc/refman/5.6/en/data-‐types.html	
	

•  Also	 see	 cheat	 sheet	 on	 course	 webpage.	

11	

SQL:	 Creating	 a	 table

CREATE TABLE genes (!
! `gene_id` char(25) NOT NULL DEFAULT '',!

 !`chr` char(5) NOT NULL DEFAULT '',!
 !`start` int(9) NOT NULL DEFAULT '0',!
 !`end` int(9) NOT NULL DEFAULT '0',!
!PRIMARY KEY (`gene_id`)!

);!

gene_id	 chr	 start	 end	

GRMZM2G306328	 chr2	 175194049	 175196453	
GRMZM2G027393	 chr2	 175212542	 175213269	
GRMZM2G002915	 chr2	 175243929	 175246053	
GRMZM2G419606	 chr2	 175320426	 175321226	

CREATE	 TABLE	 tablename	 (
	 column_1_name	 	 datatype	 	 [opConal	 constraint]	
	 column_2_name	 	 datatype	 	 [opConal	 constraint]	
	 ….	

);	

12	

KEYS	 and	 Indexes
•  INDEX	

–  Synonymous	 with	 KEY	
–  It	 is	 the	 lookup	 column,	 or	 a	 set	 of	 columns,	 for	 a	 table.	 	
–  There	 can	 be	 more	 than	 one	 KEY	 in	 a	 table	

•  PRIMARY	 KEY	 	
–  The	 primary	 key	 for	 a	 table	 represents	 the	 column,	 or	 set	 of	 columns,	

that	 is	 mostly	 frequently	 used	 as	 an	 index	 to	 the	 table	
–  Columns	 used	 as	 the	 primary	 keys	 must	 be	 contain	 values	 that	 are	

unique	 to	 each	 row	
–  There	 can	 only	 be	 one	 primary	 key	 in	 a	 table	

13	

SQL:	 Simple	 query
#	 SELECT	 column_name	 [,column_names]	 from	 table;	
SELECT gene_id from genes; !
	
#	 Use	 limit	 when	 the	 list	 is	 too	 long	
SELECT gene_id, chr, start, end from genes
limit 10;!
	
#	 Wildcard	 character	 “*”	 for	 all	 columns	 in	 table	
SELECT * from genes limit 10;!

14	

SQL:	 SELECT	 ….	 WHERE	 for	 filtering	 results
#	 what	 are	 the	 genes	 on	 chromosome	 5	
SELECT gene_id FROM genes WHERE chr=‘chr5’;!
	
#	 what	 are	 the	 genes	 that	 lie	 within	 50Mb	 –	 55	 Mb	 of	
chromosome	 5	
SELECT gene_id !
FROM genes !
WHERE chr=‘chr5’ !
and end >= 50000000 !
and start <= 55000000;!

15	

SQL:	 SELECT	 ….	 WHERE	 with	 OR
#	 what	 are	 the	 genes	 that	 lie	 within	 chr5	 with	 evidence	 ‘est’	 or	
‘cdna’	 ?	
SELECT gene_id , class!
FROM genes !
WHERE chr=‘chr5’ !
and (evidence=‘cdna’ OR evidence= ‘est’);!

16	

SQL:	 Sorting	 and	 Distinct
#	 What	 are	 the	 last	 20	 genes	 on	 chr	 10;	
SELECT gene_id, chr, start, end FROM genes !
WHERE chr=‘chr10’!
ORDER BY end desc LIMIT 20;!
	
#	 What	 is	 the	 unique	 list	 of	 gene	 evidences	 in	 the	 genes	 table?	
SELECT DISTINCT evidence from genes;!
	

17	

SQL:	 SELECT	 COUNT…	 GROUP	 BY
#	 count	 the	 number	 of	 rows	 in	 the	 table	
SELECT COUNT(*) FROM genes;!
	
#	 count	 the	 number	 of	 genes	 in	 chromosome	 5	
SELECT COUNT(*) From genes where chr=‘chr5’;!
	
#	 what	 if	 we	 want	 to	 return	 the	 number	 of	 genes	 in	 each	
chromosome?	
SELECT chr, COUNT(*) FROM genes GROUP BY
chr;!
	
•  Other	 SQL	 funcOons	 besides	 COUNT	

–  avg,	 min,	 max,	 concat	

18	

SQL:	 select	 -	 join

Gene$ID Go$Term
GRMZM2G002903 nucleic/acid/binding
GRMZM2G002903 intracellular
GRMZM2G002903 transport
GRMZM2G002915 DNA/binding
GRMZM2G002915 transcription/factor/activity
GRMZM2G002915 nucleus
GRMZM2G002915 transcription
GRMZM2G002915 transcription/regulator/activity
GRMZM2G002948 multicellular/organismal/development
GRMZM2G002948 cellular/process
GRMZM2G002950 nucleotide/binding
GRMZM2G002950 protein/binding

Gene$ID Chromosome Start End Strand Class
GRMZM2G306328 chr2 175194049 175196453 21 est
GRMZM2G027393 chr2 175212542 175213269 21 cdna
GRMZM2G002915 chr2 175243929 175246053 1 est
GRMZM2G419606 chr2 175320426 175321226 21 cdna
GRMZM2G119906 chr2 175323967 175325504 21 cdna
GRMZM2G119950 chr2 175325765 175331607 21 cdna
GRMZM2G125775 chr2 175462240 175463416 21 cdna
GRMZM2G425965 chr2 175482597 175484512 21 est
AC195825.3_FG001 chr2 176152209 176155132 21 fgenesh

Gene$ID Exp1 Exp2 Exp3 Exp4
GRMZM2G003109 127.24 86.973 214.73 109.8
GRMZM2G003138 124.73 119.41 125.77 107.08
GRMZM2G003165 77.78 163.4 69.063 51.56
GRMZM2G003167 231.41 420.47 82.018 88.929
GRMZM2G003179 239.6 399.86 483.38 361.11
GRMZM2G003234 107.14 99.023 125.07 84.288
GRMZM2G003246 151.39 94.289 69.389 54.414
GRMZM2G003252 374.61 966.41 560.12 464.19
GRMZM2G003354 4170.1 3378.6 1876.9 2153.5
GRMZM2G003368 13835 5958.7 77.495 100.6

19	

SQL:	 simple	 join
#	 what	 are	 the	 expression	 values	 for	 all	 transcripOon	 factors	 in	
experiment	 1?	
SELECT genes_go.gene_id, go_term, exp1 !
FROM genes_go, expression!
WHERE genes_go.gene_id = expression.gene_id !
and go_term = 'transcription regulator
activity' ;!
	

20	

Let’s	 do	 this	 now

•  “What	 are	 the	 classes	 of	 	 highly	 expressed	 genes	 in	
region	 50Mb-‐55Mb	 of	 chromosome	 5?	

	

21	

Perl	 DBI
•  DBI	 is	 a	 module	 that	 provides	 access	 to	 DBMS	 in	 Perl	 	
•  It	 hides	 the	 nuts	 and	 bolts	 for	 connecOng	 to	 each	 type	 of	 DBMS,	

leaving	 a	 consistent	 interface	 for	 connecOng	 to	 a	 database	
•  The	 key	 object	 in	 DBI	 is	 the	 database	 handle	 ($dbh),	 which	

represents	 a	 connecOon	 to	 a	 DBMS.	
	
Three	 easy	 steps	 for	 database	 transacOon	 in	 DBI:	
1.  Create	 a	 database	 handle	

$dbh = DBI->connect(…..)!
	

2.  Execute	 a	 SQL	 statement	 using	 the	 database	 handle	
$dbh->do something!
	

3.  Disconnect	 the	 handle 	 	
$dbh->disconnect!

	
	
	

	
	

22	

Perl	 DBI	 	 Step	 1:	 Constructing	 the	 handle
for MySQL!
my $dbname = 'prog2011';!
my $driver = ‘mysql’;!
my $user = 'root’; !
my $passwd = '';!
my $host = 'localhost';!
my $port = 3306;!
!
my $dsn = "DBI:$driver:database=$dbname;host=$host;port=$port";!
my $dbh = DBI->connect($dsn,$user,$passwd);!

!
for SQL lite!
my $dbname = 'prog2011';!
my $driver=‘SQLite’;!
my $dsn = "DBI:$driver:$dbname”;!
my $dbh = DBI->connect($dsn); !

!
! 23	

Perl	 DBI	 Step	 2:	 Executing	 the	 SQL
1.  Construct	 the	 SQL	 query	

my $sql = “SELECT count(*) From gene”;!
	

2.  Execute	 the	 transacOon	 using	 the	 database	 handle	
–  For	 querying	 and	 fetching	 data:	
!
my $results_array_ref = $dbh->selectall_arrayref($sql);!

	 	

24	

DBI	 Example:	 creating	 a	 table
With	 $dbh-‐>do()	

#! /usr/bin/perl!
use strict;!
use warnings;!
use DBI;!
!
my $dbname = 'progbio2011';!
my $user = 'root';!
my $passwd = '';!
my $host = 'localhost';!
my $port = 3306;!
!
my $dsn = "DBI:mysql:database=$dbname;host=$host;port=$port”;!
my $dbh = DBI->connect($dsn,$user,$passwd);!
!
my $sql = ”CREATE table foo (bar char(10)); ";!
!
$dbh->do($sql);!
!
$dbh->disconnect;!
exit;!

=pseudocode	
	 $dbh	 =	 DBI-‐>connect($dsn)	
	 $dbh-‐>do(SQL)	
	 $dbh-‐>disconnect	

=end	

25	

DBI	 :	 Fetch	 a	 list	 of	 genes	 using	 DBI
With	 $dbh-‐>selectall_arrayref	

#! /usr/bin/perl!
use strict;!
use warnings;!
use DBI;!
!
my $dbname = 'progbio2011';!
my $user = 'root';!
my $passwd = '';!
my $host = 'localhost';!
my $port = 3306;!
!
my $dsn = "DBI:mysql:database=$dbname;host=$host;port=$port”;!
my $dbh = DBI->connect($dsn,$user,$passwd);!
!
my $query = "SELECT gene_id, chr, start, end from genes";!
my @results = @{$dbh->selectall_arrayref($query)};!
!
foreach my $row_ref (@results){!
 my $str = join "\t",@{$row_ref};!
 print $str,"\n";!
}!
!
$dbh->disconnect;!
exit;!

=pseudocode	
	 $dbh	 =	 DBI-‐>connect($dsn)	
	 $fetched_results1	 =	 $dbh-‐>fetch	 SQL	 query	
	 do	 something	 with	 results	
	 $dbh-‐>disconnect	

=end	

26	

DBI	 :	 Count	 using	 selectrow_arrayref
For	 SQL	 queries	 which	 will	 only	 return	 a	 single	 row,	
e,g:	 SELECT	 COUNT	 query	
We	 can	 use	 $dbh-‐>selectrow_arrayref	
	
#! /usr/bin/perl!
use strict;!
use warnings;!
use DBI;!
!
my $dbname = 'progbio2011';!
my $user = 'root';!
my $passwd = '';!
my $host = 'localhost';!
my $port = 3306;!
!
my $dsn = "DBI:mysql:database=$dbname;host=$host;port=$port";!
my $dbh = DBI->connect($dsn,$user,$passwd);!
!
my $query = "SELECT COUNT(*) from genes where chr ='chr10'";!
my @row = @{$dbh->selectrow_arrayref($query)};!
!
print join ("\t",@row),"\n";;!
!
$dbh->disconnect;!
exit;!

=pseudocode	
	 $dbh	 =	 DBI-‐>connect($dsn)	
	 $fetched_row	 =	 $dbh-‐>fetch	 SQL	 query	
	 do	 something	 with	 results	
	 $dbh-‐>disconnect	

=end	

27	

DBI	 :	 Querying	 using	 placeholders
#	 fetch	 expression	 level	 for	 a	 list	 of	 genes	
………!
my $dbh = DBI->connect($dsn, $user, $passwd);!
!
my $query = "SELECT exp1, exp2, exp3, exp4 !

! !FROM expression !
! !WHERE gene_id = ?";!

my $sth = $dbh->prepare($query);!
!
my $file =shift;!
open IN,"<",$file || die ("Can't open file $file $!");!
while (my $gene_id = <IN>){!
 chomp $gene_id;!
!
 $sth->execute($gene_id);!
 my @results = @{ $sth->fetchall_arrayref};!
!
 foreach my $row_ref (@results) {!
 my $str = join "\t", @{$row_ref};!
 print $gene_id,"\t",$str, "\n";!
 }!
}!
close IN;!
$dbh->disconnect;!
exit;!

=pseudocode	
	 $dbh	 =	 DBI-‐>connect($dsn)	
	 $sth	 =	 $dbh-‐>prepare(SQL)	
	 loop:	
	 	 $sth-‐>execute	
	 	 $sth-‐>fetchrow_array;	
	 end	 loop 	 	
	 $dbh-‐>disconnect	

=end	

28	

DBI	 :	 Placeholders	 vs	 selectall
#	 fetch	 expression	 level	 for	 a	 list	 of	 genes	

Using	 placeholders	
=pseudocode	
	

	 @genelist	 =	 read	 from	 file	
	 	
	 $dbh	 =	 DBI-‐>connect($dsn)	
	 $sql	 =	 “SELECT	 exp1	
	 	 FROM	 expression	
	 	 WHERE	 gene_id	 =	 ?”	
	 	
	 $sth	 =	 $dbh-‐>prepare($sql)	

	
	 loop	 through	 genelist:	
	 	 $sth-‐>execute($gene)	
	 	 $expr	 =	 $sth-‐>fetchrow_array	
	 	 print	 $expr	
	 end	 loop 	 	
	 $dbh-‐>disconnect	

=end	

Using	 selectall	
=pseudocode	
	

	 @genelist	 =	 read	 from	 file	
	 	
	 $dbh	 =	 DBI-‐>connect($dsn)	
	 $sql	 =	 “SELECT	 gene,	 exp1	 	 FROM	 expression”;	

	
	 %gene_expr	 hash	
	 for	 each	 result	 in	 $dbh-‐>selectall_arrayref($sql)	
	 	 $gene_expr	 hash{$gene}	 =	 $expr	
	 end	

	
	 loop	 through	 genelist:	
	 	 print	 $expr	 if	 exist	 in	 %gene_expr	 hash	
	 end	 loop 	 	
	 	
	 $dbh-‐>disconnect	

=end	

•  1	 database	 transacOon	 for	 each	 gene	
queried	

•  Slow	 if	 you	 have	 many	 genes	 to	 query	

•  A	 single	 database	 transacOon	
•  Slow	 if	 you’re	 fetching	 millions	 of	

rows	 and	 you	 end	 up	 only	 needing	 a	
small	 fracOon	

29	

For	 other	 DBI	 functions,	 see	 CPAN
With	 $dbh-‐>selectall_hashref	
	
….!
!
my $dsn = "DBI:mysql:database=$dbname;host=$host;port=$port”;!
my $dbh = DBI->connect($dsn,$user,$passwd);!
!
my $query = "SELECT gene_id, chr, start, end from genes";!
!
my %results = %{$dbh->selectall_hashref($query,'gene_id')};!
!
foreach my $gene (keys %results){!
 print $gene,"\t",!
 $results{$gene}->{'chr'},"\t",!
 $results{$gene}->{'start'},"\t",!
 $results{$gene}->{'end'},"\n";!
}!
!
$dbh->disconnect;!
!
exit;!

30	

Other	 useful	 MySQL	 commands
•  For	 loading	 a	 text	 file	 into	 a	 table	 from	 the	 unix	 command	

line:	
$	 mysqlimport	 	 -‐-‐local	 –u	 root	 databasename	 filename.txt	
Filename	 must	 have	 the	 same	 name	 as	 the	 table	 you	 are	 trying	 to	 load	
data	 into	
	

•  For	 dumping	 data	 from	 a	 table:	
	 $	 mysqldump	 –u	 root	 databasename	 tablename	 >	 	 table.sql	

–  Or	 for	 dumping	 the	 enOre	 MySQL	 database:	 	
$	 mysqldump	 –u	 root	 databasename	 >	 	 database.sql	

31	

Other	 useful	 SQL	 commands
•  InserOng	 new	 rows	 into	 table	

INSERT into genes (gene_id, chr, start, end,
evidence) values (‘foo’,’chrX’,1000,1500,’cdna’);!
	

•  UpdaOng	 data	 in	 table	
UPDATE genes SET gene_id = ‘bar’ WHERE gene_id =
‘foo’;!

	
	

32	

Alternate	 RDBMS	 -	 SQLite
•  Simple	 RDBMS	 that	 is	 installed	 by	 default	 in	 most	 systems	

–  sqlite3	 	 	
•  To	 create	 a	 new	 database	 in	 SQLite	 from	 the	 unix	 command	

line	
$  sqlite3	 mydatabase	 	

•  The	 command	 above	 also	 brings	 you	 into	 the	 sqlite3	 client	
•  sqlite3	 client	 allows	 	

sqlite>	 .help	
sqlite>	 .tables	
sqlite>	 .import	 FILE	 table	
sqlite>	 .exit	
	
	

33	

10/24/11 7:43 PMScientific Computing

Page 1 of 2file:///Users/srbio/Desktop/algorithms.html

Scientific Programming
Jim Tisdall

Programming for Biology 2011

Lecture Notes
1. The Problem
2. Time and Space and Algorithms
3. Using Less Time
4. Using Less Space
5. Profiling
6. Parallel Processing

Suggested Reading
Mastering Algorithms with Perl
 by Orwant, Hietaniemi, and Macdonald
 (An excellent algorithms text with implementations in Perl)

Introduction to Algorithms
 by Cormen et al.
 (This is the standard modern text)

Writing Efficient Code
 by Jon Bentley
 (Hard to find. Great book.)

Introduction to Automata Theory, Languages, and Computation
 by Hopcroft and Ullman
 (The standard, mathematical textbook for theoretical computer science.)

Computers and Intractability: A Guide to the Theory of NP-Completeness
 by Gary and Johnson
 (Very well written.)

Network Programming with Perl
 by Lincoln Stein
 (Client-server network programming.)

An Introduction to Parallel Algorithms
 by Joseph Jaja
 (For the next generation of computers.)

Programming for Biology

Jim Tisdall, tisdall -- at -- jimtisdall.com

10/24/11 7:43 PMScientific Computing

Page 2 of 2file:///Users/srbio/Desktop/algorithms.html

Last modified: Sun Oct 23 20:36:27 EDT 2011

10/24/11 7:44 PMThe Problem

Page 1 of 1file:///Users/srbio/Desktop/law.html

Moral
Bioinformatics often requires a programming style that minimizes the use of space and time.

How to minimize space and time comes under the general rubric of scientific programming.

This lecture will introduce some standard scientific programming methods and ideas.

The Problem
Biological data will just barely fit on modern and affordable computers.

Biological computations are just barely possible on modern and affordable computers.

High-throughput sequencing. Multiple genomes. Genbank. Image analysis.

Programming for Biology Last modified: Sun Oct 23 20:36:27 EDT 2011

10/24/11 7:44 PMTime and Space and Algorithms

Page 1 of 4file:///Users/srbio/Desktop/time_and_space_and_algorithms.html

Time and Space and Algorithms
Minimizing time and space results in programs that run faster and in smaller computers; it can make the
difference between having a workable program or none at all.

A program's use of time and space depends on the algorithms and associated data structures used to solve a
problem.

An algorithm is the design or idea of a computation. It usually can be expressed in terms of a specific
computer program, or more informally as in pseudocode.

Typically there are many possible algorithms for a given problem. Some ways use less time and/or less space
than other ways.

A data structure is the form of the computation as it proceeds. A great deal of biological data is organized
into two-dimensional tables in relational databases. Relational database tables are the standard workhorse
for storing data in biology, and are useful in a surprising number of situations.

It's important to know, however, that often the best algorithm will use some other data structure such as a
doubly-linked list or a tree, for example. Such data structures might better represent biological structures,
gene networks, evolutionary relationships, and so on. And, such data structures may be used in sometimes
surprising ways to speed up a computation.

The space of an algorithm is just the amount of computer memory it uses. This will reflect the size of the
input to the algorithm, and the data structures that are employed in the computation.

The time of an algorithm is usually given as a function on the size of the input. So if the input is of size n, the
algorithm might take time n2. So, for instance, if you gave such an algorithm a hundred genes, it would take
about 10000 units of time to run; if you gave it ten thousand genes, it would take 100000000 units of time to
run.

Time is roughly estimated according to the number of basic operations performed by your program as it runs.
Basic operations are adding, concatenating two strings, printing, etc. The overall structure of the program is
what is important, not an actual prediction of exactly how many seconds the program will take.

What can be computed?
We are primarily interested in building software to achieve easily computed, but useful, results. We're
learning beginning programming techniques, not computer science theory. Therefore, we will not delve into
the study of algorithms in any depth in this course.

HOWEVER: it can easily happen that you may want to compute something that is hard to compute in a week,
or a year, or even at all. This is a very practical problem, and it may come up fairly quickly for you,
depending on your research problem. It's important to know what you can do about it.

The idea is that there are limits to what can be computed. These limits take two main forms: intractability

10/24/11 7:44 PMTime and Space and Algorithms

Page 2 of 4file:///Users/srbio/Desktop/time_and_space_and_algorithms.html

and undecidability.

The main point:

MANY PROBLEMS CANNOT BE COMPUTED

but it's possible to get "pretty good" answers for many of them

How algorithms are measured
Algorithms are typically classified by how fast they perform on given inputs, by giving their speed as a
function of the size of the input. The size of the input is usually represented by the variable n. (n might be the
size of a genome, for instance.)

Say for example that an algorithm gets an input of size n, and then just to write the answer it must write an
output in space of size 2n, which we say will take about 2n time to write. Then the algorithm's time
complexity is "order of 2 to the n", written in a shorthand called big Oh notation as

O(2n).

This way of measuring an algorithm is called time complexity.

Examples:
O(2n) computations: exponential, intractable, bad
O(n2) computations: polynomial, tractable, good
O(5n) computations: linear, tractable, great
O(log(n)) computations: logarithmic, tractable, amazing
O(1) computations: constant time, tractable, unbelievably great

If the size of the input n is 3, then all methods take a short amount of time -- 8 and 9 and 15 and about 1,
respectively.

But if the size of the input n = 100 , then log(n) is about 6, 5n is 500, and n2 is 10,000 which is still not bad.
However, 2n is bigger than the number of atoms in the universe. (And is the universe really finite? Oh well ...
who's counting?)

Intractability
Intractability means that a problem cannot be computed in a reasonable amount of time. Many biological
problems are intractable.

10/24/11 7:44 PMTime and Space and Algorithms

Page 3 of 4file:///Users/srbio/Desktop/time_and_space_and_algorithms.html

Example: in phylogeny we learn that there are many possible trees that can be built, and that the number of
possible trees grows exponentially as you increase the number of taxa and as you increase the evolutionary
time under discussion.

To find the best solution in an exponentially-growing space, such as the space of all possible evolutionary
trees, often requires examining each possibility, and so may take an exponentially-growing time. Problems
that have this property (very loosely defined here) are called

NP

(for non-deterministic polynomial time), and certain canonical such problems are called

NP-complete.

NP-complete problems are all essentially interchangeable; that is, they all come down to essentially the same
problem. The prototypical NP-complete problem is the

TRAVELING SALESMAN PROBLEM:
given a set of cities and the distances between them, what is the shortest route a traveling salesman can take
to visit each one?

By the time you get to about 30 cities, the number of possible routes cannot be computed in your lifetime; by
the time you reach about 60 cities, there are more possible routes than there are atoms in the universe. And
we don't know a better way to find the best route than to look at each one.

An aside: no one has proved that NP-complete problems must require looking at each individual possibility.
If you could find a polynomial-time algorithm for any NP-complete problem, you would be the most famous
computer scientist/mathematician around, and would surely win a Nobel prize. Few people believe it will be
done, but it's been an open problem for many years, and no one yet can prove that it can't be done. This is
called the P =? NP problem.

The practical implications:

If you have a lot of data for your problem, and the problem is in NP, then you have no practical solution to
find the best, optimal answer except on very small data sets.

But the good news is: there are approximation algorithms that will give you a very good answer in a
reasonable amount of time, even if it's not the optimal answer. Such approximation algorithms underlie many
of the practical approaches to such problems as phylogeny, sequence assembly, and many other problems in
bioinformatics.

Undecidable problems
Less likely to be a problem for the practical bioinformatics programmer, but something to be aware of, is that
there are problems for which no solution is possible.

These problems are called undecidable, and they were first demonstrated by Alan Turing and others in the

10/24/11 7:44 PMTime and Space and Algorithms

Page 4 of 4file:///Users/srbio/Desktop/time_and_space_and_algorithms.html

1930s.

Here's the most famous undecidable problem: the

HALTING PROBLEM

Write a program that can scan any other program and decide if it will eventually halt, or if it will go on
forever without coming to a stop.

In other words, write a virus checker for nonhalting programs.

As an example of such a nonhalting "virus", here's a perl program that goes on forever (until you stop it):

while(1) {}

That looks easy to recognize. But we can prove that no program can be written that would catch all such non-
halting programs.

The fact that such an easily-described problem as the HALTING PROBLEM has no solution is, when you
think about it, a very deep and profound statement about the limits of human knowledge.

Programming for Biology Last modified: Sun Oct 23 20:36:27 EDT 2011

10/24/11 7:44 PMUsing Less Time

Page 1 of 4file:///Users/srbio/Desktop/time.html

Using Less Time
The Art and Science of Algorithm Design
Knowledge can be classified into two types: procedural knowledge and declarative knowledge.

Declarative knowledge is a collection of facts. (E.g., Watson's great textbook "The Molecular Biology of the
Gene")

Procedural knowledge is knowledge of how to do things. This is the kind of knowledge captured by
computer algorithms.

Procedural knowledge has been growing immensely since (programmable digital) computers put the
requirement to specify how to do something -- that is, to formulate an algorithm -- into the very center of our
economic, scientific, and cultural lives.

Algorithms are discovered by a combination of mathematics and art and science and luck and training and
talent. Much of what we do on computers relies on the accumulated procedural knowledge -- algorithms -- of
our culture.

A good algorithm is more important than a good computer
Finding a better algorithm can be much more important than getting a better, faster computer.

For the following examples I created a set of random DNA that I'll use as my "promoters". I include the code
here. (We'll return to this code later in the lecture).
#
Main program -- make promoters from random DNA
#

srand();

$dna = make_random_DNA(1000000);
open(DNA, ">genomic_data") or die;
print DNA $dna;

@promoters = make_random_DNA_set(10, 5000);
open(PROMOTERS, ">promoters") or die;
print PROMOTERS join("\n",@promoters),"\n";

exit 0;

#
Subroutines
#

Make a string of random DNA of specified length.
sub make_random_DNA {

10/24/11 7:44 PMUsing Less Time

Page 2 of 4file:///Users/srbio/Desktop/time.html

 my($length) = @_;
 my $dna;

 for (my $i=0 ; $i < $length ; ++$i) {
 $dna .= randomnucleotide();
 }

 return $dna;
}

Make a set of random DNA
sub make_random_DNA_set {

 my($length, $size_of_set) = @_;
 my $dna;
 my @set;

 # Create set of random DNA
 for (my $i = 0; $i < $size_of_set ; ++$i) {

 $dna = make_random_DNA ($length);
 push(@set, $dna);
 }

 return @set;
}

Select at random one of the four nucleotides
sub randomnucleotide {

 my(@nucleotides) = ('A', 'C', 'G', 'T');

 return randomelement(@nucleotides);
}

sub randomelement {

 my(@array) = @_;

 return $array[rand @array];
}

Consider this fragment of perl code, written to find a set of short sequences in a genome ("findpromoters0"):

Read the promoter data from a file
open(PROMOTERS, "promoters") or die "a horrible death: $!";
my @promoters = <PROMOTERS>;

Look for each occurence of each promoter in the genome
foreach my $promoter (@promoters) {
 chomp $promoter;

 # Read the genome data from a file
 open(GENOME, "genome_data") or die "a horrible death: $!";

10/24/11 7:44 PMUsing Less Time

Page 3 of 4file:///Users/srbio/Desktop/time.html

 my $genome = <GENOME>;

 while($genome =~ /$promoter/g) {
 # $-[0] prints the location of the find
 #print "$promoter $-[0]\n"; exit;
 $db{$promoter} = $-[0];
 }
}

Now this code is good perl. It is syntactically correct, and it will produce the correct output. It will run, and in
the end you will print out all the locations of the sequence.

Let's see how long it takes to run:

-bash-3.00$ date; perl findpromoters0; date
Thu Oct 20 14:28:06 EDT 2005
Thu Oct 20 14:28:48 EDT 2005
-bash-3.00$

Okay, so 42 seconds isn't bad! But wait ... what if we had the entire human genome, and a million tags? I'll let
you do the math, or the experiment, but it takes too long.

So we try to make it faster. How? Well, we notice that for each tag, we're reading in the entire genome from
the disk. Let's rewrite the code so that it only reads the genome in once (findpromoters1):

Read the genome data from a file
open(GENOME, "genome_data") or die "a horrible death: $!";
my $genome = <GENOME>;

Read the promoter data from a file
open(PROMOTERS, "promoters") or die "a horrible death: $!";
my @promoters = <PROMOTERS>;

Look for each occurence of each promoter in the genome
foreach my $promoter (@promoters) {
 chomp $promoter;
 while($genome =~ /$promoter/g) {
 # $-[0] prints the location of the find
 #print "$promoter $-[0]\n"; exit;
 $db{$promoter} = $-[0];
 }
}

And the time for that is:

-bash-3.00$ date; perl findpromoters1; date
Thu Oct 20 14:30:46 EDT 2005
Thu Oct 20 14:31:05 EDT 2005
-bash-3.00$

>From 42 seconds to 19 seconds -- sweet!

But can we do better? Notice that for each promoter, we're scanning through the entire genome. So we're

10/24/11 7:44 PMUsing Less Time

Page 4 of 4file:///Users/srbio/Desktop/time.html

scanning through the entire genome 5000 times.

Is there a way we can scan through the entire genome just once? Yes, and here is one solution:
Read the genome data from a file
open(GENOME, "genome_data") or die "a horrible death: $!";
my $genome = <GENOME>;

Read the promoter data from a file
open(PROMOTERS, "promoters") or die "a horrible death: $!";
foreach $promoter (<PROMOTERS>) {
 chomp $promoter;
 $promoters{$promoter} = 1;
}

Look for each occurence of each promoter in the genome
my $genomelength = length($genome);
for($i = 0; $i < $genomelength - 10 + 1; ++$i) {
 my $subsequence = substr($genome, $i, 10);

 # Now we just look in the hash to see if this subsequence is a promoter
 if($promoters{$subsequence}) {
 $db{$promoter} = $i;
 }
}

and we run a timing on it to get ("findpromoters2"):

-bash-3.00$ date ; perl findpromoters2 ; date
Thu Oct 20 15:42:15 EDT 2005
Thu Oct 20 15:42:16 EDT 2005
-bash-3.00$

That's one second, maybe less.

And so we've achieved a 43-fold speedup in our program. What was taking, say, two days to compute, now
takes an hour. We couldn't have achieved that speedup going to a super expensive computer (well, maybe a
cluster, which we'll discuss later.)

And so we see that finding a better algorithm is the best way to get good performance.

What, exactly, did we do? We eliminated unnecessary work. We eliminated the repetitive reading in of the
genome data from the disk; and we eliminated multiple scanning through the genome data.

These are the kinds of things that you can often find in the first version of a working program. So don't
neglect the important step of editing your code after you get a working draft.

Programming for Biology Last modified: Sun Oct 23 20:36:27 EDT 2011

10/24/11 7:43 PMUsing Less Space

Page 1 of 5file:///Users/srbio/Desktop/space.html

Using Less Space
Here is the main problem of space in bioinformatics:

Very large strings will swamp the main memory on your computer.

(Main memory, or RAM, is where your computer holds a running program; it is much smaller than the
memory on your disks.)

When a program on your computer starts to use up too much main memory, its performance starts to degrade.
The program will first enlist a portion of disk space to hold the part of the running program that it can no
longer fit. This is called swapping.

But when a program starts swapping, which involves a lot of writing and reading to and from hard disk, it can
get increasingly slow. The program may even start thrashing, that is, repeatedly writing and reading large
amounts of data between main memory and hard disk. A program that is thrashing is going really slow, and
it's slowing down the whole computer and other programs, too.

Take this snippet of code that calls get_chromosome:

my $chromosome1 = getchromosome(1);

When getchromosome(1) returns the data from human chromosome 1 to be stored in $chromosome1, the
program uses 100Mb of memory.

Operating on the chromosome may use additional memory. For instance, in perl, when you do a regular
expression search, you often want to save the successful match by using parentheses that set the special
variables $1, $&, and so on.

$chromosome =~ /AA(GAGTC*T)/;
my $pattern = $1;

But once you use these special variables, the inner workings of perl require the use of considerable additional
memory by your program. And you may make copies of all or part of the chromosome.

Your resulting code may be clear, straightforward to understand, and correct -- all good and proper things for
code to be -- but the amount of memory usage may still seriously slow down your program.

Motto: copying large strings is slow and takes up large amounts of memory

Editing for Space
Often, a program that barely runs at all and takes many hours of clogging up the computer, can be rewritten
to run more quickly by rewriting the algorithm so that it uses only a small fraction of the memory. It will fit
into less memory, and also run a lot faster.

10/24/11 7:43 PMUsing Less Space

Page 2 of 5file:///Users/srbio/Desktop/space.html

Use references to save space
There's one easy way to cut down on the number of big strings in a program.

Normally (without using references) a subroutine makes copies of the values passed into it, and it makes
copies of the values returned from it.

References allow subroutines to avoid the string copying.

When we pass a reference to a string as an argument to a subroutine, we don't pass a copy of the string -- we
pass a reference to the string, which takes almost no additional space.

And when the subroutine ends, whatever we've done with the string is immediately available to the calling
program, without having to use the return function, which would also copy the string.

In our example:

load_chromosome(1, \$chromosome1);

This new subroutine has two arguments. The 1 indicates that we want the biggest human chromosome,
chromosome 1.

The second argument is a reference to a scalar variable. Inside the subroutine, the reference is most likely
used to initialize an argument $chromref, which is a reference to the genomic data. And then, in the
subroutine, the DNA data is put into the dereferenced string:

sub load_chromosome {
 my($chromnumber, $chromref) = @_;

 ...(omitted)...

 $$chromref = <CHROMOSOME1>
}

It is not necessary to return the whole chromosome from the subroutine, which would make a copy of it. The
value is passed by the reference out of the subroutine.

Using references is also a great way to pass a large amount of data into a subroutine without making copies of
it. In this case, however, the fact that the subroutine can change the contents of the referenced data is
something to watch out for.

The rule of thumb is: if you don't need two copies of the data, you can use references.

Managing Memory with Buffers
One of the most efficient ways to deal with very large strings is to deal with them a little at a time.

Here is an example of a program that searches an entire chromosome for a particular 12-base pattern, using

10/24/11 7:43 PMUsing Less Space

Page 3 of 5file:///Users/srbio/Desktop/space.html

very little memory.

When searching for any regular expression in a chromosome, it's hard to see how you could avoid putting the
whole chromosome in a string. But very often there's a limit to the size of what you're searching for. In this
program, I'm looking for the 12-base pattern "ACGTACGTACGT."

I'm going to read the chromosome data into memory just a line or two at a time, search for the pattern, and
then reuse the memory to read in the next line or two of data.

The extra programming work involves:

First, keeping track of how much of the data has been read in, so I can report the locations in the chromosome
of successful searches.

Second, making sure I search across line breaks as well as within lines of data from the input file.

The following program reads in a FASTA file searches for my pattern in any amount of DNA--a whole
chromosome, a whole genome, a year's worth of Solexa data, even all known genetic data, while using only a
small amount of main memory.

$ perl find_fragment human.dna

For testing purposes I made a very short FASTA DNA file, human.dna, which contains:

>human dna: ACGTACGTACGT appears at positions 10, 40, and 98
AAAAAAAAAACGTACGTACGTCCGCGCGCGCGCGCGCGCACGTACGTACG
TGGGGGGGGGGGGGGGCCCCCCCCCCGGGGGGGGGGGGAAAAAAAAAACG
TACGTACGTTTTTTTTTTTTTTTTTTTTTTTTTTT

Here's the code for the program find_fragment:

#!/usr/bin/perl

use warnings;
use strict;

$fragment: the pattern to search for
$fraglen: the length of $fragment
$buffer: a buffer to hold the DNA from the input file
$position: the position of the buffer in the total DNA

my($fragment, $fraglen, $buffer, $position) = ('ACGTACGTACGT', 12, '', 0);

The first line of a FASTA file is a header and begins with '>'
my $header = <>;

Get the first line of DNA data, to start the ball rolling
$buffer = <>;
chomp $buffer;

The remaining lines are DNA data ending with newlines
while(my $newline = <>) {

10/24/11 7:43 PMUsing Less Space

Page 4 of 5file:///Users/srbio/Desktop/space.html

 # Add the new line to the buffer
 chomp $newline;
 $buffer .= $newline;

 # Search for the DNA fragment, which has a length of 12
 # (Report the character at string position 0 as being at position 1,
 # as usual in biology)
 while($buffer =~ /$fragment/gi) {
 print "Found $fragment at position ", $position + $-[0] + 1, "\n";
 }

 # Reset the position counter (will be true after you reset the buffer, next)
 $position = $position + length($buffer) - $fraglen + 1;

 # Discard the data in the buffer, except for a portion at the end
 # so patterns that appear across line breaks are not missed
 $buffer = substr($buffer, length($buffer) - $fraglen + 1, $fraglen - 1);
}

Here's the output of running the command
perl find_fragment human.dna:

Found ACGTACGTACGT at position 10
Found ACGTACGTACGT at position 40
Found ACGTACGTACGT at position 98

How the Code Works
I want to search for the fragment even if it is broken by new lines, so I'll have to look at least at two lines at a
time. I get the first line, and in the while loop that follows I'll start by adding more lines to the buffer.

Then the while loop starts reading in the next lines of the FASTA file. The newline character is removed with
chomp and the new line is added to the $buffer.

Then comes the short while loop that does the regular expression pattern match of the $fragment in the
$buffer.

When the fragment is found the program simply prints out the fragment's position. The variable $position
holds the position of the beginning of the buffer in the total DNA.

I also add 1, because biologists always say that the first base in a sequence of DNA is at position 1, whereas
Perl says that the first character in a string is at position 0. So I add 1 to the Perl position to get the biologist's
position.

The last two lines of code reset the buffer. First we eliminate the beginning (already searched) of the buffer,
and then we adjust the $position counter accordingly. The buffer is shortened so that it just keeps the part at
the very end that might be part of a pattern match that spans the newlines.

The program manages to search the entire genome for the fragment, while keeping at most two lines' worth of
DNA in $buffer, It performs very quickly, compared to a program that reads in a whole genome and blows

10/24/11 7:43 PMUsing Less Space

Page 5 of 5file:///Users/srbio/Desktop/space.html

out the memory in the process.

When You Should Bother
Programs may be developed on one computer, but run on very different computers.

A space-inefficient program might well work fine on your computer, but not work well at all when you run it
on another computer with less main memory installed. Or, it might work fine on the fly genome, but start
thrashing when you try it on the human genome.

If you know you'll be dealing with large data sets, like genomes, take the amount of space your program uses
as an important constraint when designing and coding. Then you won't have to go back and redo the entire
program when a large amount of DNA gets thrown at the program.

Data Compression
In Perl, as in any programming system, the size of the data that the program uses is an absolute lower bound
on how fast the program can perform.

Each base is typically represented in a computer language as one ASCII character taking one 8-bit byte, so 3
gigabases equals 3 gigabytes. Of course, you could represent each of the four bases using only 2 bits, so
considerable compression is possible; but such space efficiency is not commonly employed. When it is, you
can pack 4 times as much data into a given space (for nucleotides, that is.)

A 00
C 01
G 10
T 11

If you want an exercise, try using perl functions pack and vec to compress DNA sequence data to 4 bases per
byte.

Programming for Biology Last modified: Sun Oct 23 20:36:27 EDT 2011

10/24/11 7:44 PMProfiling

Page 1 of 4file:///Users/srbio/Desktop/profiling.html

Profiling
You saw earlier an easy way on Unix to see how long a program takes:

date; perl findpromoters1; date

This prints the time, then immediately runs the program, and then immediately prints the time again.

Perl has several much more detailed ways to examine the performance of a program.

I'll just show you one of them, called DProf. DProf reports on various aspects of your program's performance.

The most valuable report is probably the summary by subroutine.

By seeing which subroutines are taking the most time, you can narrow your re-editing of the program to just
those subroutines, and quickly make the improvements where they count the most.

For demonstration, I'm going to use a program with a few subroutines; namely, the makerandom program we
used earlier to make random DNA genomic sequence and putative DNA binding sites.

First you have to load the Devel::Prof module in your program. You do this by adding the -d:DProf
command-line argument. Then when your program runs, the module makes counts of many things in the
program. Your program will take a bit longer to run, but you'll collect valuable statistics on its performance.

So one can simply run the program as usual, adding the command-line argument. When it's done, it will have
created a file called tmon.out in my directory. I then run the dprofpp tmon.out program to see the results of
the profile of my program:

$ perl -d:DProf makerandom
$ dprofpp tmon.out
Total Elapsed Time = 5.464274 Seconds
 User+System Time = 5.354274 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 72.2 3.870 7.594 105000 0.0000 0.0000 main::randomnucleotide
 69.5 3.725 3.725 105000 0.0000 0.0000 main::randomelement
 33.7 1.807 9.402 5001 0.0004 0.0019 main::make_random_DNA
 0.22 0.012 0.525 1 0.0125 0.5250 main::make_random_DNA_set
$

If I wanted to speed this program up, I'd head straight for the randomelement and randomnucleotide
subroutines to see what I might be able to tweak in them, since my analysis shows that they take almost all
the time in the program.

DProf has many options, but this is how I almost always use it, as it's simple and tells me what I need to
know.

Some older perls might not have DProf installed, in which case you have to do something like this: (you may

10/24/11 7:44 PMProfiling

Page 2 of 4file:///Users/srbio/Desktop/profiling.html

need root permission):

$ perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.7601)
ReadLine support enabled

cpan> install Devel::DProf
CPAN: Storable loaded ok
Going to read /root/.cpan/Metadata
 Database was generated on Wed, 19 Oct 2005 22:01:03 GMT
Devel::DProf is up to date.

cpan> quit
Lockfile removed.
$

In this case perl reported that the Devel::DProf module was already installed with the latest version; if not, it
would have installed it.

You know, I wonder if I can speed up my makerandom program. Let's look at it. Hmmm. I did try a few
things out: let's see how the new program makerandom2 behaves:

$ perl -d:DProf makerandom2
$ dprofpp tmon.out
Total Elapsed Time = 1.27999 Seconds
 User+System Time = 1.27999 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 96.8 1.240 1.240 5001 0.0002 0.0002 main::make_random_DNA
 0.78 0.010 0.050 1 0.0100 0.0500 main::make_random_DNA_set
$

Cool! From over 5 seconds to a little over 1 second. A five-fold speedup!

How did I do it? Here's the new version:

srand();

my(@nucleotides) = ('A', 'C', 'G', 'T');

$dna = make_random_DNA(1000000);
open(DNA, ">genomic_data") or die;
print DNA $dna;

@promoters = make_random_DNA_set(10, 5000);
open(PROMOTERS, ">promoters") or die;
print PROMOTERS join("\n",@promoters),"\n";

Make a string of random DNA of specified length.
sub make_random_DNA {

 my($length) = @_;
 my $dna;

10/24/11 7:44 PMProfiling

Page 3 of 4file:///Users/srbio/Desktop/profiling.html

 for (my $i=0 ; $i < $length ; ++$i) {
 $dna .= $nucleotides[rand @nucleotides];
 }

 return $dna;
}

make_random_DNA_set
sub make_random_DNA_set {

 my($length, $size_of_set) = @_;
 my $dna;
 my @set;

 # Create set of random DNA
 for (my $i = 0; $i < $size_of_set ; ++$i) {

 # make a random DNA fragment
 $dna = make_random_DNA ($length);

 # add $dna fragment to @set
 push(@set, $dna);
 }

 return @set;
}

First, I moved the line

my(@nucleotides) = ('A', 'C', 'G', 'T');

out of a subroutine and up to the top of the program. This way the array doesn't have to get reinitialized each
time the program is called.

But much more importantly, I eliminated two subroutine calls entirely, and put their functionality directly
into the lines of code that were calling them. First I axed randomelement by putting its functionality directly
into the calling subroutine randomnucleotide: from

sub randomnucleotide {

 my(@nucleotides) = ('A', 'C', 'G', 'T');

 return randomelement(@nucleotides);
}

sub randomelement {

 my(@array) = @_;

 return $array[rand @array];
}

to

10/24/11 7:44 PMProfiling

Page 4 of 4file:///Users/srbio/Desktop/profiling.html

my(@nucleotides) = ('A', 'C', 'G', 'T');

sub randomnucleotide {

 return $nucleotides[rand @nucleotides];
}

and finally I eliminated randomnucleotide by putting its code directly into the calling program: from

 $dna .= randomnucleotide();

to

 $dna .= $nucleotides[rand @nucleotides];

In short, I eliminated two subroutine calls that were each being called 105000 times, and that made a
significant speedup. Usually, you're more likely to try to improve a subroutine than to eliminate it, but as you
see eliminating a subroutine can on occasion have big payoffs.

The book by Bentley "Writing Efficient Code" discusses such "tricks" in entertaining and useful detail.

So I hope you're convinced that DProf is worthwhile. There are other profiling methods available in Perl too,
and you might want to explore them.

Programming for Biology Last modified: Sun Oct 23 20:36:27 EDT 2011

10/24/11 7:43 PMParallel Processing

Page 1 of 3file:///Users/srbio/Desktop/parallel.html

There are different ways to think of parallel processing.

Parallel Algorithms
One kind of parallel processing actually uses the specific topology of the interconnections between the CPUs
to implement new kinds of algorithms. This kind of parallel processing is fascinating and gives you very fast
programs, but is way beyond the scope of this lecture or this course. But I thought you'd like to know that it
exists.

In this hard-core parallel algorithms work, you might work on special computers (e.g. "grids", "butterfly
networks") or even on purely theoretical models of parallel computation, and you design algorithms to run on
those types of parallel computers.

Parallel Processing on Networks and Clusters
More common is this scenario: say you are doing 40 tasks, one after the other, and each one takes an hour. It
will take your working week to finish the tasks.

Now let's say you figure out a way to do all the tasks simultaneously, and each one still takes an hour. You'll
now finish the tasks, all of them, in one hour instead of one week.

One kind of parallel processing is just like this example. That's the kind of parallelism I'll talk about here, in
terms of networks and clusters and threads. You simply divide your program up into parts that can be
performed simultaneously, and then you run each part on its own CPU. Not all problems can be divided up
like this, but those that can (say running a million blast searches) can get big speedups fairly easily.

Network Programming
One of the most successful forms of multi-processor computing has been network programming.

Network programming involves connecting two or more computers by a communications line and
implementing a protocol that enables them to exchange information.

The development of computer networks began in earnest in the 1950s, and the various networks were
interconnected by the internet (from interconnected networks) beginning in the late 1970s.

The protocols supported by the internet gradually expanded, until the protocols known as the web (or "world
wide web") became widely popular beginning around 1990.

It is quite possible to program several computers to interact, using the several programming interfaces to the
protocols that are available from such languages as perl.

Perl has supported these protocol interfaces since the beginning. I can speak from personal experience that it's
a lot of fun to build a useful network service in this way. (In 1992 I was searching all of Genbank with

10/24/11 7:43 PMParallel Processing

Page 2 of 3file:///Users/srbio/Desktop/parallel.html

regular expressions in about 35 seconds, by distributing the job with a network service written entirely in
perl.)

I recommend the book "Network Programming with Perl" by Lincoln Stein if you're interested in these
techniques.

Threads
Threads are different from, but related to, multiprocessing. Threads are multiple execution paths built into
one process, that share resources like global variables, signals, and such. You can have a multithreading
program that runs on a single processor; or, if you're running on a multiprocessor (it's common to have from
2 to around 24 processors on a given machine) the threads may be executed on different processors, giving
you the advantage of parallelism.

Threads are a capability that is built into an operating system (or not, as the case may be.) If your operating
system supports threads, and your programming language gives you access to them, then you can use them in
your program.

If you're interested in threads, you want to use the "threads" (not "Threads") module:

use threads;

I'm going to skip the examples of threads programs: see me if you're interested.

Clusters
Clusters are multiple CPUs joined in a simple network. They are typically used to take a program that must
compute the same way over many inputs, and run the program on all the CPUs, dividing the input up between
them.

If you have access to a (usually) Linux cluster where you work, take the time to find out how to submit
programs to it.

Once I had to do three computation-intensive calculations over several genomes. Each one took a week or
two to finish when running on a single computer. On the Linux cluster, they all finished within a small
number of hours, and using that precomputation I was able to carry my search for novel genes to a successful
conclusion.

That Linux cluster had about 450 CPUs, and is a fairly big one. But it's quite straightforward -- you could do
it yourself -- to buy 10 or 20 inexpensive Linux boxes and construct a Linux cluster that can speed up your
large-scale, repetitive computations by 10 or 20 times.

Cloud computing
Cloud computing is a marketing term that has become very popular, so it's not a very exact way to describe a
computation.

10/24/11 7:43 PMParallel Processing

Page 3 of 3file:///Users/srbio/Desktop/parallel.html

Typically, a "cloud" is a collection of computers owned by a company that can lease time to smaller firms or
individuals, in order to accomplish large computations without the need for the customers to buy and
maintain large computers and networks.

Increasingly, a "cloud" may incorporate some form of interface to services that enable cluster computing, for
instance.

Programming for Biology Last modified: Sun Oct 23 20:36:27 EDT 2011

10/22/11	

1	

Programming for Biology 
Protein Evolution / Similarity Searching"

1	

Bill Pearson"
wrp@virginia.edu"

What BLAST Does / Why BLAST works"

2	

Sequence Similarity - Conclusions"
•  Homologous sequences share a common ancestor,

but most sequences are non-homologous"
•  Always compare Protein Sequences"
•  Sequence Homology can be reliably inferred from

statistically significant similarity (non-homology cannot
from non-similarity)"

•  Homologous proteins share common structures, but
not necessarily common functions"

•  Sequence statistical significance estimates are
accurate (verify this yourself)10-6 < E() < 10-3 is
statistically significant"

•  Scoring matrices set evolutionary look back horizons -
not every discovery is distant"

•  PSI-BLAST can be more sensitive, but with lower
statistical accuracy"

10/22/11	

2	

Establishing homology from  
statistically significant similarity 

Why BLAST works"
•  For most proteins, homologs are easily found

over long evolutionary distances (500 My – 2
By) using standard approaches (BLAST,
FASTA)"

•  Difficult for distant relationships or very short
domains"

•  Most default search parameters are optimized
for distant relationships and work well"

3	

This talk is not about:"
•  Alignment"

–  Alignment quality may be more sensitive to parameter
choice"

–  Multiple sequences for biologically accurate alignments"
•  Inferring Protein Function"

–  Homology (common ancestry) implies common
structure (guaranteed), not necessarily common
function"

–  Homologs have different functions"
–  Non-homologs have similar (or identical) functions"

•  The best sequences for building evolutionary trees"
–  Protein sequences are clearly best for establishing

homology, but DNA sequences may be better for
resolving recent divergence"

4	

10/22/11	

3	

5	

Protein Evolution and Sequence Similarity"

•  What is Homology and how do we recognize it?"
•  How do we measure sequence similarity –

alignments and scoring matrices?"
•  DNA vs protein comparison"
•  Alignment Algorithms/Local sequence alignments"
•  Similarity scoring matrices"
•  When are we certain that an alignment is

significant - similarity score statistics?"
•  When to trust similarity statistics?"
•  Improving sensitivity with PSI-BLAST"

Homologues share a common ancestor"

6	

chemical evolution"

prokaryotes/eukaryotes"

plants/animals"

vertebrates/"
arthopods"

self-replicating systems"

4,289"6,530"
18,000"

tim
e

(b
ilio

ns
 o

f y
ea

rs
)"

hu
m

an
"

ho
rs

e"
fis

h"

in
se

ct
"

w
or

m
"

w
he

at
"

ye
as

t"

E.
 c

ol
i"

-0.1"

-1.0"

-2.0"

-3.0"

-4.0"

10/22/11	

4	

When do we infer homology?"

7	

Bovine trypsin (5ptp)"
Structure: "E()< 10-23;"

"RMSD 0.0 A "
Sequence: "E()< 10-84"

"100% 223/223"

S. griseus trypsin (1sgt)"
E()< 10-14 RMSD 1.6 A"
E()< 10-19 36%; 226/223"

S. griseus protease A (2sga)"
E()< 10-4; RMSD 2.6 A"
E()< 2.6 25%; 199/181"

Homology <=> structural similarity"
 ? sequence similarity"

When can we infer non-homology?"

8	

Subtilisin (1sbt)"
E() >100"
E()<280; 25% 159/275"

Cytochrome c4 (1etp)"
E() > 100"
E()<5.5; 23% 171/190"

Non-homologous proteins have"
different structures"

Bovine trypsin (5ptp)"
Structure: "E()<10-23"

"RMSD 0.0 A "
Sequence: "E()<10-84"

"100% 223/223"
"

10/22/11	

5	

Homology is confusing I: 
Homology defined Three(?) Ways"

•  Proteins/genes/DNA that share a common
ancestor"

•  Specific positions/columns in a multiple sequence
alignment that have a 1:1 relationship over
evolutionary history"
–  sequences are 50% homologous ???"

•  Specific (morphological/functional) characters
that share a recent divergence (clade)"
–  bird/bat/butterfly wings are/are not homologous"

9	

Single origin" Multiple origins"

present"

past"

Homology is confusing II: 
Are All Sequences Homologous?"

No Homology without excess similarity"

10/22/11	

6	

Homology from (sequence/structure) similarity"

•  Sequences are inferred to share a common
ancestor based on statistically significant excess
similarity. Any evidence of excess similarity can be
used to infer homology"

•  Lack of evidence cannot be used to infer non-
homology."
–  Proteins with different structures are non-

homologous"
•  There are always two alternative hypotheses:

homology (common ancestry), or independence –
one must weigh the evidence for each hypothesis
(independence is the null hypothesis)."

11	

12	

Homology"?"
<=>"Similarity"

Convergence"?"Divergence"

Biological"
Significance"

?"
<=>"

Statistical"
Significance"

What BLAST does:"

Why BLAST works:"

10/22/11	

7	

13	

+----------+------+------+---------------------------+---------------------------+------------+!
| expect | %_id | alen | E coli descr | Human descr | sp_name |!
+----------+------+------+---------------------------+---------------------------+------------+!
| 2.7e-206 | 53.8 | 944 | glycine decarboxylase, P | Glycine dehydrogenase [de | GCSP_HUMAN |!
| 1.2e-176 | 59.5 | 706 | methylmalonyl-CoA mutase | Methylmalonyl-CoA mutase, | MUTA_HUMAN |!
| 3.8e-176 | 50.6 | 803 | glycogen phosphorylase [E | Glycogen phosphorylase, l | PHS1_HUMAN |!
| 9.9e-173 | 55.6 | 1222 | B12-dependent homocystein | 5-methyltetrahydrofolate- | METH_HUMAN |!
| 1.8e-165 | 41.8 | 1031 | carbamoyl-phosphate synth | Carbamoyl-phosphate synth | CPSM_HUMAN |!
| 5.6e-159 | 65.7 | 542 | glucosephosphate isomeras | Glucose-6-phosphate isome | G6PI_HUMAN |!
| 8.1e-143 | 53.7 | 855 | aconitate hydrase 1 [Esch | Iron-responsive element b | IRE1_HUMAN |!
| 2.5e-134 | 73.0 | 459 | membrane-bound ATP syntha | ATP synthase beta chain, | ATPB_HUMAN |!
| 3.3e-121 | 55.8 | 550 | succinate dehydrogenase, | Succinate dehydrogenase [| DHSA_HUMAN |!
| 1.5e-113 | 60.6 | 401 | putative aminotransferase | Cysteine desulfurase, mit | NFS1_HUMAN |!
| 4.4e-111 | 60.9 | 460 | fumarase C= fumarate hydr | Fumarate hydratase, mitoc | FUMH_HUMAN |!
| 1.5e-109 | 56.1 | 474 | succinate-semialdehyde de | Succinate semialdehyde de | SSDH_HUMAN |!
| 3.6e-106 | 44.7 | 789 | maltodextrin phosphorylas | Glycogen phosphorylase, m | PHS2_HUMAN |!
| 1.4e-102 | 53.1 | 484 | NAD+-dependent betaine al | Aldehyde dehydrogenase, E | DHAG_HUMAN |!
| 3.8e-98 | 53.0 | 449 | pyridine nucleotide trans | NAD(P) transhydrogenase, | NNTM_HUMAN |!
| 5.8e-96 | 49.9 | 489 | glycerol kinase [Escheric | Glycerol kinase, testis s | GKP2_HUMAN |!
| 2.1e-95 | 66.8 | 328 | glyceraldehyde-3-phosphat | Glyceraldehyde 3-phosphat | G3P2_HUMAN |!
| 5.0e-91 | 62.5 | 368 | alcohol dehydrogenase cla | Alcohol dehydrogenase cla | ADHX_HUMAN |!
| 6.7e-91 | 56.5 | 393 | protein chain elongation | Elongation factor Tu, mit | EFTU_HUMAN |!
| 9.5e-91 | 56.6 | 392 | protein chain elongation | Elongation factor Tu, mit | EFTU_HUMAN |!
| 2.2e-89 | 59.1 | 369 | methionine adenosyltransf | S-adenosylmethionine synt | METK_HUMAN |!
| 6.5e-88 | 53.3 | 422 | enolase [Escherichia coli | Alpha enolase (2-phospho- | ENOA_HUMAN |!
| 9.2e-88 | 43.3 | 536 | NAD-linked malate dehydro | NADP-dependent malic enzy | MAOX_HUMAN |!
| 7.3e-86 | 55.5 | 389 | 2-amino-3-ketobutyrate Co | 2-amino-3-ketobutyrate co | KBL_HUMAN |!
| 5.2e-83 | 44.4 | 543 | degrades sigma32, integra | AFG3-like protein 2 (Para | AF32_HUMAN |!
+----------+------+------+---------------------------+---------------------------+------------+!

E. coli proteins vs Human – Ancient Protein Domains	

14	

Orthologs and Paralogs –  
Inferring Function"

H
um

an
	

M
ou

se
	

H
or

se
	

C
ow
	

W
ha

le
	

Fr
og
	

Tu
rtl

e	

O

st
ric

h	

C

hi
ck

en
	

La
m

pr
ey
	

C
ar

p	
 Ea
rth

w
or

m
	

St
ar

fis
h	

H
on

ey
be

e	

Fr

ui
t fl

y	

Lo

cu
st
	

Ye
as

t (
Pi

ch
ia

)"
Ye

as
t (

Sa
cc

ha
r.)
	

Ye
as

t (
Sc

hi
zo

.)"
N

eu
ro

sp
or

a	

C
or

n	

R

ic
e	

Bo
x

el
de

r	

W

he
at
	

Sp
in

ac
h	

Le
ek
	

G
in

ko
	

G
re

en
 a

lg
ae
	

c2
 -

R
ho

do
ps

eu
do

m
on

as
 v

iri
di

s"
c2

 -
R

ho
do

ps
eu

do
m

on
as

 a
ci

do
ph

ila
	

c2
 -

R
ho

do
m

ic
ro

bi
um

 v
an

ni
el

ii	

C

2
Ag

ro
ba

ct
er

iu
m

 tu
m

ef
ac

ie
ns
"

c5
50

 -
N

itr
ob

ac
te

r w
in

og
ad

sk
yi
"

Orthologous sequences – "
the cytchrome ʻcʼ family	

Paralogous genes – globins	

10/22/11	

8	

15	

Protein Evolution and Sequence Similarity"

•  What is Homology and how do we recognize it?"
•  How do we measure sequence similarity –

alignments and scoring matrices?"
•  DNA vs protein comparison"
•  Alignment Algorithms/Local sequence alignments"
•  Similarity scoring matrices"
•  When are we certain that an alignment is

significant - similarity score statistics?"
•  When to trust similarity statistics?"
•  Improving sensitivity with PSI-BLAST"

16	

z
-
s
c

o
b
s

E
(
)
!

<

2
0

9

0
:
=
!

2
2

1

0
:
=

o
n
e

=

r
e
p
r
e
s
e
n
t
s

2
3

l
i
b
r
a
r
y

s
e
q
u
e
n
c
e
s
!

2
4

2

0
:
=
!

2
6

1

0
:
=
!

2
8

3

3
:
*
!

3
0

8

1
8
:
*
!

3
2

4
9

7
1
:
=
=
=
*
!

3
4

1
4
5

1
9
2
:
=
=
=
=
=
=
=

*
!

3
6

3
4
2

3
9
5
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

*
!

3
8

5
6
7

6
5
3
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

*
!

4
0

8
8
2

9
1
1
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
!

4
2

1
1
2
0

1
1
1
4
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
!

4
4

1
2
7
4

1
2
2
9
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
!

4
6

1
3
6
7

1
2
5
1
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
=
=
=
!

4
8

1
2
9
9

1
1
9
8
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
=
=
!

5
0

1
1
4
0

1
0
9
3
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
!

5
2

1
0
4
9

9
6
1
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
=
=
!

5
4

8
6
9

8
2
1
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
=
=
!

5
6

6
0
7

6
8
6
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

*
!

5
8

4
7
1

5
6
3
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

*
!

6
0

4
1
9

4
5
6
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
!

6
2

3
3
6

3
6
6
:
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
*
!

6
4

2
6
3

2
9
1
:
=
=
=
=
=
=
=
=
=
=
=
=
*
!

6
6

2
1
4

2
3
0
:
=
=
=
=
=
=
=
=
=
*
!

6
8

1
7
7

1
8
1
:
=
=
=
=
=
=
=
*
!

7
0

1
4
3

1
4
2
:
=
=
=
=
=
=
*
!

7
2

1
2
4

1
1
1
:
=
=
=
=
*
=
!

7
4

8
5

8
6
:
=
=
=
*
!

7
6

6
3

6
7
:
=
=
*
!

7
8

4
7

5
2
:
=
=
*
!

8
0

4
5

4
1
:
=
*
!

8
2

3
3

3
1
:
=
*
!

8
4

2
9

2
5
:
=
*
!

8
6

2
0

1
9
:
*
!

8
8

1
9

1
5
:
*

i
n
s
e
t

=

r
e
p
r
e
s
e
n
t
s

1

l
i
b
r
a
r
y

s
e
q
u
e
n
c
e
s
!

9
0

1
6

1
1
:
*
!

9
2

1
8

9
:
*

:
=
=
=
=
=
=
=
=
*
=
=
=
=
=
=
=
=
=
!

9
4

9

7
:
*

:
=
=
=
=
=
=
*
=
=
!

9
6

7

5
:
*

:
=
=
=
=
*
=
=
!

9
8

4

4
:
*

:
=
=
=
*
!

1
0
0

1
3

3
:
*

:
=
=
*
=
=
=
=
=
=
=
=
=
=
!

1
0
2

5

2
:
*

:
=
*
=
=
=
!

1
0
4

2

2
:
*

:
=
*
!

1
0
6

5

1
:
*

:
*
=
=
=
=
!

1
0
8

4

1
:
*

:
*
=
=
=
!

1
1
0

2

1
:
*

:
*
=
!

1
1
2

5

1
:
*

:
*
=
=
=
=
!

1
1
4

6

1
:
*

:
*
=
=
=
=
=
!

1
1
6

2

0
:
=

*
=
=
!

1
1
8

1

0
:
=

*
=
!

>
1
2
0

3
0

0
:
=
=

*
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
!

Query: atp6_human.aa ATP synthase a chain - 226 aa  
Library: PIR1 Annotated (rel. 66)  
 5190103 residues in 13351 sequences!

10/22/11	

9	

17	

Inferring Homology from Statistical
Significance"

•  Real UNRELATED sequences have similarity
scores that are indistinguishable from
RANDOM sequences"

•  If a similarity is NOT RANDOM, then it must
be NOT UNRELATED"

•  Therefore, NOT RANDOM (statistically
significant) similarity must reflect RELATED
sequences"

18	

The best scores are: (len) s-w bits E(13351) %_id %_sim alen!
sp|P00846|ATP6_HUMAN ATP synthase a chain (AT (226) 1400 325.8 5.8e-90 1.000 1.000 226!
sp|P00847|ATP6_BOVIN ATP synthase a chain (AT (226) 1157 270.5 2.5e-73 0.779 0.951 226!
sp|P00848|ATP6_MOUSE ATP synthase a chain (AT (226) 1118 261.7 1.2e-70 0.757 0.916 226!
sp|P00849|ATP6_XENLA ATP synthase a chain (AT (226) 745 176.8 4.0e-45 0.533 0.847 229!
sp|P00851|ATP6_DROYA ATP synthase a chain (AT (224) 473 115.0 1.7e-26 0.378 0.721 222!
sp|P00854|ATP6_YEAST ATP synthase a chain pre (259) 428 104.7 2.3e-23 0.353 0.694 232!
sp|P00852|ATP6_EMENI ATP synthase a chain pre (256) 365 90.4 4.8e-19 0.304 0.691 230!
sp|P14862|ATP6_COCHE ATP synthase a chain (AT (257) 353 87.7 3.2e-18 0.313 0.650 214!
sp|P68526|ATP6_TRITI ATP synthase a chain (AT (386) 309 77.6 5.1e-15 0.289 0.651 235!
sp|P05499|ATP6_TOBAC ATP synthase a chain (AT (395) 309 77.6 5.2e-15 0.283 0.635 233!
sp|P07925|ATP6_MAIZE ATP synthase a chain (AT (291) 283 71.7 2.3e-13 0.311 0.667 180!
sp|P0AB98|ATP6_ECOLI ATP synthase a chain (AT (271) 178 47.9 3.2e-06 0.233 0.585 236!
sp|P0C2Y5|ATPI_ORYSA Chloroplast ATP synth (A (247) 144 40.1 0.00062 0.242 0.580 231!
sp|P06452|ATPI_PEA Chloroplast ATP synthase a (247) 143 39.9 0.00072 0.250 0.586 232!
sp|P27178|ATP6_SYNY3 ATP synthase a chain (AT (276) 142 39.7 0.00095 0.265 0.571 170!
sp|P06451|ATPI_SPIOL Chloroplast ATP synthase (247) 138 38.8 0.0016 0.242 0.580 231!
sp|P08444|ATP6_SYNP6 ATP synthase a chain (AT (261) 127 36.3 0.0095 0.263 0.557 167!
sp|P69371|ATPI_ATRBE Chloroplast ATP synthase (247) 126 36.0 0.01 0.221 0.571 231!
sp|P06289|ATPI_MARPO Chloroplast ATP synthase (248) 126 36.0 0.011 0.240 0.575 167!
sp|P30391|ATPI_EUGGR Chloroplast ATP synthase (251) 123 35.4 0.017 0.257 0.579 214!
!
sp|P19568|TLCA_RICPR ADP,ATP carrier protein (498) 122 35.0 0.043 0.243 0.579 152!
!
sp|P24966|CYB_TAYTA Cytochrome b (379) 113 33.0 0.13 0.234 0.532 158!
sp|P03892|NU2M_BOVIN NADH-ubiquinone oxidored (347) 107 31.7 0.31 0.261 0.479 211!
sp|P68092|CYB_STEAT Cytochrome b (379) 104 31.0 0.54 0.277 0.547 137!
sp|P03891|NU2M_HUMAN NADH-ubiquinone oxidored (347) 103 30.8 0.58 0.201 0.537 149!
sp|P00156|CYB_HUMAN Cytochrome b (380) 102 30.5 0.74 0.268 0.585 205!
sp|P15993|AROP_ECOLI Aromatic amino acid tr (457) 103 30.7 0.78 0.234 0.622 111!
sp|P24965|CYB_TRANA Cytochrome b (379) 101 30.3 0.87 0.234 0.563 158!
sp|P29631|CYB_POMTE Cytochrome b (308) 99 29.9 0.95 0.274 0.584 113!
sp|P24953|CYB_CAPHI Cytochrome b (379) 99 29.8 1.2 0.236 0.564 140!

Query: atp6_human.aa ATP synthase a chain - 226 aa  
Library: 5190103 residues in 13351 sequences!

10/22/11	

10	

19	

>>sp|P0AB98|ATP6_ECOLI ATP synthase a chain (ATPase protein 6) g (271 aa)!
 s-w opt: 178 Z-score: 218.2 bits: 47.9 E(): 3.2e-06!
Smith-Waterman score: 178; 23.3% identity (58.5% similar) in 236 aa overlap (8-222:45-264)!
!
 10 20 30 40 !
human MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQ!
 :.. ..::: :: :. .!
E coli NMTPQDYIGHHLNNLQLDLRTFSLVDPQNPPATFWTINIDSMFFSVVLGL---LFLVLFRSVAKKATSG-VPGKFQTAIE!
 10 20 30 40 50 60 70 80!
!
 50 60 70 80 90 100 110 !
human WLIKLTSKQMMTMHNTKGRTWSLMLVSLIIFIATTNLLGLLP---------HSF-------TPTTQLSMNLAMAIPLWAG!
 .: :.. :.. ::. ::: : . .:.......:.::. .. !
E coli LVIGFVNGSVKDMYHGKSKLIAPLALTIFVWVFLMNLMDLLPIDLLPYIAEHVLGLPALRVVPSADVNVTLSMALGVF--!
 90 100 110 120 130 140 150 !
!
 120 130 140 150 160 170 180 !
human TVIMGFRSKIKNALAHFLPQGTPTPL-----IPMLVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINL!
 ... : : : . : :. ::. .:.: .::: .:..:..:: .:. ::.:.. ::.. : :!
E coli -ILILFYSIKMKGIGGFTKELTLQPFNHWAFIPVNLILEGVSLLSKPVSLGLRLFGNMYAGELIFILIAGLLPWWSQWIL!
 160 170 180 190 200 210 220 230 !
!
 190 200 210 220 !
human PSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT !
 :: :::. .::..: .:. .:: !
E coli NVPWAIFHILIIT---------LQAFIFMVLTIVYLSMASEEH!
 240 250 260 270 !

20	

The PAM250 matrix"
Cys 12!
Ser 0 2!
Thr -2 1 3!
Pro -1 1 0 6!
Ala -2 1 1 1 2!
Gly -3 1 0 -1 1 5!
Asn -4 1 0 -1 0 0 2!
Asp -5 0 0 -1 0 1 2 4!
Glu -5 0 0 -1 0 0 1 3 4!
Gln -5 -1 -1 0 0 -1 1 2 2 4!
His -3 -1 -1 0 -1 -2 2 1 1 3 6!
Arg -4 0 -1 0 -2 -3 0 -1 -1 1 2 6!
Lys -5 0 0 -1 -1 -2 1 0 0 1 0 3 5!
Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6!
Ile -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 2 5!
Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3 4 2 6!
Val -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4!
Phe -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9!
Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10!
Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17!
 C S T P A G N D E Q H R K M I L V F Y W!

10/22/11	

11	

21	

>>sp|P30391|ATPI_EUGGR Chloroplast ATP synthase a chain precursor (251 aa)!
 s-w opt: 123 Z-score: 151.3 bits: 35.4 E(): 0.017!
Smith-Waterman score: 123; 25.7% identity (57.9% similar) in 214 aa overlap (21-222:50-243)!
!
 10 20 30 40 50 60!
human MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTM!
 .::: : : : :.: : : .:.:... . .!
Euglena VNMFISGIFQIANVEVGQHFYWSILGFQIHGQVLINSWIVILIIGF--LSIYTTKNL--TLVPANKQIFIELVTEFITDI!
 10 20 30 40 50 60 70 80 !
!
 70 80 90 100 110 120 !
human HNTK-GRT----WSLMLVSLIIFIATTNLLG-LLPHSFT--PTTQL---SMNLAMAIPLWAGTVIMGFRSKI-KNALAHF!
 .:. :. : :: ..: : :.: .. :. .: : : . : . . :..:..:!
Euglena SKTQIGEKEYSKWVPYIGTMFLFIFVSNWSGALIPWKIIELPNGELGAPTNDINTTAGLAILTSLAYFYAGLNKKGLTYF!
 90 100 110 120 130 140 150 160 !
!
 130 140 150 160 170 180 190 200 !
Human LPQGTPTPLIPMLVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVAL!
 :::.. . :.: .. .:..:. :: .:: : .:.. .. : .: ::. . ::.: !
Euglena KKYVQPTPILLPINILEDFT---KPLSLSFRLFGNILADELVVAVLVSL--------VP--LIVPVPLIFLGLF---TSG!
 170 180 190 200 210 220 !
!
 210 220 !
human IQAYVFTLLVSLYLHDNT !
 ::: .:. : . :. !
Euglena IQALIFATLSGSYIGEAMEGHH!
 230 240 250 !
!

22	

The best scores are: (len) s-w bits E(13351) %_id %_sim alen!
sp|P00846|ATP6_HUMAN ATP synthase a chain (AT (226) 1400 325.8 5.8e-90 1.000 1.000 226!
sp|P00847|ATP6_BOVIN ATP synthase a chain (AT (226) 1157 270.5 2.5e-73 0.779 0.951 226!
sp|P00848|ATP6_MOUSE ATP synthase a chain (AT (226) 1118 261.7 1.2e-70 0.757 0.916 226!
sp|P00849|ATP6_XENLA ATP synthase a chain (AT (226) 745 176.8 4.0e-45 0.533 0.847 229!
sp|P00851|ATP6_DROYA ATP synthase a chain (AT (224) 473 115.0 1.7e-26 0.378 0.721 222!
sp|P00854|ATP6_YEAST ATP synthase a chain pre (259) 428 104.7 2.3e-23 0.353 0.694 232!
sp|P00852|ATP6_EMENI ATP synthase a chain pre (256) 365 90.4 4.8e-19 0.304 0.691 230!
sp|P14862|ATP6_COCHE ATP synthase a chain (AT (257) 353 87.7 3.2e-18 0.313 0.650 214!
sp|P68526|ATP6_TRITI ATP synthase a chain (AT (386) 309 77.6 5.1e-15 0.289 0.651 235!
sp|P05499|ATP6_TOBAC ATP synthase a chain (AT (395) 309 77.6 5.2e-15 0.283 0.635 233!
sp|P07925|ATP6_MAIZE ATP synthase a chain (AT (291) 283 71.7 2.3e-13 0.311 0.667 180!
sp|P0AB98|ATP6_ECOLI ATP synthase a chain (AT (271) 178 47.9 3.2e-06 0.233 0.585 236!
sp|P0C2Y5|ATPI_ORYSA Chloroplast ATP synth (A (247) 144 40.1 0.00062 0.242 0.580 231!
sp|P06452|ATPI_PEA Chloroplast ATP synthase a (247) 143 39.9 0.00072 0.250 0.586 232!
sp|P27178|ATP6_SYNY3 ATP synthase a chain (AT (276) 142 39.7 0.00095 0.265 0.571 170!
sp|P06451|ATPI_SPIOL Chloroplast ATP synthase (247) 138 38.8 0.0016 0.242 0.580 231!
sp|P08444|ATP6_SYNP6 ATP synthase a chain (AT (261) 127 36.3 0.0095 0.263 0.557 167!
sp|P69371|ATPI_ATRBE Chloroplast ATP synthase (247) 126 36.0 0.01 0.221 0.571 231!
sp|P06289|ATPI_MARPO Chloroplast ATP synthase (248) 126 36.0 0.011 0.240 0.575 167!
sp|P30391|ATPI_EUGGR Chloroplast ATP synthase (251) 123 35.4 0.017 0.257 0.579 214!
!
sp|P19568|TLCA_RICPR ADP,ATP carrier protein (498) 122 35.0 0.043 0.243 0.579 152!
!
sp|P24966|CYB_TAYTA Cytochrome b (379) 113 33.0 0.13 0.234 0.532 158!
sp|P03892|NU2M_BOVIN NADH-ubiquinone oxidored (347) 107 31.7 0.31 0.261 0.479 211!
sp|P68092|CYB_STEAT Cytochrome b (379) 104 31.0 0.54 0.277 0.547 137!
sp|P03891|NU2M_HUMAN NADH-ubiquinone oxidored (347) 103 30.8 0.58 0.201 0.537 149!
sp|P00156|CYB_HUMAN Cytochrome b (380) 102 30.5 0.74 0.268 0.585 205!
sp|P15993|AROP_ECOLI Aromatic amino acid tr (457) 103 30.7 0.78 0.234 0.622 111!
sp|P24965|CYB_TRANA Cytochrome b (379) 101 30.3 0.87 0.234 0.563 158!
sp|P29631|CYB_POMTE Cytochrome b (308) 99 29.9 0.95 0.274 0.584 113!
sp|P24953|CYB_CAPHI Cytochrome b (379) 99 29.8 1.2 0.236 0.564 140!

Query: atp6_human.aa ATP synthase a chain - 226 aa  
Library: 5190103 residues in 13351 sequences!

10/22/11	

12	

23	

The best scores are: (len) s-w bits E(13351) %_id %_sim alen!
sp|P0AB98|ATP6_ECOLI ATP synthase a chain (AT (271) 1774 416.8 3.e-117 1.000 1.000 271!
sp|P06451|ATPI_SPIOL Chloroplast ATP synthase (247) 274 70.4 5.8e-13 0.270 0.616 211!
sp|P69371|ATPI_ATRBE Chloroplast ATP synthase (247) 271 69.7 9.3e-13 0.270 0.607 211!
sp|P08444|ATP6_SYNP6 ATP synthase a chain (AT (261) 271 69.7 9.9e-13 0.267 0.600 240!
sp|P06452|ATPI_PEA Chloroplast ATP synthase a (247) 266 68.5 2.1e-12 0.274 0.614 223!
sp|P30391|ATPI_EUGGR Chloroplast ATP synthase (251) 265 68.3 2.5e-12 0.298 0.596 225!
sp|P0C2Y5|ATPI_ORYSA Chloroplast ATP synthase (247) 260 67.2 5.4e-12 0.259 0.603 239!
sp|P27178|ATP6_SYNY3 ATP synthase a chain (AT (276) 260 67.1 6.1e-12 0.264 0.578 258!
sp|P06289|ATPI_MARPO Chloroplast ATP synthase (248) 250 64.8 2.7e-11 0.261 0.621 211!
sp|P07925|ATP6_MAIZE ATP synthase a chain (AT (291) 215 56.7 8.7e-09 0.259 0.578 232!
sp|P68526|ATP6_TRITI ATP synthase a chain (AT (386) 209 55.3 3.1e-08 0.259 0.603 239!
sp|P00854|ATP6_YEAST ATP synthase a chain pre (259) 204 54.2 4.5e-08 0.235 0.578 277!
sp|P05499|ATP6_TOBAC ATP synthase a chain (AT (395) 189 50.7 7.8e-07 0.220 0.582 268!
sp|P00846|ATP6_HUMAN ATP synthase a chain (AT (226) 178 48.2 2.5e-06 0.237 0.589 236!
sp|P00852|ATP6_EMENI ATP synthase a chain pre (256) 178 48.2 2.8e-06 0.209 0.590 244!
sp|P00849|ATP6_XENLA ATP synthase a chain (AT (226) 173 47.1 5.5e-06 0.261 0.630 165!
sp|P00847|ATP6_BOVIN ATP synthase a chain (AT (226) 172 46.8 6.5e-06 0.233 0.581 236!
sp|P14862|ATP6_COCHE ATP synthase a chain (AT (257) 171 46.6 8.7e-06 0.204 0.608 265!
sp|P00848|ATP6_MOUSE ATP synthase a chain (AT (226) 166 45.5 1.7e-05 0.259 0.617 193!
sp|P00851|ATP6_DROYA ATP synthase a chain (AT (224) 139 39.2 0.0013 0.225 0.549 253!
!
sp|P24962|CYB_STELO Cytochrome b (379) 125 35.9 0.021 0.223 0.575 193!
sp|P09716|US17_HCMVA Hypothetical protein HVL (293) 109 32.3 0.21 0.260 0.565 131!
sp|P68092|CYB_STEAT Cytochrome b (379) 109 32.2 0.27 0.211 0.562 194!
sp|P24960|CYB_ODOHE Cytochrome b (379) 104 31.1 0.61 0.210 0.555 200!
sp|P03887|NU1M_BOVIN NADH-ubiquinone oxidored (318) 98 29.7 1.3 0.287 0.545 167!
sp|P24992|CYB_ANTAM Cytochrome b (379) 99 29.9 1.4 0.192 0.565 193!

Query: atp6_ecoli.aa ATP synthase a - 271 aa  
 Library: 5190103 residues in 13351 sequences!

Homology is
Transitive  

(on domains)"

24"

Human mito"

E. coli"

Euglena chloro."
Synechocystis"
Cyanobacteria"
March. chloro."

Spinach chloro."
Tobacco chloro." 0.007 : 10-13"

0.001 : 10-13"
0.0007 : 10-12"
0.007 : 10-11"
0.006 : 10-13"
0.001 : 10-13"

0.02 : 10-12"
10-6 : 10-117"

Pea chloro."

10-90 : 10-6"
Bovine mito"
Mouse mito"

Frog mito"
Dros. mito"

10-23 : 10-8"

10-18 : 10-5"

0.0006 : 10-12"

10-1 : /10-6"

10-13 : 10-9"

10-15 : 10-8"

Rice chloro."

10-70 : 10-5"
10-73 : 10-6"

10-45 : 10-6"

10-26 : 0.0013"

Yeast mito."

Cochliobolus mito."
Aspergillus mito."

Corn mito."
Wheat mito."

vs human : E. coli"

vs human : E. coli"

10/22/11	

13	

Homology and Domains –  
Histone deacetylase PCAF"

The best scores are: s-w bits E(362341) %_id %_sim alen!
PCAF_HUMAN Histone acetyltransferase PCAF; (832) 4876 1092 0 1.000 1.000 832!
PCAF_MOUSE Histone acetyltransferase PCAF; (813) 4507 1010 0 0.929 0.974 817!
GCNL2_HUMAN General control of amino acid synthesis protein 5-l (837) 3535 793. 0 0.716 0.864 821!

GCN5_YEAST Histone acetyltransferase GCN5 (439) 1049 240. 5.2e-62 0.469 0.743 354!
GCN5_ARATH Histone acetyltransferase GCN5; AtGCN5 (568) 956 219. 1.2e-55 0.435 0.733 375!

BPTF_HUMAN Nucleosome-remodeling factor subunit BPTF (3046) 369 88.3 2.4e-15 0.495 0.773 97!
NU301_DROME Nucleosome-remodeling factor subunit NURF301 (2669) 359 86.2 9.3e-15 0.511 0.787 94!
CECR2_HUMAN Cat eye syndrome critical region protein 2 (1484) 306 74.6 1.6e-11 0.371 0.771 105!

BRD4_HUMAN Bromodomain-containing protein 4; HUNK1 protein (1362) 288 70.6 2.3e-10 0.379 0.681 116!
BRDT_MACFA Bromodomain testis-specific protein (947) 270 66.7 2.3e-09 0.353 0.690 116!

FSH_DROME Homeotic protein female sterile; Fragile-chorion memb (2038) 276 67.8 2.4e-09 0.341 0.651 129!
BRDT_HUMAN Bromodomain testis-specific protein; RING3-like prot (947) 266 65.9 4.3e-09 0.345 0.690 116!
Y0777_DICDI Bromodomain-containing protein DDB_G0280777 (1823) 260 64.3 2.5e-08 0.385 0.725 109!

BRDT_MOUSE Bromodomain testis-specific protein; RING3-like prot (956) 247 61.6 8.1e-08 0.328 0.647 116!
BAZ2B_HUMAN Bromodomain adjacent to zinc finger domain protein (1972) 247 61.3 2e-07 0.343 0.695 105!
TAF1_DROME Transcription initiation factor TFIID subunit 1; Tra (2129) 230 57.5 3.1e-06 0.349 0.689 106!

82_SCHPO Bromodomain-containing protein C631.02 (727) 217 55.0 5.9e-06 0.320 0.587 172!
BRD9_XENLA Bromodomain-containing protein 9 (527) 214 54.5 6.2e-06 0.292 0.579 171!

GTE6_ARATH Transcription factor GTE6; Protein GENERAL TRANSCRIP (369) 201 51.7 2.9e-05 0.290 0.601 183!
BAZ1B_MOUSE Bromodomain adjacent to zinc finger domain protein (1479) 212 53.7 3.1e-05 0.302 0.583 139!
K2_SCHPO Bromodomain-containing protein C1450.02 (578) 204 52.2 3.3e-05 0.310 0.628 113!

TAF1_HUMAN Transcription initiation factor TFIID subunit 1; Tra (1872) 212 53.6 4.2e-05 0.339 0.678 115!
BAZ1B_HUMAN Bromodomain adjacent to zinc finger domain protein (1483) 209 53.0 5e-05 0.397 0.705 78!

TIF1A_HUMAN Transcription intermediary factor 1-alpha; TIF1-al (1050) 206 52.5 5.1e-05 0.384 0.698 86!
BDF2_YEAST Bromodomain-containing factor 2 (638) 200 51.3 6.9e-05 0.304 0.607 168!

25	

The best scores are: E(362341) alen!
PCAF_HUMAN Histone acetyl (832) 0 832!
!
GCN5_YEAST Histone acetyl (439) 5.2e-62 354!
!

BPTF_HUMAN Nucleosome-rem (3046) 2.4e-15 97!
!
CECR2_HUMAN Cat eye syndr (1484) 1.6e-11 105!
!
GTE6_ARATH Transcription (369) 2.9e-05 183!

Homology and Domains –  
Histone deacetylase PCAF"

26	

10/22/11	

14	

27	

Protein Evolution and Sequence Similarity"

•  What is Homology and how do we recognize it?"
•  How do we measure sequence similarity –

alignments and scoring matrices?"
•  DNA vs protein comparison"
•  Alignment Algorithms/Local sequence alignments"
•  Similarity scoring matrices"
•  When are we certain that an alignment is

significant - similarity score statistics?"
•  When to trust similarity statistics?"
•  Improving sensitivity with PSI-BLAST"

28	

The best scores are: 	
 	
DNA 	
tfastx3 prot. 	
	

 E(188,018) 	
E(187,524) 	
E(331,956)	

DMGST !D.melanogaster GST1-1 	
1.3e-164 	
4.1e-109 	
1.0e-109 	
	

MDGST1 !M.domestica GST-1 gene 	
2e-77 	
3.0e-95 	
1.9e-76 	
	

LUCGLTR !Lucilia cuprina GST 	
1.5e-72 	
5.2e-91 	
3.3e-73 	
	

MDGST2A !M.domesticus GST-2 mRNA 	
9.3e-53 	
1.4e-77 	
1.6e-62 	
	

MDNF1 !M.domestica nf1 gene. 10 	
4.6e-51 	
2.8e-77 	
2.2e-62 	
	

MDNF6 !M.domestica nf6 gene. 10 	
2.8e-51 	
4.2e-77 	
3.1e-62 	
	

MDNF7 !M.domestica nf7 gene. 10 	
6.1e-47 	
9.2e-77 	
6.7e-62 	
	

AGGST15 !A.gambiae GST mRNA 	
3.1e-58 	
4.2e-76 	
4.3e-61 	
	

CVU87958 !Culicoides GST 	
1.8e-41 	
4.0e-73 	
3.6e-58 	
	

AGG3GST11 !A.gambiae GST1-1 mRNA 	
1.5e-46 	
2.8e-55 	
1.1e-43 	
	

BMO6502 !Bombyx mori GST mRNA 	
1.1e-23 	
8.8e-50 	
5.7e-40 	
	

AGSUGST12 !A.gambiae GST1-1 gene 	
2.3e-16 	
4.5e-46 	
5.1e-37 	
	

MOTGLUSTRA Manduca sexta GST 	
5.7e-07 	
2.5e-30 	
8.0e-25 	
	

RLGSTARGN !R.legominosarum gstA 0.0029 	
3.2e-13 	
1.4e-10 	
	

HUMGSTT2A !H. sapiens GSTT2 	
0.32 	
3.3e-10 	
2.0e-09 	
	

HSGSTT1 !H.sapiens GSTT1 mRNA 	
7.2 	
8.4e-13 	
3.6e-10 	
	

ECAE000319 E. coli hypothet. prot. 	
— 	
4.7e-10 	
1.1e-09 	
	

MYMDCMA !Methyl. dichlorometh. DH 	
— 1.1e-09 	
6.9e-07 	
	

BCU19883 !Burkholderia maleylacetate red.— 	
1.2e-09 	
1.1e-08 	
	

NFU43126 !Naegleria fowleri GST 	
— 	
3.2e-07 	
0.0056 	
	

SP505GST !Sphingomonas paucim 	
— 	
1.8e-06 	
0.0002 	
	

EN1838 !H. sapiens maleylaceto. iso. 	
— 	
2.1e-06 	
5.9e-06 	
	

HSU86529 !Human GSTZ1 	
— 	
3.0e-06 	
8.0e-06 	
	

SYCCPNC !Synechocystis GST 	
— 	
1.2e-05 	
9.5e-06 	
	

HSEF1GMR !H.sapiens EF1g mRNA 	
— 	
9.0e-05 	
0.00065	

DNA vs protein sequence comparison"

10/22/11	

15	

Improving search strategies 
(windshield splatter metagenomics)"

•  always use protein/translated DNA comparisons"
•  smaller databases are more sensitive"

mbla
st/

nr bla
stn

/

nr bla
stx

/

micr
ob

ial
bla

stx
/

tot
al fas

tx/

micr
ob

ial fas
tx/

tot
al

0

2000

4000

6000

8000

10000

0
30000
60000

600000

900000

1200000

1500000

nu
m

be
r o

f q
ue

rie
s

nu
m

be
r o

f h
om

ol
og

s
(d

is
tin

ct
)

program / database

queries with homologs

homologs

Similarity Searching II"

1.  What question to ask?"
2.  What program to use?"
3.  What database to search?"
4.  How to avoid mistakes (what to look out for)"
5.  When to do something different (changing

scoring matrices)"

30	

10/22/11	

16	

1. What question to ask?"
•  Is there an homologous protein (a protein with a

similar structure)?"
•  Does that homologous protein have a similar

function?"
•  Does XXX genome have YYY (kinase, GPCR, …)?"
"

31	

Questions not to ask:"
•  Does this DNA sequence have a similar

regulatory element (too short – never
significant)?"

•  Does (non-significant) protein have a similar
function/modification/antigenic site?"

2. What program to run?"
•  What is your query sequence?"

–  protein – BLAST (NCBI), SSEARCH (EBI)"
–  protein coding DNA (EST) –"

"BLASTX (NCBI), FASTX (EBI)"
–  DNA (structural RNA, repeat family) –"

"BLASTN (NCBI), FASTA (EBI)"
•  Does XXX genome have YYY (protein)?"

–  TBLASTN YYY vs XXX genome"
–  TFASTX YYY vs XXX genome"

•  Does my protein contain repeated domains?"
–  LALIGN (UVa http://fasta.bioch.virginia.edu)"

32	

10/22/11	

17	

NCBI
BLAST
Server"

33	

blast.ncbi.nlm.nih.gov"

NCBI BLAST Server"

34	

blast.ncbi.nlm.nih.gov"

What is wrong with this picture?"
Always compare protein sequences"

10/22/11	

18	

NCBI
BLAST
Server"

35	

Searching at the EBI 
www.ebi.ac.uk/Tools/sss/"

36	

10/22/11	

19	

Searching at the EBI – ssearch"

37	

3. What database to search?"
•  Search the smallest comprehensive

database likely to contain your protein"
–  vertebrates – human proteins (40,000)"
–  fungi – S. cerevisiae (6,000)"
–  bacteria – E. coli, gram positive, etc. (<100,000)"

•  Search a richly annotated protein set
(SwissProt, 450,000)"

•  Always search NR (> 12 million) LAST"
•  Never Search “GenBank” (DNA)"

38	

10/22/11	

20	

39	

Why smaller databases are better – statistics"

Sʼ = λSraw - ln K m n"
Sbit = (λSraw - ln K)/ln(2)"
 P(Sʼ>x) = 1 - exp(-e-x)"

P(Sbit > x) = 1 -exp(-mn2-x)"
E(Sʼ>x |D) = P D"

-"2" 0" 2" 4" 6"

-"2" 0" 2" 4" 6" 8" 1"0"

0"

1"5" 2"0" 2"5" 3"0"

10000"

8000"

2000"

6000"

4000"

P(B bits) = m n 2-B"
P(40 bits)= 1.5x10-7"

E(40 | D=4000) = 6x10-4"

E(40 | D=12E6) = 1.8"

Z(σ)"
λS"

bit"

Statistical Significance and Database Size"

Database! Entries! Length! E()! hits! time (s)!

E. coli" 4,237" 1.3 E 06" 1.5 E-06*" 1" < 0.5"

S. cerevisiae" 5,866" 2.9 E 06" 2.1 E-06" 1" < 0.5"

Human" 38,114" 18.4 E 06" 1.2 E-05" 1" 1.1"

Swiss Prot" 4.3 E 05" 1.5 E 08" 2.4 E-05*" 393" 7.1"

Refseq NP only" 7.1 E 05" 2.6 E 08" 0.00017*" 504" 10.8"

Refseq" 7.3 E 06" 2.5 E 09" 0.0017*" 2767" 124"

NR" 9.9 E 06" 3.4 E 09" 0.0032*" 7773" 151"

40"

atp6_human vs E. coli"
>>ref|NP_290377.1| F0F1 ATP synthase subunit [E. ecoli] (271 aa)"
 s-w opt: 178 Z-score: 188.8 bits: 42.4 E(): 4.4e-05"
Smith-Waterman score: 178; 23.3% identity (58.5% similar) in 236 aa overlap (8-222:45-264)"

10/22/11	

21	

NCBI – selecting sequences with Entrez"

41	

Similarity Searching II"

1.  What question to ask?"
2.  What program to use?"
3.  What database to search?"
4.  How to avoid mistakes (what to look out for)"
5.  When to do something different"

42	

10/22/11	

22	

43	

Inferring Homology from Statistical
Significance"

•  Real UNRELATED sequences have similarity
scores that are indistinguishable from
RANDOM sequences"

•  If a similarity is NOT RANDOM, then it must
be NOT UNRELATED"

•  Therefore, NOT RANDOM (statistically
significant) similarity must reflect RELATED
sequences"

Smith-Waterman (ssearch)"

44"

The best scores are: s-w bits E(115640) %_id alen!
GTM1_MOUSE Glutathione S-trans (218) 1497 363.5 2e-100 1.000 218!
GTM2_CHICK Glutathione S-trans (220) 958 234.9 1.1e-61 0.619 218!
GTP_HUMAN Glutathione S-trans (210) 356 91.2 1.8e-18 0.308 211!
PGD2_MOUSE Glutathione-req. (199) 262 68.8 9.7e-12 0.319 204!
GTA1_MOUSE Glutathione S-trans (223) 229 60.9 2.6e-09 0.284 225!
SC1_OCTDO S-crystallin 1 OL1 (215) 228 60.7 3.0e-09 0.269 219!
GTS_MUSDO Glutathione S-trans (241) 228 60.6 3.4e-09 0.264 201!
GTS1_CAEEL Prob. Glut. S-trans (210) 220 58.8 1.1e-08 0.284 225!
GTS_OMMSL Glutathione S-trans (203) 196 53.0 5.5e-07 0.258 209!
GTH3_ARATH Glutathione S-trans (215) 142 40.1 0.0045 0.310 126!
GTT2_HUMAN Glutathione S-trans (244) 132 37.7 0.027 0.257 167!
GT24_DROME Glutathione S-trans (216) 131 37.5 0.028 0.255 153!
YFCG_ECOLI Hypothetical GST (215) 112 33.0 0.64 0.235 187!
YJY1_YEAST hypothetical 30.5 (261) 110 32.4 *1.1* 0.248 149!
DCMA_METS1 dichloromethane DM (267) 103 30.8 3.7 0.214 210!
YA42_HAEIN Hypothetical prot. (617) 108 31.7 *4.6* 0.283 120!
GTO1_RAT Glutathione trans (241) 100 30.1 5.4 0.234 158!
DP41_BACHD DNA polymerase I (413) 104 30.8 *5.4* 0.234 184!
GTH1_WHEAT Glutathione S-trans (229) 98 29.6 7.0 0.246 171!
LGUL_SOYBN Lactoylglutathione (219) 97 29.4 7.8 0.200 190!

Highest scoring unrelated sequence E() ~ 1.0"

10/22/11	

23	

Looking for mistakes; BLASTP at NCBI"

45	

BLAST results 1 - gstt1_drome"

46	

10/22/11	

24	

BLAST results 2 - gstt1_drome"

47	

BLAST results 3 - gstt1_drome"

48	

10/22/11	

25	

BLAST results 4 - gstt1_drome"

49	

Homolog?"

Homolog?"

BLAST results – validating statistics"

50	

Re-search vs SwissProt at NCBI site"
Query: AATF – initial E()<10-4"

10/22/11	

26	

BLAST results – validating statistics"

51	

Re-search vs SwissProt at NCBI site"
Query: GSTA1 – initial E()<10-4"

52	

Unrelated ≠ Random  
(low complexity)	

Search with complete grou_drome:"
The best scores are: opt bits E(14548)!
RGHUB1 GTP-binding regulatory protein beta-1 chai (341) 237 46.6 3.5e-05!
RGBOB1 GTP-binding regulatory protein beta-1 chai (341) 237 46.6 3.5e-05!
RGHUB3 GTP-binding regulatory protein beta-3 chai (341) 233 46.0 5.2e-05!
RGMSB4 GTP-binding regulatory protein beta-4 chai (341) 232 45.8 5.7e-05!
PIHUPF salivary proline-rich glycoprotein precurs (252) 224 44.5 *0.00010*!
RGFFB GTP-binding regulatory protein beta chain (347) 223 44.5 0.00014!
PIRT3 acidic proline-rich protein precursor - rat (207) 199 40.8 *0.0011*!
PIHUB6 salivary proline-rich protein precursor PR (393) 203 41.6 *0.0012*!
CGBO2S collagen alpha 2(I) chain - bovine (fragme (403) 195 40.5 *0.0027*!
WMBEW6 capsid protein - human herpesvirus 1 (stra (636) 192 40.2 *0.0051*!

Search with seg-ed grou_drome: (low complexity regions removed)!
The best scores are: opt bits E(14548)!
RGHUB3 GTP-binding regulatory protein beta-3 chai (341) 233 56.5 3.6e-08!
RGMSB4 GTP-binding regulatory protein beta-4 chai (341) 232 56.3 4.1e-08!
RGHUB2 GTP-binding regulatory protein beta-2 chai (341) 228 55.5 7.2e-08!
RGBOB1 GTP-binding regulatory protein beta-1 chai (341) 225 54.9 1.1e-07!
RGFFB GTP-binding regulatory protein beta chain (347) 223 54.5 1.5e-07!
BVBYMS MSI1 protein - yeast (Saccharomyces cerevi (423) 135 37.0 *0.033*!
ERHUAH coatomer complex alpha chain homolog - hum (1225) 134 37.1 *0.088*!
A28468 chromogranin A precursor - human (458) 122 34.4 *0.21*!
RGOOBE GTP-binding regulatory protein beta chain (342) 120 33.9 0.22!

10/22/11	

27	

53	

pseg removes low-complexity regions"
>gi|17380405|sp|P16371|GROU_DROME Groucho protein (Enhancer of split M9/10)!
!
 1-8 MYPSPVRH!
 paaggpppqgp 9-19 !
 20-131 IKFTIADTLERIKEEFNFLQAQYHSIKLEC!
 EKLSNEKTEMQRHYVMYYEMSYGLNVEMHK!
 QTEIAKRLNTLINQLLPFLQADHQQQVLQA!
 VERAKQVTMQELNLIIGQQIHA!
 qqvpggppqpmg 132-143 !
 144-281 ALNPFGALGATMGLPHGPQGLLNKPPEHHR!
 PDIKPTGLEGPAAAEERLRNSVSPADREKY!
 RTRSPLDIENDSKRRKDEKLQEDEGEKSDQ!
 DLVVDVANEMESHSPRPNGEHVSMEVRDRE!
 SLNGERLEKPSSSGIKQE!
 rppsrsgssssrstps 282-297 !
 298-310 LKTKDMEKPGTPG!
 akartptpnaaapapgvnpk 311-330 !
 qmmpqgpppagypgapyqrpa 331-351 !
 352-719 DPYQRPPSDPAYGRPPPMPYDPHAHVRTNG!
 IPHPSALTGGKPAYSFHMNGEGSLQPVPFP!
 PDALVGVGIPRHARQINTLSHGEVVCAVTI!
 SNPTKYVYTGGKGCVKVWDISQPGNKNPVS!
 QLDCLQRDNYIRSVKLLPDGRTLIVGGEAS!
 NLSIWDLASPTPRIKAELTSAAPACYALAI!
 SPDSKVCFSCCSDGNIAVWDLHNEILVRQF!
 QGHTDGASCIDISPDGSRLWTGGLDNTVRS!
 WDLREGRQLQQHDFSSQIFSLGYCPTGDWL!
 AVGMENSHVEVLHASKPDKYQLHLHESCVL!
 SLRFAACGKWFVSTGKDNLLNAWRTPYGAS!
 IFQSKETSSVLSCDISTDDKYIVTGSGDKK!
 ATVYEVIY

BLAST remove low complexity - gstt1_drome"

54	

10/22/11	

28	

Validating homologs/statistics"

•  In general, BLASTP statistical estimates are accurate"
•  The most common errors occur because of low-

complexity regions, or biased amino-acid composition"
•  To confirm statistical accuracy, find the highest

scoring non homolog"
–  No need to test every hit, test hits that are surprising"
–  Confirm homology/non-homology by searching against a

different comprehensive database, e.g. SwissProt, or refseq."
–  Non-homologs will find many significant members of other

families, but not the family you are testing for"
•  Statistical estimates can be confirmed with shuffles

(see ISMB2000 tutorial, fasta.bioch.virginia.edu/
fasta_www2 shuffle link)"

55	

Scoring matrices"

•  Scoring matrices can set the evolutionary look-
back time for a search"
–  Lower PAM (PAM10/MDM10 … PAM60) for closer

(10% … 50% identity)"
–  Higher BLOSUM for higher conservation (BLOSUM50

distant, BLOSUM80 conserved)"
•  Shallow scoring matrices for short domains/short

queries (metagenomics)"
–  Matrices have “bits/position” (score/position), 40 aa at

0.7 bits/position (BLOSUM62) means 28 bit max score
(50 bits significant)"

•  Deep scoring matrices allow alignments to
continue, possibly outside the homologous region "

56	

10/22/11	

29	

57	

Finding Domains –  
Local alignments: calmodulin"

 46.1% identity in 76 aa overlap (1-76:77-149); score: 222 E(10000): 2.7e-10!
 10 20 30 40 50 60!
mchu MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADG!
 : : .::.: .::: .:::::.: :.. :: :: .::.. :. :...:: :.: ::!
mchu MKDTDSEEEI---REAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDG!
 80 90 100 110 120 130!
 70!
mchu NGTIDFPEFLTMMARK!
 .: ... ::. ::. :!
mchu DGQVNYEEFVQMMTAK!
 140!
!
 34.3% identity in 105 aa overlap (11-111:47-147); score: 187 E(10000): 6.7e-08!
 20 30 40 50 60!
mchu AEFKEAFSLFDKDGDGTITTKELGTVM-RSLGQNPTEAELQDMINEVDADGNGTIDFPEF!
 ::... .. : ::.::: :. :.: :.. .. .: :... . : :::: :. :.!
mchu AELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAEL!
 50 60 70 80 90 100!
 70 80 90 100 110!
mchu ---LTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMT!
 .: ...:. : . .: :::: : ::.: .. :. ..::!
mchu RHVMTNLGEKLTDEEVDEMIREA----DIDGDGQVNYEEFVQMMT!
 110 120 130 140!
!
 34.2% identity in 38 aa overlap (1-37:113-146); score: 68 E(10000): 9.8!
 10 20 30!
mchu MADQLTEEQIAEF-KEAFSLFDKDGDGTITTKELGTVM!
 ::.:.. :. .:: : :::: .. .:. .:!
mchu LGEKLTDEEVDEMIREA----DIDGDGQVNYEEFVQMM!
 120 130 140!

58"

Repeated domains with local alignments"

MCHU calmodulin - human"

A" B" C" D"

M
C

H
U

 c
al

m
od

ul
in

 -
hu

m
an
"

A"
B"

C
"

D
"

10/22/11	

30	

59	

More about scoring matrices ..."

PAM series:"
•  Evolutionary model -

extrapolated from PAM1"
•  PAM20: 20% change

(mammals)"
•  PAM250: 250% change

(<20% identity)"
•  Gap penalties should vary"
•  shallow matrices

(PAM10-40) for short
sequences and short
distances"

BLOSUM series"
•  Empirically determined, no

extrapolation (no model)"
•  BLOSUM45-50 - distant

(1/3 bits)"
•  BLOSUM80 -very highly

conserved (not small
change), high info/position"

•  BLOSUM62 - 1/2 bits"

60"

 A R N D E I L"
A 8"
R -9 12"
N -4 -7 11"
D -4 -13 3 11"
E -3 -11 -2 4 11"
I -6 -7 -7 -10 -7 12"
L -8 -11 -9 -16 -12 -1 10"

Pam40"
 A R N D E I L"
A 2"
R -2 6"
N 0 0 2"
D 0 -1 2 4"
E 0 -1 1 3 4"
I -1 -2 -2 -2 -2 5"
L -2 -3 -3 -4 -3 2 6"

Pam250"

Where do scoring matrices come from?"

qij : replacement frequency at PAM40, 250"
qR:N (40) = 0.000435 " "pR = 0.051  
qR:N (250) = 0.002193 " "pN = 0.043 "
l2 Sij = lg2 (qij/pipj) le Sij = ln(qij/pipj) "pRpN = 0.002193"
l2 SR:N(40) = lg2 (0.000435/0.00219)= -2.333"
l2 = 1/3; SR:N(40) = -2.333/l2 = -7"
l SR:N(250) = lg2 (0.002193/0.002193)= 0"

10/22/11	

31	

61	

PAM matrices and alignment length"

BL
O

SU
M

80
"

BL
O

SU
M

62
"

BL
O

SU
M

50
"

Short domains require “shallow” scoring matrices"

Scoring matrices affect alignment lengths"

BLOSUM62 -11/-1" MD20 -26/-4"

10/22/11	

32	

Metagenomics, Human Microbiome 
Long Reads"

megab
blastn

mb_blx

bln_blx

blastx (ref)

blastx (qfo)

fastx (ref)

fastx (bact)

fastx (qfo)

0

2000

4000

6000

8000

10000
qu

er
ie

s
w

ith
 h

om
ol

og

63	

Metagenomics, Human Microbiome 
Short Reads"

64	

megab
blastn

mb_blx

bln_blx

blastx (ref)

blx pam30 (ref)

fastx (ref)

blastx (qfo)

blx pam30 (qfo)

fastx (qfo)

0

2000

4000

6000

8000

10000

qu
er

ie
s

w
ith

 h
om

ol
og

For short reads (ave 90 nt), BLOSUM62 misses most homologs "

10/22/11	

33	

65	

Scoring Matrices - Summary"

•  PAM and BLOSUM matrices greatly improve the
sensitivity of protein sequence comparison – low
identity with significant similarity"

•  PAM matrices have an evolutionary model - lower
number, less divergence – lower=closer;
higher=more distant"

•  BLOSUM matrices are sampled from conserved
regions at different average identity – higher=more
conservation"

•  Short alignments require shallow matrices"
•  Shallow matrices set maximum look-back time"

Similarity Searching II"

1.  What question to ask?"
2.  What program to use?"
3.  What database to search?"
4.  How to avoid mistakes (what to look out for)"
5.  When to do something different"
6.  PSI-BLAST – the most sensitive method"

66	

10/22/11	

34	

67	

E. coli"

Euglena chloro."
Synechocystis"
Cyanobacteria"
March. chloro."

Spinach chloro."
Tobacco chloro."

Human mito"

0.007/10-13"
0.001/10-13"
0.0007/10-12"
0.007/10-11"
0.006/10-13"
0.001/10-13"

0.02/10-12"
10-6/10-117"

Pea chloro."

10-90/10-6"
Bovine mito"
Mouse mito"

Frog mito"
Dros. mito"

10-23/10-8"

10-18/10-5"

0.0006/10-12"

10-19/10-6"

10-13/10-9"

10-15/10-8"

Rice chloro."

10-70/10-5"
10-73/10-6"

10-45/10-6"

10-26/0.0013"

Yeast mito."

Cochliobolus mito."
Aspergillus mito."

Corn mito."
Wheat mito."

vs human/E. coli"

vs human/E. coli"

68	

ATP synthase - matrices, gaps, algorithms"
 Matrix: BLOSUM50 BLOSUM62 BLASTP !
 Gap open/extend -10/-2 -11/-1 -11/-1!
The best scores are: bits E(13351) bits E(13351) bits E()!
ATP6_HUMAN ATP synthase a chai 297.7 1.7e-81 373.6 2.4e-104 296 3e-81!
ATP6_BOVIN ATP synthase a chai 252.4 7.2e-68 310.7 2.0e-85 253 2e-68!
ATP6_MOUSE ATP synthase a chai 246.4 4.5e-66 302.9 4.4e-83 245 5e-66!
ATP6_XENLA ATP synthase a chai 111.9 1.4e-25 125.9 8.7e-30 142 9e-35!
ATP6_YEAST ATP synthase a ch 78.7 1.6e-15 90.1 5.7e-19 93 5e-20!
ATP6_EMENI ATP synthase a chai 66.3 8.4e-12 76.6 6.8e-15 75 2e-14!
ATP6_DROYA ATP synthase a chai 65.6 1.2e-11 75.4 1.4e-14 101 2e-22!
ATP6_COCHE ATP synthase a cha 53.6 5.5e-08 60.6 4.6e-10 75 1e-14!
ATP6_ECOLI ATP synthase a ch 45.1 2.2e-05 49.1 1.4e-06 42 1e-04!
ATP6_TRITI ATP synthase a ch 45.0 3.3e-05 50.7 6.5e-07 83 5e-17!
ATP6_TOBAC ATP synthase a chai 40.4 0.00084 47.0 8.6e-06 80 3e-16!
ATP6_MAIZE ATP synthase a chai 39.6 0.001 44.9 2.6e-05!
ATPI_PEA Chloroplast ATP syn 35.8 0.013 38.0 0.0028!
ATPI_SPIOL Chloroplast ATP syn 35.5 0.015 38.0 0.0028!
ATPI_ATRBE Chloroplast ATP s 34.0 0.044 36.3 0.0086!
ATPI_MARPO Chloroplast ATP syn 33.2 0.075 34.3 0.036!
HBA_ODOVI Hemoglobin subunit a 31.9 0.11!
*AROP_ECOLI Aromatic amino ac 32.1 0.31 31.4 0.5 *!
ATPI_EUGGR Chloroplast ATP syn 31.1 0.32 32.2 0.15!
ATP6_SYNP6 ATP synthase a chai 31.1 0.34 31.8 0.21!
TLCA_RICPR ADP,ATP carrier pro 31.5 0.49 29.7 1.7!
ATP6_SYNY3 ATP synthase a chai 30.6 0.51 31.8 0.22 28 1.9!
ATPI_ORYSA Chloroplast ATP 30.1 0.65 32.2 0.15!
GLUC_MYOSC Glucagon precursor 28.7 0.65 34.4 0.013!
VP6_BPPH6 Protein P6 29.1 0.85 28.6 1.3!
GLUC_LEPSP Glucagon precursor 27.7 1. 32.7 0.033!
ADH1_MOUSE Alcohol dehydrogena 29.8 1.2 34.4 0.013!
!

10/22/11	

35	

69	

Metazoan ATP Synthases"

CLUSTAL W (1.81) multiple sequence alignment!
!
ATP6_BOVIN MNENLFTSFITPVILGLPLVTLIVLFPSLLF--PTSNRLVSNRFVTLQQWMLQLVSKQMMSIHNSKGQTWT-LML!
ATP6_MOUSE MNENLFASFITPTMMGFPIVVAIIMFPSILF--PSSKRLINNRLHSFQHWLVKLIIKQMMLIHTPKGRTWT-LMI!
ATP6_HUMAN MNENLFASFIAPTILGLPAAVLIILFPPLLI--PTSKYLINNRLITTQQWLIKLTSKQMMTMHNTKGRTWS-LML!
ATP6_XENLA MNLSFFDQFMSPVILGIPLIAIAMLDPFTLISWPIQSNGFNNRLITLQSWFLHNFTTIFYQLTSP-GHKWA-LLL!
ATP6_DROYA MMTNLFSVFDPSAIFNLSLNWLSTFLGLLMI--PSIYWLMPSRYNIFWNSILLTLHKEFKTLLGPSGHNGSTFIF!
 * .:* * ...::.:. : :: * . .* :: . : : . *:. : :::!
!
ATP6_BOVIN MSLILFIGSTNLLGLLPHSFTPTTQLSMNLGMAIPLWAGAVITGFRNKTKASLAHFLPQGTPTPLIPMLVIIETI!
ATP6_MOUSE VSLIMFIGSTNLLGLLPHTFTPTTQLSMNLSMAIPLWAGAVITGFRHKLKSSLAHFLPQGTPISLIPMLIIIETI!
ATP6_HUMAN VSLIIFIATTNLLGLLPHSFTPTTQLSMNLAMAIPLWAGTVIMGFRSKIKNALAHFLPQGTPTPLIPMLVIIETI!
ATP6_XENLA TSLMLLLMSLNLLGLLPYTFTPTTQLSLNMGLAVPLWLATVIMASKP-TNYALGHLLPEGTPTPLIPVLIIIETI!
ATP6_DROYA ISLFSLILFNNFMGLFPYIFTSTSHLTLTLSLALPLWLCFMLYGWINHTQHMFAHLVPQGTPAILMPFMVCIETI!
 : :: *:::*: **.*::*::.:.:*:*** :: . : :.*::*:*** *:*.:: ****!
!
ATP6_BOVIN SLFIQPMALAVRLTANITAGHLLIHLIGGATLALMSISTTTALITFTILILLTILEFAVAMIQAYVFTLLVSLYLHDNT!
ATP6_MOUSE SLFIQPMALAVRLTANITAGHLLMHLIGGATLVLMNISPPTATITFIILLLLTILEFAVALIQAYVFTLLVSLYLHDNT!
ATP6_HUMAN SLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT!
ATP6_XENLA SLFIRPLALGVRLTANLTAGHLLIQLIATAAFVLLSIMPTVAILTSIVLFLLTLLEIAVAMIQAYVFVLLLSLYLQENV!
ATP6_DROYA SNIIRPGTLAVRLTANMIAGHLLLTLLGNTGPSMSYLLVTFLLVAQIALLVL---ESAVTMIQSYVFAVLSTLYSSEVN!
 * :*:* :*.******: *****: *:. : : : . : *::* * **::**:***.:* :** : !

70	

PSI-BLAST ATP6_HUMAN - 4 iterations"
 Results from round: (1) (2) (3) (4)!
Sequences producing significant alignments: Score E Score E Score E Score E !
 (bits) Value (bits) Value (bits) Value (bits) Value!
ATP6_HUMAN ATP synthase a chain (ATPase protein 6) 296 3e-81 257 1e-69 241 2e-62 222 5e-59!
ATP6_BOVIN ATP synthase a chain (ATPase protein 6) 253 2e-68 257 2e-69 239 8e-65 230 2e-61!
ATP6_MOUSE ATP synthase a chain (ATPase protein 6) 245 5e-66 247 3e-66 234 4e-64 225 6e-60!
ATP6_XENLA ATP synthase a chain (ATPase protein 6) 142 9e-35 227 1e-60 189 3e-49 177 2e-45!
ATP6_DROYA ATP synthase a chain (ATPase protein 6) 101 2e-22 206 3e-54 209 5e-55 196 4e-51!
(2) ! ! ! ! ! ! ! ! ! !
ATP6_YEAST ATP synthase a chain precursor (ATPase prot 93 5e-20 97 3e-21 199 4e-52 191 2e-49!
ATP6_TRITI ATP synthase a chain (ATPase protein 6) 83 5e-17 96 5e-21 218 1e-57 236 4e-63!
(3)!
ATP6_TOBAC ATP synthase a chain (ATPase protein 6) 80 3e-16 90 4e-19 200 2e-52 230 3e-61!
ATP6_MAIZE ATP synthase a chain (ATPase protein 6) 76 5e-15 88 1e-18 198 1e-51 219 5e-58!
ATP6_COCHE ATP synthase a chain (ATPase protein 6) 75 1e-14 86 9e-18 197 2e-51!
ATP6_EMENI ATP synthase a chain precursor (ATPase prot 75 2e-14 84 3e-17 123 5e-29 181 2e-46!
(4)!
ATP6_ECOLI ATP synthase a chain (ATPase protein 6) 42 1e-04 40 5e-04 46 8e-06 49 1e-06!
ATPI_SPIOL Chloroplast ATP synthase a chain precursor 32 0.12 36 0.006 39 0.001!
ATP6_SYNY3 ATP synthase a chain (ATPase protein 6) 28 1.9 32 0.16 44 5e-05 45 1e-05!
ATPI_MARPO Chloroplast ATP synthase a chain precursor 31 0.21 44 4e-05 44 3e-05!
ATPI_PEA Chloroplast ATP synthase a chain precursor (A 31 0.32 37 0.005!
LAMA2_MOUSE Laminin subunit alpha-2 precursor (Laminin 31 0.34 !
ATPI_ATRBE Chloroplast ATP synthase a chain precursor 31 0.39 41 2e-04!
ATP6_SYNP6 ATP synthase a chain (ATPase protein 6) 28 1.7 41 2e-04!
ATPI_EUGGR Chloroplast ATP synthase a chain precursor 39 0.001!
ATPI_ORYSA Chloroplast ATP synthase a chain precursor 28 1.9 36 0.008!
ATPI_ATRBE Chloroplast ATP synthase a chain precursor 36 0.009 38 0.002!
ATP6_ASPAM ATP synthase a chain (ATPase protein 6) 36 0.008!
POLG_KUNJM Genome polyprotein [Contains: Capsid protei... 27 5.0 !
POL_HTL1C Gag-Pro-Pol polyprotein (Pr160Gag-Pro-Pol) [... 27 5.0 !
POLG_DEN2J Genome polyprotein [Contains: Capsid protei... 27 5.2 26 7.0 !
!

10/22/11	

36	

Position-Specific Scores 
ATP Synthase, 4 iterations"

 A R N D C Q E G H I L K M F P S T W Y V bits/pos!
!
BL62 Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0.70!
!
!
 46 Q -2 -1 -2 -2 -4 6 0 1 0 -4 -3 -1 -2 -1 -3 -1 -2 6 4 -3 0.74!
 % 0 0 0 0 0 54 0 12 0 0 0 0 0 0 0 0 0 13 20 0 !
!
 47 Q -1 -1 3 3 -3 3 3 -2 3 -4 -4 -1 -3 -4 -2 2 -1 -4 -2 -3 0.51!
 % 0 0 13 20 0 16 19 0 8 0 0 0 0 0 0 24 0 0 0 0!
!
 56 Q -2 -1 -2 -2 -3 5 2 -4 -1 4 -1 -1 -1 -2 -3 -2 -2 -3 -2 0 0.51!
 % 0 0 0 0 0 46 13 0 0 41 0 0 0 0 0 0 0 0 0 0!
!
 97 Q -2 -1 0 -2 -4 4 0 -3 8 -4 -4 -1 -2 -3 -3 -1 -2 -3 0 -4 1.11!
 % 0 0 0 0 0 35 0 0 65 0 0 0 0 0 0 0 0 0 0 0 !
!
 131 Q 3 -1 -1 -1 -2 5 2 -2 -1 -3 -3 0 -2 -4 -2 1 -1 -3 -3 -2 0.52!
 % 44 0 0 0 0 36 11 0 0 0 0 0 0 0 0 9 0 0 0 0 !
!
 152 Q -2 6 -1 -2 -4 4 0 -3 -1 -4 -3 1 -2 -4 -3 -1 -2 -4 -3 -3 1.00!
 % 0 77 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0!
!
 210 Q -2 0 -1 -1 -4 7 1 -3 0 -4 -3 1 -1 -4 -2 -1 -2 -3 -2 -3 1.13!
 % 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0!
!

72	

Sequence/ "
Sequence"

Structure/"
Structure"Profile/"

Sequence" Profile/"
Profile"

•  SSEARCH (Smith-Waterman) provides very accurate statistical estimates"
•  PSI-BLAST can provide estimates that off by 10–100-fold"

10/22/11	

37	

Why does PSI-BLAST fail?  
True and False Positives"

74	

Sensitive searches with PSI-BLAST"

•  PSI-BLAST improves sensitivity by building a Position
Specific Scoring Matrix (PSSM)"
–  models ancestral sequence (consensus distribution)"
–  similar to PFAM HMM (but less sophisticated weights,

gaps)"
•  Sensitivity improves with additional iterations"

–  model moves to base of tree"
•  Statistical estimates are difficult"

–  once a sequence is in, it is “significant” - validation
must be done before a sequence is included"

•  Very diverse families may not produce a well defined
PSSM"
–  similar problems with HMMs have led to “clans”"

10/22/11	

38	

75	

Sequence Similarity - Conclusions"
•  Homologous sequences share a common ancestor,

but most sequences are non-homologous"
•  Always compare Protein Sequences"
•  Sequence Homology can be reliably inferred from

statistically significant similarity (non-homology cannot
from non-similarity)"

•  Homologous proteins share common structures, but
not necessarily common functions"

•  Sequence statistical significance estimates are
accurate (verify this yourself)10-6 < E() < 10-3 is
statistically significant"

•  Scoring matrices set evolutionary look back horizons -
not every discovery is distant"

•  PSI-BLAST can be more sensitive, but with lower
statistical accuracy"

76	

Discussion questions"
1.  What is the difference between similarity and homology? When does high identity not

imply homology? What conclusions can be drawn from homology?"
2.  What is the difference between homology and common ancestry?"
3.  When the M. janaschii genome was first sequenced, Venter and his colleagues stated

that almost 60% of the open reading frames (proteins or genes) were novel to this
organism. (For eubacterial like E. coli or H. influenzae, a similar number would be 20 -
40%.) On what would they base such a statement? Is it likely to be correct?"

4.  Name two reasons why protein sequence comparison is more effective (longer
evolutionary look-back time) than DNA sequences?"

5.  What is the range of an expectation value (E()-value)? If you compare a sequence to
50,000 random (unrelated) sequences, what should the expectation value for the highest
of the 50,000 similarity scores be (on average)?"

6.  In a sequence similarity database search, you identify a statistically significant similarity
(E()<0.005), but the alignment is relatively short (50 aa). How might you determine
whether the alignment reflects a genuine homology, or a random sequence match?"

7.  How can a sequence be homologous if you search a small database (e.g. human,
40,000 sequences), but not share significant similarity if you search a complete database
(>4 million sequences)?"

8.  What scoring matrix should be used to identify protein orthologs that have diverged over
the past 100 My (e.g. human/mouse)?"

9.  What scoring matrix should be used when comparing Illumina 90 nt reads against a
protein database?"

"

Gene expression

Transcript Reconstruction and
Analysis

CSHL October 2011
Win Hide whide@hsph.harvard.edu

mailto:whide@hsph.harvard.edu
mailto:whide@hsph.harvard.edu

– Improved gene finding tools

• Unlikely to be perfect

• Will never identify the expression location, and function

– Comprehensive full-length mRNA sequencing

• Technically difficult and time consuming

• Less likely to detect rare/ highly restricted transcripts.

– Reconstruction of expressed genes using computational and
experimental methods

• Technically simpler

• RNAseq/Fragment databases contain a large portion of the
transcriptome of numerous organisms – prime resource

• Variety of tissues, developmental states and libraries = good chance to
detecting variant / rare/ restricted transcripts

Where to begin…

RNAseq

Transcript Reconstruction
Evolution

•Gene-based detection of RNAs

•Northern blotting

•High throughput expression
profiling

•Microarrays.

•Next-generation sequencing technologies
multidimensional examination of cellular
transcriptomes single-base resolution.

History

•1965 Sequence of the first RNA molecule

•1977 Northern blot and Sanger sequencing

•1989 RT-PCR experiments for transcriptome
analysis

•1991 First high-throughput EST sequencing
study

•1992 Differential Display (DD) : differentially
expressed genes

•1995 Microarray and Serial Analysis of Gene
Expression (SAGE)

•2001 Draft of the Human Genome “completed”

•2005 First next-generation sequencing
technology (454/Roche)

•2006 First transcriptome sequencing using a
next-generation technology (454/Roche)

•2008 First stem cell transcriptome NGS
(SOLiD) Applied Biosystems

Assembly
and

Transcript
reconstruction

Assembly, Coverage,
Bermuda

exons
information to finished
tanscript
coverage of finished
transcript

Making assembly tools
work for transcript
reconstruction

Morozova, Annu. Rev. Genom. Human Genet.
2009

Protein coding exon
discovery

Transcript abberancy

Techno Acronymania
– EST

– SAGE

– Array

– Northern

– RT-PCR

– CAGE

– DiTag

– RACE

– MPSS

– flcDNA

3’

5’

AAAAA
Partial cDNA
Transcripts

3’EST5’EST

Clone/Seq vector with CLONEID

Forwards and
reverse sequencing
primers

3’ overlapping
5’ staggered length
due to polymerase processitivity

What is an EST?

What potential do ESTs
hold?

• Expression counts	

• Consensus sequences	

• Alternate expression-form
characterisation	

• Identification of genes expressed in a pilot gene
discovery project

• Identification of genes specifically expressed in a
chosen library or tissue

EST Data

Expressed Sequence Tags
Single pass sequences of cDNA clones from different libraries

High error rate (>1%) mainly frameshifts and insertions/deletions

Redundant sampling of 5’ and 3’ ends

Large number in public databases

No single mRNA/transcript depository

mRNA

3’ ESTs5’ ESTs

EST lengths vary due
to varying
polymerase activity

Extracting Value from
Transcript Data

Clustering

	
 	
 Large amount of unorganised, poor quality data

	
 Smaller amount of indexed, “good” quality data

Data processing

What is a Cluster?
Grouping of expressed sequences such that:

1. All expressed sequences representing a single gene
are in a single index class (1 cluster)

2. Each index class (cluster) contains the information for
only one gene

	
 	
 	
 1 cluster = 1 gene

Approaches
•Unsupervised Transcript Clustering

•	
 Cluster ESTs with other ESTs	

unsupervised

supervised

•Supervised Transcript
Clustering

• Cluster ESTs using an mRNA /
genomic sequence as a
scaffold.

Levels of clustering
• Transcript level

– Transcripts are compared for genetic
similarity

• Shared word frequencies or short
aligned regions (40bp)

• Gene Level

• Consensus sequences from transcript
comparisons

• Grouped assembly consensus sequences
from transcript clusters

• Should cover the genome equivalent

Overview of clustering
and consensus

Pre-
pocessing

Initial
Clustering

Assembly

Alignment
Processing

Cluster
Joining

Output

Repeats
Vector
Mask

Alignments
Consensi

Expressed Forms

UCSC human genome browser view of GCAT on chromosome 22
-Exon 5 skipped in stackPACK transcript
-Missing in TGICL transcripts (red arrow).

• A protein coding region of the genome?

– Transcript contains a protein coding
sequence

• One transcript for each protein coding
sequence

• Transcript diversity = protein coding diversity

Gene

Gene history

• Physical element connected to a phenotype
(Johannsen)

• Central dogma

Evolving Dogma (Paul Silverman)

DNA RNA Protein

DNA RNA Protein
Splicing

Alternative
Splicing

Phosphorylation
Glycosylation
Methylation
Acetylation

DNA RNA Protein
Splicing
Micro RNAs
Alternative Splicing
Antisense RNAs
Non-coding RNAs
TransFrags

Editing
Conformational Isomers
Glycosylation
Phosphorylation
Methylation
Acetylation
Other

Transcript
• Transcripts that do not have coding sequence

• Transcripts that initiate at different locations
upstream of the CDS

• Different CDS

– Skips

– Altered donor and acceptor site

– Altered poly-adenylation

Genome Products?

• Diaspora of transcripts

• Inconsistent description and organisation
prevents large scale discovery

• Poor understanding of gene structure
provides new challenges

– Affymetrix analysis of chromosome 21,22
yields 10X greater number of transcribed
regions than ‘known’ protein coding genes.

• Kapranov et al Science, 2002: 296:916-919

Characterising diversity

• Examine gene expression product diversity at
alternate splicing level

• Capture gene expression products under well
defined conditions

Expression Forms
• Exon boundary variation

– Exon extension/truncation
– Alternative transcription start sites
– Alternative polyadenylation

•Whole-exon events
–Skipping
–Cryptic exons/introns
–Exon repetition

•Complex events

Exon 0 Exon 2 Exon 4 Exon 5

Exon 1Normal Colon
(20 ESTs)

Colon cancer
(6 ESTs)

Heart
(11 ESTs)

D0 A0 D2H0 A2A1

H1

T0D1

comparing splice events, not fragments of transcript isoforms

Expression Capture
• Serial Analysis of Gene Expression

– DNA fragments that act as unique markers
of gene transcripts.

– Assay of numbers of each marker in a set
of sequence yields a measure of gene
expression

• Array

– Laydown of sequence clones to provide an
organised series for hybridisation

Resolution of Captured Expression

ESTs Low resolution, broad capture, provides template for
SAGE and Array

SAGE Medium resolution, need template, noise can be an
issue, stoichiometry is revealed but standardisation a
problem

ARRAY High resolution, need template, noise, stoichiometric
resolution highest, standardisation a problem.

Captured Expression

•RNAseq

High coverage, high resolution, multiple transcripts for
each parent region, identification of previously unknown
genes and alternative splice variants; read mapping
dependent

•Capped Analysis of Gene Expression

Comprehensive capture of transcription start sites.
Deep coverage, discovery of novel start sites. Read
mapping dependent. Gene mapping dependent.

Lister , 2009, Curr.Biol

Why is transcript data a problem?

data quality
>T27784 g609882 | T27784 CLONE_LIB: Human Endothelial cells. LEN: 337
b.p. FILE gbest3.seq 5-PRIME DEFN: EST16067 Homo sapiens cDNA 5' end
AAGACCCCCGTCTCTTTAAAAATATATATATTTTAAATATACTTAAATATATATTTCTAATATCTTTAAAT
ATATATATATATTTNAAAGACCAATTTATGGGAGANTTGCACACAGATGTGAAATGAATGTAATCTAATAG
ANGCCTAATCAGCCCACCATGTTCTCCACTGAAAAATCCTCTTTCTTTGGGGTTTTTCTTTCTTTCTTTTT
TGATTTTGCACTGGACGGTGACGTCAGCCATGTACAGGATCCACAGGGGTGGTGTCAAATGCTATTGAAAT
TNTGTTGAATTGTATACTTTTTCACTTTTTGATAATTAACCATGTAAAAAATG

Single read errors
Vector Repeat MASK

Individual items are prone to error but an entire collection
contains valuable genetic information

R I P

Sampling
• RNA hybridization on high density arrays

• Specified probes
• Tiling array

• Representation of splice junctions
• Data interpretation

• Digital transcript counting
• Avoids complex normalization
• Captures lows abundance

RNA-Seq
• Short read
• High throughput

• Polony multiplex
• 0.3 RNA copies/cell
• 27bp length

mRNA cDNA

Sheared cDNA

cDNA

Human RNA-seq
• 2 mismatch
• 50% unique map

• 80% known exons
• 18% multiple map
• 25% no match
• Detects 25% more genes than array

Sultan et al, Science 2008

Grimond et al 2008

Mapping example

Relative sampling
Winston Hide
10/21/08
gray missed on array

Reproducibility
• 0.99 pearsen for replicate RNA runs
• Raw tag ó Q-RT-PCR
• Array dynamic range

• 4-5 orders
• Saturates

Sensitivity
• 10-100 Mill reads/sample
• 1-4Gb reads for mammalian complexity
• 75% cross-hyb with probes

RNA-seq vs Array
•no probe cross-hybridization

•greater dynamic range

•higher sensitivity and specificity

•detection of more, shorter, low abundance
transcripts

•discrimination between similar sequences.

RNA-seq

•Sequence-level transcript information

•distinguish between paralogous parent genes

•replicable digital quantification based upon
counting of sequence reads

• identify transcript sequence polymorphisms

Limits

•new-generation sequencers

•short read length

• high error

•Read Mappnig

•Consistency and standards

•sequence assembly

Limits II

•data analysis

•computational tools

•massive sequence data volume

Next Next

•single reads will grow in length and number

• accurate reads with length of 100,000 bp.
(Pacific Biosciences)

Data manipulation and
interpretation

•How do you look for mutations in an HIV
sequence when 75 000 reads cover the same
base pair?

Capped Analysis of Gene Expression
(CAGE) technology

• High-throughput sequencing of tags derived from 5’ end
of transcript

•Quantify transcript expression levels with internal
consistency across different experiments

• Characterize promoter usage

Cap analysis gene expression for high-throughput analysis of transcriptional starting point and
identification of promoter usage (Shiraki et al., PNAS 2003)

CAGE: cap analysis of gene expression (Kodzius et al., Nature Methods 2006)

Capped Analysis of
Gene expression

0

37,500

75,000

112,500

150,000

5 10 15 20

D
is

tin
ct

 T
SS

Minimum CAGE tags

Number of alternative promoter
regions

Multiple TSS

RGTGACTMANN RCAGGAAGTGNNTNS

GGGRATTTCC NNNNGTCANGNRTKANNNN

AP-1 c-Ets-1

NF-kabbaB Pax-2

Exon Painting

NexGen

•454 - 900 longest perfect read

•SOLiD - short but plentiful

•Helicos - paired end and cost effective

•Dover (Polonator) - short read low cost

Single Cell
Transcriptome

Ever more prolific
sequencers

Amazon

Transcript trends

The Biologist’s Wishlist
• A complete and accurate set of all genes and their

genomic positions
• A set of all the transcripts produced by each gene
• The location and timing of expression of each

transcript
• The protein produced from each transcript
• The location and timing of each protein’s

expression
• The complete structure of each protein
• The functions of each protein

NGS technologies

The development of DNA
sequencing

Wikipedia

fragment

amplify

sequence

reconstruct

AACCGTCCGATC
TTGGCAGGCTAG

5’ 3’

5’ 3’
T
TA
TAG
TAGG
TAGGC
TAGGCA

AACCGTCCGATC

A
A

AT

T
G

G
C

C

A

G

A sequencing gel
autoradiogram

Autoradiograph. The dark color of the lines is
proportional to the radioactivity from 32P labeled adenonsine
in the transcribed DNA sample.

Sanger chain termination sequencing
 DNA template: 5'-atgaccatgattacg...-3'

 DNA synthesized: 3'-tactggtactaatgc...-5'
Gel pattern: +-------------------------+
 lane ddATP | W | | || |
 lane ddTTP | W | | | | | |
 lane ddCTP | W | | | |
 lane ddGTP | W || | |
 +-------------------------+
 Electric Field +
 Decreasing size

 "W" indicates the well position, and "|"
denotes the DNA bands on the sequencing gel.

Reading the sequencing ladder

Flourescent end labelling

Dye Terminator sequencing

• Labelling of the chain terminator ddNTPs,
which permits sequencing in a single
reaction

Dye-termintor automated DNA
sequencing

A computer representation of the gel generates a “false color” image
where each color corresponds to a base. The intensities are
translated into peaks that represent the sequence.

Chromatogram

Chemistry Sanger
Chain
termination

Capillary Dye
terminator

Read length 300 500-600

Total/day 1-10kb 100kb- 1mB

Samples 5-10 334

Amplification in vitro in vitro

An overview of current and emerging technologies for genomic sequencing.

Hall N J Exp Biol 2007;210:1518-1525

©2007 by The Company of Biologists Ltd

Gb

Mb

Kb

50 300 700

Illumina
AB/Lifetech
Helicos

454
Roche

Capillary based
AB 3730

throughput = amt seq/unit time-cost
Th

ro
ug

hp
ut

Read length

PacBio

Template prep

A

A

B
B

Select for A and B adaptor fragments

Attach to solid surfaceSequence

Key NexGen attributes

• The library is not constructed by cloning
• Amplification is by a novel PCR

– Fragments separated by
– emulsion PCR
– bridge PCR

• Very many fragments sequenced in parallel
in a flow cell

• Imaged by microscope/CCD

Amplification

• No single molecule available so...
• Emulsion PCR :isolated individual DNA

molecules + primer-coated beads in
aqueous droplets within an oil phase

• Polymerase chain reaction (PCR) coats
each bead with clonal copies of the DNA
molecule then an immobilization step for
later sequencing

http://en.wikipedia.org/w/index.php?title=Emulsion_PCR&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Emulsion_PCR&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Emulsion_PCR&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Emulsion_PCR&action=edit&redlink=1
http://en.wikipedia.org/wiki/Polymerase_chain_reaction
http://en.wikipedia.org/wiki/Polymerase_chain_reaction

Polony sequencing

• Discrete clonal amplifications of a single
DNA molecule, grown/immobilized in a gel
matrix on a standard microscope slide

Outline of the 454 and polony sequencing process.

Hall N J Exp Biol 2007;210:1518-1525

©2007 by The Company of Biologists Ltd

Pyrosequencing flowgram

• presented 2005, first on market
• emulsion PCR
• pyrosequencing (polymerase-based)
• read length: 250 bp
• paired read separation: 3 kb
• 300 Mb per day
• $60 per Mb
• error rate: around 5% per bp
• dominant type of error: indels, especially in

homopolymers

Applications

Illumina (Solexa)

Single base extension - sequencing
Reversible terminator

• massive parallelism
• 8 lane flow cells (microscope slides)
• ‘glorified PCR machine’ - cluster

amplification
• 960X 4 images per cycle

Stats

• second on the market
• bridge PCR
• polymerase-based sequencing-by-synthesis
• 32..40 bp (newest models: up to 100 bp)
• paired read separation: 200 bp - can use to

generate longer reads
• 400 Mb per day (getting better)
• $2 per Mb
• error rate: 1% per bp (good reads: 0.1%)
• dominant error type: substitutions

Hiseq N 000

• improved optics/imaging at more density
• 2 flow cells 8 day runtime

Single-molecule

• Bright fluorophores and laser excitation to
detect base addition events from individual
DNA molecules fixed to a surface (Helicos)

Immobilization by a primer

Immobilization by a template

Helicos

• on the market for a year

• no amplification

• single-molecule polymerase-based sequencing

• read length: 25..45 bp

• 1200 Mb per day

• $1 per Mb

• error rate: <1% (manufacturer claim)

http://www.youtube.com/watch?v=TboL7wODBj4
http://www.youtube.com/watch?v=TboL7wODBj4

SOLiD ABI (Life Technologies)

Ligation sequencing

SOLiD

SNP requires adjacent
valid colour change

errors do not
have adjacent
compensatory
changes

• known pairs of bases within an 8mer

• read colours that represent 2 bases at a
time

• decode from colour space - colour +
identity of first base

• variant detection is colour change event
specific

• third on market (since late 2007)

• emulsion PCR

• ligase-based sequencing

• read length: 50bp

• paired read separation: 3 kb

• 600 Mb per day (colour space)

• $1 per Mb

• very low error rate: <0.1% per bp (still high compared to Sanger
capillary sequencing: 0.001%)

• dominant error type: substitutions (colour shift)

immobilization of a polymerase

50

Pacific Biosciences

ZMRT technology → True single molecule
zero mode waveguide

Ion Torrent

• Simon Nicolas EMBL

• tutorial ISMB

• Gunnar Ratsch and Ali Mortazavi

• Comparison data from:

• - E Mardis, Trends in Genetics 24 (2008) 133

• - R A Holt, S J M Jones, Genome Res 18
(2008) 839

• - J Shendure, H Ji, Nature Biotech 26 (2008)
1135

Introduction to Galaxy

Galaxy is an integrated tool management system with a user-friendly graphical user interface
(GUI). It is designed for running multiple bioinformatics tools on genomic data in a single point-
and-click environment. In this tutorial we are going to get acquainted with Galaxy. We’ll see how to
access Galaxy from your machine, get oriented and perform some basic tasks. Because genomic
data is usually very large and the bioinformatics tools which we use tend to take a very long time to
execute, it is a good idea to be running the data analysis on a dedicated computer system as opposed
to on your own laptop or machine. This is why in this tutorial series we will be using Galaxy
running on a remote machine (“on the Cloud”) which has been set up just for you. This machine on
the Cloud, together with a copy of Galaxy will be accessible to you for the duration of this course.
We will be providing instructions towards the end of the course on how to set up your own system
on the Cloud and get Galaxy running once this course is over.

In order for you to be able to access Galaxy on your assigned dedicated machine on the Cloud,
you have been given a web or IP address in the form of A.B.C.D where A, B, C and D are numbers
separated by dots. Please note it down! You will need it in order to access Galaxy from the web
browser on your laptop.

Getting Started with Galaxy

Open up a web browser of your choice, and enter the web or IP address given to you into the
Address Bar and press ENTER. You should see the main Galaxy screen as shown below. This
example was run using the Google Chrome web browser.

This is the main ANALYZE DATA window where data analysis is performed. Let’s take a look
at what this page consists of.

LAB SESSION: GALAXY INTRODUCTION

PAGE 1 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

The main page is composed of 4 primary sections which are shown below:

1. The center page is where you will be viewing the data and entering parameter values when
running tools. Now you don’t see anything because we haven’t loaded any data and we didn’t
run any tools yet.

2. The left column is where all of the tools and commands are located, grouped by major
headings. You will be selecting tools from here when loading and analyzing data.

3. The right column is where a history of all the commands that were run are logged. The
history is a very powerful feature of Galaxy which allows you to keep track of the steps that were
undertaken from the very beginning of loading data, to the very last analysis step. We will see
later on how to share your history with your collaborators and how to create workflows from
them. Once again, the history is empty because we haven’t run any tools yet.

4. The very top of the window contains several menus which allow you to move away from this
main ANALYZE DATA page. You can move from one view to another without losing any of
your data. We’ll be using some of the other Galaxy functionality offered here in future tutorials.

You should always remember to log in to Galaxy by clicking on the USER menu item and LOG
IN with your email address and password. Even though it is not required to run analyses, logging in
with your account gives you much more power and functionality when it comes to managing
histories and workflows. We’ll see this later on. Now that we’ve seen what the various panes do, let’s
explore Galaxy by first importing some data!

LAB SESSION: GALAXY INTRODUCTION

PAGE 2 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

Importing Data into Galaxy

You can import data into Galaxy from a large variety of sources: from a local file on the machine,
from shared data libraries and from numerous online data repositories. For the purposes of this
tutorial, let’s import some data from the UCSC Table Browser. This electronic resource is based at
the University of California at Santa Cruz, a major genomics research institution that has become a
world-wide standard genomics data repository that is used by scientists in biology and
bioinformatics all around the world. This online resource allows researchers to both visualize
genomic data and obtain official, curated and published genomic sequence data. Let’s say that we
want to import UCSC curated human gene coordinates on chromosome X from the hg18 reference
genome build:

1. Click on GET DATA in the tool menu in the left pane.

2. Click on UCSC Main table browser

3. Here in the center pane you will be selecting data parameters. In CLADE select Mammal, in
GENOME select Human and in ASSEMBLY select Mar. 2006 (NCBI36/hg18).

4. In GROUP, select Genes and Gene Prediction Tracks, and in TRACK select UCSC
Genes.

5. In TABLE select knownGene.

6. In REGION select the radio button for position and enter chrX in the data entry box.
(Optional: If you press on the LOOKUP button after you type in ‘chrX’, it will fill in the
genomic coordinates for chromosome X)

7. In OUTPUT FORMAT, select BED – browser extensible data.

8. Finally, make sure that there is a tick next to ‘Send output to Galaxy’, and then click GET
OUTPUT.

LAB SESSION: GALAXY INTRODUCTION

PAGE 3 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

http://genome.ucsc.edu/cgi-bin/hgTables?command=start
http://genome.ucsc.edu/cgi-bin/hgTables?command=start
http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=200822817&c=chrX&g=knownGene
http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=200822817&c=chrX&g=knownGene

On the next page, let’s leave all the options at their default settings, and then click on the SEND
QUERY TO GALAXY button. Galaxy will start running, and a new entry will appear in the right
history pane. This was our first step data step. When it is first submitted, it will be colored grey
meaning that it is scheduled to run, and as it runs it will be colored yellow. Once it finished running
successfully, it will turn green and you will see the following screen. You can now click on the
history name where you can see more details with a short summary showing that we’ve imported
2,423 regions together with a mini data view underneath.

Every history entry represents a unified collection of data (or a ‘dataset’), and each will have a
number and a name. The numbers will incrementally increase as you perform new operations on
your data and the data at each stage will be saved and made available to you in this pane. You can
click on the name to expand, or collapse the history entry view. Once expanded, there are several
buttons that are available next to the name that allow you to view the data (eye), to edit the
parameters or attributes of this data (pencil), or delete it (X). There are also some additional buttons
underneath the title that allow you to download the data (floppy drive), get more information (i),
rerun this step (arrow) or several buttons which allow you to visualize this data. In addition, at the

LAB SESSION: GALAXY INTRODUCTION

PAGE 4 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

very bottom of this entry is a history mini-data view which only shows the first 6 data rows, and it is
useful to get a general idea of how the data is structured. Here you can see that the 1st column
contains the chromosome name, the 2nd column contains the START and the 3rd column contains
the END genomic location coordinates for a particular gene, etc. Let’s take a look at this data in
greater detail. If you click on the little “eye” button, you’ll be able to view the entire dataset in the
center pane:

Next to the “eye” button is a little “pencil” button. If you click on that, you can edit the attributes
of this dataset:

LAB SESSION: GALAXY INTRODUCTION

PAGE 5 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

Here let’s change the name of this dataset to “Genes on chrX.” You can also see that it is here
where you can specify which columns contain which data, e.g. that column 1 contains chromosome
information, etc. We don’t really want to change anything else here, so just click on SAVE. You will
then see that the name of this dataset was changed.

Note: next to the “pencil” button is an “X”. If you click on that, this will delete a dataset from your
history. This is useful if you make a mistake along the way and you end up with data that you don’t
need for subsequent steps. Otherwise, it is not recommended to delete data from your history
since this will make it much harder (if not impossible) to retrace all of your steps from start to finish,
and this defeats the whole purpose of the history!

Preparing and Manipulating Data for Analysis

Once you have a dataset imported into Galaxy, you may need to manipulate the data by sorting,
filtering or cutting columns out of it before you can continue. This may be necessary because some
tools may require that the data be presented in a certain format, but usually we may want to
organize the data anyway so that it only contains the information we really need, in as a clean format
as possible. This is recommended because usually most raw genomic datasets come with a lot of
information that might not always be necessary for your analysis. In this section we shall be
performing a few basic operations, but keep in mind that many more are possible.

We already have a chromosome X gene dataset in Galaxy. Let’s say that we are only interested in
the UCSC gene names, their chromosomal locations, the strand where they are located and the
exon counts on this chromosome. To keep only the data we need, we’ll cut out the columns with this
information and discard the rest.

1. Click on TEXT MANIPULATION in the tool pane, and then select the CUT tool. This
tool will extract the columns we want and create a new dataset from them.

LAB SESSION: GALAXY INTRODUCTION

PAGE 6 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

2. In the tool parameters, in CUT COLUMNS, type in “c1,c2,c3,c6,c4,c10”. Notice here that
we can order the columns any way we like. In this case we are placing the strand (column 6)
before the gene ID (column 4).

3. Make sure that FROM contains our initial dataset. Here it is the only one present, however
when you work with the CUT tool in the future, always make sure you select which dataset to
work on.

4. Press EXECUTE. You should get a now have a new dataset in your history numbered as 2.

We have now created a new dataset in which we have eliminated unwanted information and kept
only those pieces of information that we’ll be using in subsequent steps. Go ahead and rename this
dataset to something you like, and then click SAVE. It is always a good idea to rename your
datasets as they are created to make sure you can recognize it. It’s very easy to get lost in many
hundreds of data steps and datasets in Galaxy when performing complicated analyses!

For the purposes of this tutorial, we’ll be needing this dataset in INTERVAL format. If you
remember we imported this dataset from UCSC in BED format. You can perform this kind of
conversation of data formats right here in the pencil tool. Explore the options available. If the CUT
tool did not already convert the dataset to INTERVAL, then do so now and click SAVE. Interval
format is a simple format in which Galaxy is told that the dataset contains a “start” and “end” column
which defines a genomic interval for a feature, in this case, for genes. Usually Galaxy is good at
guessing the format for you and you do not have to do this step. When a file is in interval format,
there are other attributes that can be set under the pencil tool, where you tell Galaxy which columns
contain which pieces of data, such as strand information etc. In case you have to convert your
dataset to interval, make sure the columns are properly set. Column 1: chromosome, Column 2:
Start, Column 3: End, Column 4: Strand, Column 5: Name.

LAB SESSION: GALAXY INTRODUCTION

PAGE 7 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

Now let’s filter our data to only contain those genes that have a certain number of exons. Let’s say
we only want to see those genes that have at most 2 exons.

1. Click on the FILTER AND SORT tool heading, and select the FILTER tool.

2. Select the appropriate dataset (the latest concise, cut one, whatever you called it) in
FILTER:

3. Provide a condition by typing in “c6<=2”. This conditions means, select only those rows
(genes) in our dataset whose column 6 (exon count) is less than or equal to 2.

4. Click on EXECUTE. This will create a new dataset which should contain only 436 genes.
In the data mini-summary Galaxy also tells you that this dataset is only 17.99% the size of our
initial one.

Click on the eye tool on this new dataset, and you’ll see that column 6 (exon count) in this file has
values of 1 or 2, which means it worked! Once again, rename this dataset and give it a useful name,
such as “chrX Genes <=2 exons”.

In our next step, we’re going to see how to join two datasets together. Before we go on, we need
to import a new dataset that we’ll be joining with this one. Let’s say we are interested in looking at
the predicted DNase-I hypersensitive sites on chromosome X and joining this dataset with our
previous one.

1. Select the GET DATA tool heading, and select the UCSC Main Table Browser tool.

2. For CLADE select Mammal, for GENOME select Human, for ASSEMBLY select July
2003 (NCBI34/hg16).

3. For GROUP select Regulation, for TRACK select NHGRI DNaseI-HS

LAB SESSION: GALAXY INTRODUCTION

PAGE 8 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

4. For TABLE select nhgriDnaseHs.

5. Under REGION make sure you select the position radio button and type in “chrX”.

6. Click on GET OUTPUT.

7. On the next page, click on SEND QUERY TO GALAXY.

You should notice that we have selected data from a previous genome assembly build (version),
ie. hg16 and not hg18. This would be a good time to once again rename this dataset with a name of
your choosing, but make sure that “hg16” is in the name to make sure you can identify it. Every build
has different genome coordinates, and so the coordinates will not match with our first dataset. This
could happen by accident, or in reality it could be that you have a dataset with genomic coordinates
from a previous version of the genome assembly. In our case, DNase-I hypersensitive sites data is
only available under build hg16. You can use Galaxy to convert this build to the newer hg18 by using
the Convert Genome Coordinates tool under the LIFT-OVER tool heading. To save time and
learn how to upload your own files to Galaxy, we’ve done the conversion to hg18 already. We
provide you with the file “DNase HS hg18.bed” through the Galaxy “Shared Data” system:

1. Navigate to Data Libraries, MitoSequences, Intro and find the “DNase_HS_hg18.bed” file

2. Import it into your current user history by clicking on the arrow next to it, “Import dataset
into selected histories”, and the “Import library datasets” button

LAB SESSION: GALAXY INTRODUCTION

PAGE 9 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

3. Go back to the main analysis page and you will find the BED file in your current history,
ready to use

Alternatively, you can download the file from our server and manually upload it into the current
history:

1. Select the GET DATA tool heading, and select Upload File from your Computer.

2. Under FILE, select Choose File and browse to the directory where this file is located.

3. Under GENOME, type “hg18” in the search bar and select it.

4. Press EXECUTE.

Now that we have our converted file in hg18, we can do some more involved analysis.

LAB SESSION: GALAXY INTRODUCTION

PAGE 10 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

Analyzing Data

Now that we have a few datasets ready for analysis after we have performed some pre-processing,
we can do some analysis. There are very many tools that can be used for analysis in Galaxy, but here
we will just show you some examples of what can be done.

Let’s say we are interested in determining if there are any putative DNase hypersensitive sites in
the upstream flanking regions from our gene locations on chromosome X. To check this, we will
need to obtain the coordinates of those flanking regions first. Then we shall join the two datasets to
see whether they have an intersection and where those intersections lie.

1. Select the OPERATE ON GENOMIC INTERVALS tool heading and click on the Get
Flanks tool.

2. Under SELECT DATA, select the dataset which contains chromosome X genes with 2 or
fewer exons.

3. Under REGION, keep the option at Whole Feature and keep the option of Upstream under
LOCATION OF FLANKING REGIONS.

4. Keep an OFFSET of 0, but increase the Length of flanking region to 500.

5. Click Execute.

You can now rename this new dataset something like “flanks 500bp upstream of chrX genes with
<=2 exons”. Now we can join this dataset with our DNase hypersensitive sites dataset.

LAB SESSION: GALAXY INTRODUCTION

PAGE 11 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

1. Under the OPERATE ON GENOMIC INTERVALS tool heading, select the Join tool.

2. For the FIRST dataset choose the dataset that contains the upstream flanking regions.

3. For the SECOND dataset choose the dataset that contains the DNase hypersensitive sites.

4. You can choose a Minimum Overlap, but keep it at the default of 1.

5. Under RETURN, keep the default of Only Records that are joined (INNER JOIN). This
will only return the regions which are overlapping and nothing else.

6. Click EXECUTE.

Remember to rename the new dataset if you like. Let’s click on the eye button and see what this
data tells us. If the data does not fit the center pane very well, you can always resize the side panes by
dragging your mouse over the pane edges. You can also hide panes by clicking on the pane edges.
Let’s hide the right history pane so that we view the data clearly.

We can see that we have 13 upstream flanking regions of genes on chromosome X with 2 or fewer
exons that have predicted DNase hypersensitive sites. The two datasets were joined together and
are now placed side by side, with the only rows present that show an overlap. Column 1 shows the

LAB SESSION: GALAXY INTRODUCTION

PAGE 12 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

chromosome, column 2 shows the start position, column 3 shows the end position of the upstream
flanking regions, column 4 shows the strand, column 5 shows the USCS gene ID, column 6 shows
the number of exons in that gene, column 7 is the chromosome again (from our 2nd joined dataset),
column 8 shows the start position, column 9 the end position of the DNase hypersensitive region,
column 10 shows the name of this DNase HS site and column 11 shows the hypersensitivity score.

Visualizing your Data

A picture is worth a thousand words. With Gigabytes of genomic data, the only way to get a
good grasp of what it represents and what it means is by displaying it appropriately. We shall revisit
the topic of visualization in a future tutorial, but let’s perform some simple visualizations in Galaxy
with the data that we already have.

Any time that you have a file in BED format (this is the format that we downloaded the data
from the UCSC Table Browser), you can instantly visualize it using the UCSC Genome Browser,
and this functionality is integrated into Galaxy. Our first dataset that we obtained from the UCSC
Table Browser was the set of coordinates for UCSC genes from chromosome X.

Go back down in your history until you find our first dataset. You can see right under the title
that the format is “bed”, so it can be easily visualized from this box. You will see a line which says
“Display at UCSC…”. Click on MAIN. This will open up a new internet browser window or tab
which will take you directly to the UCSC Genome Browser where you can view the data that we
have just uploaded. The UCSC Genome Browser will be covered in more depth in the
Visualization Tutorial later on in the course, but it is a relatively straightforward online resource
that allows you to navigate the genome of your choosing with ease. The Genome Browser has the
capacity to display a lot of data! Many tracks are built in, and can be turned on or off by using the
controls at the bottom of the browser page. The data that we have just uploaded however (which is
not built-in), is defined as a “custom track”. You can see that our data is titled “User Supplied Track”.

LAB SESSION: GALAXY INTRODUCTION

PAGE 13 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

We can use this approach to visualize any BED files you may have, but what do we do about the
other datasets which have that are not in BED format? We will have to create custom tracks for
them by using special Galaxy tools.

Let’s say that we also wish to view the genes that have at most 2 exons, the DNase hypersensitive
sites and the upstream flanking regions of those genes.

1. Select the GRAPH/DISPLAY DATA tool heading and select the Build Custom Track for
UCSC genome browser tool.

LAB SESSION: GALAXY INTRODUCTION

PAGE 14 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

2. Click the Add new Track button. Select the datasets we wish to display together and keep
pressing Add new Track until you have entered all of the datasets we need to be visualized. At
each step give them a meaningful name for visualization (all of them! if you leave at least 2 tracks
with the default “unnamed” name, it won’t display properly). Also select a color for this track of
your choosing. Remember to include the “chrX genes <= 2 exons” dataset, “DNase HS
hg18.bed”, and “flanks 500bp upstream”.

3. When you’re done, click EXECUTE.

4. Once the job finishes running, click on DISPLAY AT UCSC MAIN as we did in the
previous example on the newly created dataset history entry.

You’ll end up at some random position on chromosome X, but probably won’t see any of our
displayed features. Enter the following coordinates to view under POSITION/SEARCH: chrX:
38,542,873-38,547,882 and click JUMP.

Now you should see the view as in above. You can now see a track showing smallGenes, which
shows where genes are present with at most 2 exons, and you can also see the location of DNase
hypersensitive sites and the upstream regions of our small genes.

Go ahead an experiment with the genome browser and see what it has to offer. You can zoom in
and zoom out with the buttons on top. Try right-clicking on the grey area to the left of the
smallGenes track (arrow in image above) and select FULL. This will display all of the genes and
their variants on separate lines. You’ll notice that previously, this track was in DENSE mode which
means that it displayed all of the information on a single line without showing the subtracks. Try the
other display options and see what they look like. Again, we’ll be covering visualization in greater
detail in future tutorials.

LAB SESSION: GALAXY INTRODUCTION

PAGE 15 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

Working with Histories

Let’s say we have finished our analysis. It is always a good idea to give your history a meaningful
name.

All you have to do is click above the history where it might say “Unnamed History” and type in
something you like. You can also add tags by clicking on the white “tags” button to the right. Tags
are short keywords that allow you to easily find histories in the future once you start getting
swamped in your own histories. You can include something like “chrX”, “DNase”.

Remember how we said it’s good to log in? Well if you click on OPTIONS above the history
pane, you will see a long list of really useful options that you wouldn’t have access to if you hadn’t
logged in. Here you can select to view all of your saved histories, convert a history to a workflow,

LAB SESSION: GALAXY INTRODUCTION

PAGE 16 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

share your history with others, see deleted datasets and many other useful things. Click on SAVED
HISTORIES.

This should bring you to a list that looks like this:

This will show you all of the histories that you have under your user account, the number of
datasets per history, their tags and how large they are on disk together with other time stamp
information. You can manage your histories here. Next to our only history name “lab1”, there is a
small arrow. If you click on it, you will get a menu with several options: Select SHARE OR
PUBLISH.

LAB SESSION: GALAXY INTRODUCTION

PAGE 17 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

On the next screen you have a choice to publish this history via an internet link. You can make
this link available to your colleagues and they’ll be able to view it and use it. You can also choose to
share your history via email, where you have to type in the email of your colleagues. They need to
have Galaxy accounts under those emails for this to work. Once you do this, they will have these
histories accessible through their own accounts. A great and transparent way to share your analysis
pipeline with others, and this vastly promotes analysis reproducibility!

Working with Workflows (Optional)

Let’s say you have refined your analysis pipeline and you plan on using this sequence of analysis
tools and steps many times again on different datasets that you have. You can convert this history
into a workflow easily where all you would have to do is ask the user for an input dataset and a set of
input parameters, and he/she could run the history over and over again for different datasets without
manually going through all the history steps. Let’s make a workflow out of this history that we have
on hand.

LAB SESSION: GALAXY INTRODUCTION

PAGE 18 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

Click on OPTIONS in the history pane, and then click on Extract Workflow. You should see
the screen on the next page. Here you can select which components of the history you want included
in the workflow. Interactive components such as the UCSC Table Browser and manual file
uploading are not supported in workflows, so we have to create special data input modules to
replace them.

Once you give this workflow a name and click on CREATE WORKFLOW, it should succeed
and show you:

To find your workflows, click on WORKFLOW on the top menu in Galaxy. This will bring you
to the workflow management page.

LAB SESSION: GALAXY INTRODUCTION

PAGE 19 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

Let’s take a look at our workflow. Click on the small arrow next to its name and click on EDIT.

You can see the workflow design canvas with the workflow that we’ve just created from our
history. Here you can design a workflow from scratch or edit an existing workflow. You can select
any tool from the left pane and it will appear on the canvas. You can drag tools around by clicking
and dragging your mouse over them. On the bottom right corner there is a “map” view which allows
you to navigate the workflow. By clicking on the canvas itself or on the map, you can pan the view.
You can click on tool boxes and modify their options.

LAB SESSION: GALAXY INTRODUCTION

PAGE 20 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

Let’s modify our workflow slightly to make it look better. First of all let’s delete the INPUT
DATASET box that isn’t connected to anything. If you remember this is the dataset that we
inputted from UCSC that was in the hg16 build which we did not use. To delete the box, click on
the X in top right corner of the tool box. Then you can reorganize the other boxes so that their
connections are more easily seen.

Now let’s say that we want to select genes on chromosome X, but not those that have at most 2
exons, but those with at most 3 exons. Click on the FILTER box to bring up its options. We can
then change the condition to “c6<=3”.

LAB SESSION: GALAXY INTRODUCTION

PAGE 21 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

Also note that you can connect/disconnect the arrows between tool boxes. The arrows how data
flow; data is fed out of modules as outputs and then fed into other modules as inputs. You could in
theory build any workflow like this from scratch if you know what steps are required of the analysis
to be performed. Let’s rename the input modules to make it easier for the user to know what kind of
input is expected there. Click on the top input dataset box, and under NAME call it “Input Genes”
and call the bottom input dataset as “Input DNase sites”. You can also type more information under
ANNOTATION to make it clearer for the user what is required of them at this step. Now click on
OPTIONS on top and SAVE.

Now let’s run this workflow. If we were to run this workflow from scratch, we would first need
to have all the required input datasets in our history. We already have them, so we can just run the
workflow directly. Click on WORKFLOWS on the top menu. Then from the list of saved
workflows, click on RUN next to the workflow name we have just created.

LAB SESSION: GALAXY INTRODUCTION

PAGE 22 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

Make sure you select the proper datasets at the input dataset steps. That’s all we need to do!
Then click on RUN WORKFLOW. If nothing goes wrong, you should have all the steps run in
sequence and finally complete with all steps becoming green as shown below.

Our output dataset is the last one. Let’s click on the eye button and take a look at it.

Since in the workflow we selected to choose all genes with up to 3 exons, we now have more
results than before (24 rows). We can also see in column 6 that we have values from 1 to 3 as
expected. Just like we can share histories, we can share workflows. Try it! Go to the
WORKFLOWS on the top menu and click on the SHARE options next to the workflow name.

Exercises

1. Create a new history and give it a name.

2. Download exon data for human chromosome 18 from the latest hg19 build from the UCSC
table browser in BED format. Hint: you should first select to download UCSC genes as before,
but there will be additional options to limit your download to only exons.

3. Download single nucleotide polymorphism (SNP) data for the same chromosome and same
build from the same source in the same format. Hint: look under the “Variation and Repeats”
group. Select Common SNPs (132). Rename your datasets!

4. How many exons are in your exon file? How many SNPs? (on chromosome 18 that is)

LAB SESSION: GALAXY INTRODUCTION

PAGE 23 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

5. Join the two datasets together using the JOIN tool as we saw before. We want to place the
exons (larger dataset) first (on the left) and the SNPs dataset next to it (on the right). Perform
the join so that the genomic intervals in both files have a minimum overlap of 1 base and make
sure the output file contains only those regions which have an overlap. What does this new
dataset tell us and how is it different from the previous two? How many SNPs are there on
exons on chromosome 18? Is this value different from the number of exons or the number of
SNPs we saw before? Why? Hint: do any of the exon IDs in the joined dataset occur more than
once?

6. Try the GROUP tool under the “Join, Subtract and Group” tool heading to create a new
dataset which gets rid of multiple copies of exon IDs by grouping on them, as a result collapsing
all of the other data into a single line per exon ID. While you are here at this tool, you can
perform basic arithmetic operations on the grouped elements. Let’s count how many duplicate
copies we originally had of each exon ID. How many exons contain SNPs on chromosome 18?
Once you obtain this dataset, what does the second column with the values really mean? Hint:
exon IDs are in the column after the END genomic coordinates.

7. Try the SORT tool under the “Filter and Sort” tool heading in order to sort this last file in
descending order on the numeric column that we discussed in the previous section. What is the
maximum (number of SNPs) that are present on any one exon?

8. Filter the previous dataset using the FILTER tool to only contain rows that have at least 5 in
the numeric column. How many exons contain at least 5 SNPs each? What is the proportion of
high SNP-density exons (with at least 5 SNPs) among all exons?

9. Rejoin this last dataset with our original exon dataset so that we now have a more complete
exon dataset which also has counts of SNPs for each exon ID entry. Hint: use the JOIN tool
and join by exon ID. Remember to place the larger dataset first (on the left) when performing
the join.

10. Visualize this last dataset in the UCSC Genome Browser. Select one of the exons that
Galaxy just submitted to UCSC genome browser and zoom in to see the SNPs in that exon.

11. Convert this history into a workflow that is designed to accept an input dataset with exons
from a particular chromosome, and a second input dataset with SNPs on that chromosome.
Change the workflow so that you end up with exons that have at least 7 SNPs each.

12. Run this workflow with the necessary data but this time from chromosome 21.

LAB SESSION: GALAXY INTRODUCTION

PAGE 24 OF 24	
 	
 EMMANUEL DIMONT, DEPT OF BIOSTATISTICS, HSPH

Second-Generation Sequencing

The second- and third-generation sequencing field moves so rapidly that it can be quite difficult to
provide a current overview. Aside from the algorithmic problems, one of the main challenges that
need to be overcome by the large sequencing facilities is data management .The following blog
posts are worth exploring since the problem increasingly occurs in individual labs as sequencing
becomes affordable even for smaller projects:

• http://pathogenomics.bham.ac.uk/blog/2009/09/storage-on-a-budget/

• http://pathogenomics.bham.ac.uk/blog/2009/10/do-you-store-your-image-files/

• http://blog.bioteam.net/2009/10/16/storage-for-next-gen-sequencing/

Initial quality control and basic analysis workflows are for the most part command line driven.
Commercial systems like CLCbio (http://www.clcbio.com/) are still fairly rare outside of dedicated
sequencing labs, but the publicly available software has matured enough to provide almost everyone
with the ability to make sense of sequencing information:

• Quality control: FastQC, http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

• Sequence manipulation: FastX Toolkit, http://hannonlab.cshl.edu/fastx_toolkit/

• Workflow generation: BioPieces, http://code.google.com/p/biopieces/

• Data comparison: BEDTools, http://code.google.com/p/bedtools/

This maturity in tool development is driven by a rapid convergence towards a small list of minimal
standards in order to allow a more modular design of workflows as well as to facilitate data
exchange between components:

• Sequence and quality information: FASTQ (http://maq.sourceforge.net/fastq.shtml)

• Alignments: SAM/BAM (http://samtools.sourceforge.net/)

• Variant calling: VCF (http://vcftools.sourceforge.net/specs.html)

These standards and other existing software frameworks facilitate the development of sequence
analysis environments such as the Broad’s Genome Analysis Toolkit (http://
www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit), eventually even
allowing non-programmers to mix and match their workflows as needed.

Applications

Any survey of applications for second-generation sequencing is bound to be outdated by the time it
comes back from the printer. The easiest way to stay on top of new algorithms and workflows s
closely monitoring the SeqAnswers forum (http://seqanswers.com/) and to browse through the
accompanying Wiki (http://seqanswers.com/wiki/Software). Finally, a number of high-impact
webblogs are almost mandatory to watch. A somewhat arbitrary selection includes:

• MassGenomics, http://www.massgenomics.org/

• GeneticFuture, http://scienceblogs.com/geneticfuture/

LAB SESSION: EXOME SEQUENCING ANALYSIS USING GALAXY

PAGE 1 OF 10! !

http://pathogenomics.bham.ac.uk/blog/2009/09/storage-on-a-budget/
http://pathogenomics.bham.ac.uk/blog/2009/09/storage-on-a-budget/
http://pathogenomics.bham.ac.uk/blog/2009/10/do-you-store-your-image-files/
http://pathogenomics.bham.ac.uk/blog/2009/10/do-you-store-your-image-files/
http://blog.bioteam.net/2009/10/16/storage-for-next-gen-sequencing/
http://blog.bioteam.net/2009/10/16/storage-for-next-gen-sequencing/
http://www.clcbio.com
http://www.clcbio.com
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://code.google.com/p/biopieces/
http://code.google.com/p/biopieces/
http://code.google.com/p/bedtools/
http://code.google.com/p/bedtools/
http://maq.sourceforge.net/fastq.shtml
http://maq.sourceforge.net/fastq.shtml
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
http://vcftools.sourceforge.net/specs.html
http://vcftools.sourceforge.net/specs.html
http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit
http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit
http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit
http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit
http://seqanswers.com
http://seqanswers.com
http://seqanswers.com/wiki/Software
http://seqanswers.com/wiki/Software
http://www.massgenomics.org
http://www.massgenomics.org
http://scienceblogs.com/geneticfuture/
http://scienceblogs.com/geneticfuture/

• PoITigenomics, http://www.politigenomics.com/

• Genetic Inference, http://www.genetic-inference.co.uk/blog/

• Fejes, http://blog.fejes.ca/

Workflows

You cannot go wrong by simply following the workflows outlined by large-scale genomic papers
coming from any of the big sequencing centers, although this frequently requires delving through
the supplementary material and online information. A number of reviews are also helpful:

• Ashley et al. Clinical assessment incorporating a personal genome. The Lancet (2010) vol. 375
(9725) pp. 1525-1535

• Harismendy et al. Evaluation of next generation sequencing platforms for population targeted
sequencing studies. Genome Biol (2009) vol. 10 (3) pp. R32

• Mardis and Wilson. Cancer genome sequencing: a review. Human Molecular Genetics (2009)
vol. 18 (R2) pp. R163-8

• Robison. Application of second-generation sequencing to cancer genomics. Briefings in
Bioinformatics (2010) pp.

For our course the special issue on exome sequencing just published by Genome Biology (http://
genomebiology.com/content/12/9) is worth exploring. An excellent and current step-by-step
workflow can also be found on the SeqAnswers wiki (http://seqanswers.com/wiki/How-to/
exome_analysis).

Getting started

We will be focusing on the application and combination of various sequencing tools within the
Galaxy Framework (http://usegalaxy.org) which simplifies the analysis even further while providing
data histories, access control, workflows and more. The course Galaxy instance can be found at
http://174.129.35.133/. Please see the separate Galaxy handouts to get you started on using the
system.

We will be retracing most of the steps required to get from a FASTQ sequence file (Illumina)
received from a sequencing facility as part of an exome sequencing analysis all the way to variant
calls and variant prioritization.

Quality Controls

We will start with the mandatory quality controls after receiving our sequence data from the core
facility in FASTQ format. The FASTQ file contains output reads from the sequencer that need to
be mapped to a reference genome for us to understand where those reads came from on the
sequenced genome. However, before we can delve into read mapping, we first need to make sure
that our preliminary data is of sufficiently high quality. This involves several steps:

LAB SESSION: EXOME SEQUENCING ANALYSIS USING GALAXY

PAGE 2 OF 10! !

http://www.politigenomics.com
http://www.politigenomics.com
http://www.genetic-inference.co.uk/blog/
http://www.genetic-inference.co.uk/blog/
http://blog.fejes.ca/
http://blog.fejes.ca/
http://genomebiology.com/content/12/9
http://genomebiology.com/content/12/9
http://genomebiology.com/content/12/9
http://genomebiology.com/content/12/9
http://seqanswers.com/wiki/How-to/exome_analysis
http://seqanswers.com/wiki/How-to/exome_analysis
http://seqanswers.com/wiki/How-to/exome_analysis
http://seqanswers.com/wiki/How-to/exome_analysis
http://usegalaxy.org
http://usegalaxy.org
http://174.129.35.133/cloud
http://174.129.35.133/cloud

1. Obtaining summary quality statistics on the reads and review diagnostic graphs

2. Eliminate sequencing artifacts

3. Filter out genetic contaminants (primers, vectors, adaptors)

4. Filter out low-quality reads

5. Recalculate quality statistics and review diagnostic plots on filtered data

6. Iterate through steps 2-5 until the data is of sufficient quality before proceeding to mapping.

Load the FASTQ file

1. Open up Galaxy from your machine as before (http://174.129.35.133/)

2. Start up a new blank history and give it a name.

3. In the top menu, move your mouse cursor over SHARED DATA and select DATA
LIBRARIES. This allows you to import files into Galaxy that have been shared with you

4. You will be assigned to download a particular file. Browse to that file under folder “chr22” and
mouse over the arrow to the right of the filename. In the context menu select “Download to
Selected History”. On the next screen, select the history you are using. The file should now
appear in your history.

5. Take a look at the file contents. Note it’s size. What differences do you see between the FASTA
format and the FASTQ format? What additional information does FASTQ contain over
FASTA?

Obtain Quality Statistics

1. Under the NGS:QC and manipulation tool heading, select the COMPUTE QUALITY
STATISTICS tool and apply it to your FASTQ file.

2. Apply the Draw Quality Score Boxplot tool to your quality statistics file. What do you see?
What does the boxplot tell you about the quality of your reads?

3. Apply the Draw Nucleotides Distribution Chart tool to your quality statistics file. What do you
see? What does this chart tell you about the reads?

4. Try the FASTQ Summary Statistics tool under the ILLUMINA FASTQ tool subheading on
your FASTQ data file. Do you observe similar quality statistics as before? What additional
information do you get with this tool?

5. Compare the results with the pre-generated FastQC plots at : http://dl.dropbox.com/u/407047/
Work/SequencingCourse/QA/7_100326_FC6107FAAXX-chr22_fastqc/fastqc_report.html OR
http://dl.dropbox.com/u/407047/Work/SequencingCourse/QA/8_100326_FC6107FAAXX-
chr22_fastqc/fastqc_report.html (or find the ‘FASTQC’ tool and generate your own report).
Make sure you select the correct one depending on the FASTQ file that you have been
assigned! What can you say about the per-base GC content? Does this match the human

LAB SESSION: EXOME SEQUENCING ANALYSIS USING GALAXY

PAGE 3 OF 10! !

http://dl.dropbox.com/u/407047/Work/SequencingCourse/QA/7_100326_FC6107FA
http://dl.dropbox.com/u/407047/Work/SequencingCourse/QA/7_100326_FC6107FA
http://dl.dropbox.com/u/407047/Work/SequencingCourse/QA/7_100326_FC6107FA
http://dl.dropbox.com/u/407047/Work/SequencingCourse/QA/7_100326_FC6107FA
http://dl.dropbox.com/u/407047/Work/SequencingCourse/QA/8_100326_FC6107FA
http://dl.dropbox.com/u/407047/Work/SequencingCourse/QA/8_100326_FC6107FA

genome? Why is there a shift in the GC distribution from the theoretical distribution? What is
the meaning of the k-mer content tab?

6. Apply the COLLAPSE Sequences tool on your FASTQ dataset. What does this tool do?

Eliminate Sequencing Artifacts

Apply the Remove Sequencing Artifacts tool on your FASTQ file. How many artifact reads were
eliminated?

Filtering Contaminants

1. Go on http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html to visit the VecScreen online
tool that allows you to determine which reads have a high probability of being of primer or
vector source. (This section is for demonstrative purposes only)

2. Try the following test sequences:

> Test1
AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA
>Test2
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC
TTCCGATCT

As you can see, not every tool is available through Galaxy (yet)! Some things need to be done
outside of Galaxy using other online tools.

Filtering Out Low-Quality Reads

1. After reviewing the quality diagnostics in section 2, choose appropriate quality parameters you
think would be good for this data.

2. Feel free to use the following tools to filter out low-quality reads from your data: Filter FASTQ
or Filter By Quality. Choose appropriate values.

Quality Statistics on Filtered Data – Better?

Generate another quality report (see above). Do we have an improvement in read quality? What has
changed and why?

Read Trimming and Wrap-Up

It is generally a good idea that once you have done all of the filtering steps that you trim your reads
to cut away trailing read sections that are still of low-quality (if necessary). Is this necessary in your
case? Use the TRIM SEQUENCES tool to finally cut away the read tails which are of low- quality

LAB SESSION: EXOME SEQUENCING ANALYSIS USING GALAXY

PAGE 4 OF 10! !

http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html
http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html

(if necessary). Make sure to save your finalized FASTQ file that has been filtered and improved.
You will be using this file in the next section for mapping.

Exome Sequencing and Alignment

Next we are going to look at the steps we need to take once we have a clean, filtered FASTQ file
that is ready for alignment. You can either use the filtered FASTQ file that you prepared in the
previous section, or download a new one from the Shared Data Libraries in Galaxy. The alignment
process consists of the following steps:

1. Choose an appropriate reference genome to map your reads against

2. Perform the read alignment using one of several alignment tools, Bowtie or BWA, creating an
output SAM file

3. Convert the SAM file(s) to compressed BAM format

4. Generate BAM index statistics

5. Perform quality control on the exome enrichment using Picard, compare to external QC tools

Load the filtered FASTQ file and Reference Genome

1. Start up a new blank history and give it a name.

2. Either load your filtered FASTQ files from the previous tutorial, or download a filtered
FASTQ file from the Shared Data Libraries in Galaxy. Make sure the Lane matches the one
that you worked on in the previous tutorial.

3. To save disk space and computing time, we are going to be working with a reference genome
(hg19) that only covers chromosome 22. Import this file into your history from the Shared Data
Libraries.

4. Take a look at the file contents. Note their sizes. Calculate the GC content of the reference
genome and the input FASTQ files using the GEECEE tool under the EMBOSS tool
heading. Compare the GC contents of these two files. What do you conclude? Is there a
difference? If so, why?

Perform Read Alignment

1. You have been assigned to run one specific read alignment tool (Bowtie or BWA). You can find
these tools under the NGS: MAPPING tool heading. Make sure you select the corresponding
tool for Illumina. Remember NOT to use a built-in reference genome. Select Single-End under
“library mate pairing”. Look up the documentation to see what the various tool options do.

2. Perform the mapping using the default options.

3. Take a look at the output file. Note it’s size. How long did it take to run? Now extrapolate to
how long you would expect this tool to run when mapping to the entire genome
(approximately).

LAB SESSION: EXOME SEQUENCING ANALYSIS USING GALAXY

PAGE 5 OF 10! !

4. Take a look at the SAM format. What does it contain and how is the file structured?

5. If you have time, perform the mapping with the other alignment tool. How long did that take to
run? Which one was faster? We’ll be comparing the differences between these two alignments
later on.

Convert SAM files to BAM files

1. Apply the SAM-to-BAM tool under the NGS:SAM TOOLS tool heading to convert your
output SAM files to the compressed BAM format.

2. If you have both Bowtie and BWA created SAM files, pick one for the rest of the course.

Generate BAM Index Statistics

Calculate the index statistics using the BAM Index Statistics tool under the NGS: PICARD tool
heading. What kinds of statistics are reported? What do they tell you about the alignment?

Quality controls of enrichment and alignment

We are now going to check how good our coverage of the target exome was. First, let’s explore data
visualization options within Galaxy using a test file. You will find a a sample genomic bait region
called 'hg19_bait_test.bed' in the visualization Shared Data folder.

1. First task, pull the bait test coordinates into the active history. What region/gene does the bait
test overlap? This can be explored by pulling in all genes (or all genes on chr22) from the UCSC
Table Browser into the active history and using the operations on genomic intervals to check
what it intersects with.

2. The intersect tool depends on the order of input data. Try both orders and compare the
different results. How do they differ?

3. Send the intersection result that includes a RefSeq gene identifier (NM_..) to UCSC. What is
the name of the gene that the bait region overlaps? How would this have been different if we'd
asked for one BED entry per exon instead of requesting the gene-based information from
UCSC?

Quality Control of the exome capturing step

We will now explore the full target/bait information to your sequence alignment to get a sense of
target enrichment, coverage and initial variation information.

1. Pull the overall target/bait BED files from the shared data library. The targets file contains
genomic intervals of exons that we are aiming to capture. The baits file contains genomic
intervals of those genomic regions that we practically can capture using our technology. Explore

LAB SESSION: EXOME SEQUENCING ANALYSIS USING GALAXY

PAGE 6 OF 10! !

the target BED file and the bait BED file manually. How do the coordinates relate to each
other?

2. Send the full target/bait BED file to UCSC for visualization (via the 'display at...' link in the
details of the history panel). Get a sense of how well the targets align with genes/exons.

3. Run the SAM/BAM Hybrid Selection Metrics tool under the NGS: PICARD tool heading
on your BAM file.

4. What do the metrics tell you about the efficiency and coverage of our exome capture
experiment?

5. A PDF of the exome sequencing quality control is available at http:// dl.dropbox.com/u/
407047/Work/SequencingCourse/Presentations/exomeControl.pdf. Work through it and pick
two regions from the listed table, one with high coverage, one with low coverage. Identify the
genes overlapping them via UCSC-- what are they?

6. Explore the data and coverage by sending the BAM file to UCSC. The viewer should
remember the bait and target region information you sent previously. How uniform is the
coverage in general? Can you spot regions where there are variants (red lines)? Inspect a single
read (click on it) and explore the provided information. What level of detail can you obtain?

7. Revisit the bait test region. Is there a variant in this gene based on the BAM file(s) you used?
Any additional notes? What kind of variant is it?

Calling Variants

During this session you will take one of your BAM alignment files, call variants, check for basic
annotation and compare the called variants to the original alignment using the Broad’s Integrated
Genome Viewer, IGV. Start by pulling in either a previously generated BAM file or one of the
BAM files in the Visualization folder into your history; we will also need the chr22.fa reference
again.

The Unified Genotyper (in the GATK tools section) needs additional information to be able to call
variants. Set these via the 'Add or replace groups on data' from the Picard section. This includes
giving the data a unique identifier, providing information on the sequencing technology, and filling
out the remaining fields. Take a look at the help section if you are curious.

Run the Unified Genotyper. Explore the logfile to get some basic information, then take a look at
the actual results and try to make sense of one or two entries (i.e., learn about the information
contained in an VCF file, http://www.1000genomes.org/node/101)

Annotating Variants

You will be using a number of additional files that contain information about known variants
(dbSNP and data from the HapMap project in VCF format). Data is in the Reference folder and
was retrieved from the GATK resource bundle, http://www.broadinstitute.org/gsa/wiki/
index.php/GATK_resource_bundle.

LAB SESSION: EXOME SEQUENCING ANALYSIS USING GALAXY

PAGE 7 OF 10! !

http://www.1000genomes.org/node/101
http://www.1000genomes.org/node/101
http://www.broadinstitute.org/gsa/wiki/index.php/GATK_resource_bundle
http://www.broadinstitute.org/gsa/wiki/index.php/GATK_resource_bundle
http://www.broadinstitute.org/gsa/wiki/index.php/GATK_resource_bundle
http://www.broadinstitute.org/gsa/wiki/index.php/GATK_resource_bundle

1. Pull in the dbSNP variant information (just the site information) from the reference library.

2. To make the processing easier filter for chr22 only using the ‘Filter’ tool from the Filter and Sort
section

3. Use the VCFTools' Annotate function to merge your filtered chr22 dbSNP information with
the GATK output. Check the new VCF file; the vast majority of variants now have an rs
identifier in the 'ID' column. Look up one or two identifiers in the dbSNP database (http://
www.ncbi.nlm.nih.gov/projects/SNP/) to get an idea of the kind of information that is available.

4. There is still a large number of SNPs left, even just for chr22 (how many?). Let's filter, only
keeping the high confidence variants using the VCFTools 'filter'. We are using somewhat strict
criteria this time around to keep the number of variants low; take a look at the GATK
recommendations (http://www.broadinstitute.org/gsa/wiki/index.php/
Best_Practice_Variant_Detection_with_the_GATK_v2#Making_analysis_ready_calls_SNP_
calls_with_hard_filtering) for more information.

5. For now, use the ‘Filter’ method from VCFTools and set: Filter by Quality 60, Filter ‘QD 5 lt’,
Filter ‘HRun 5 gt’ (what do those terms mean?)

6. The ‘Filter’ tool only adds a new column to the VCF file that lists whether a given variant failed
or passed the criteria. We only want to keep those which passed, so use the generic Filter tool to
keep lines where column 7 states ‘PASS’. How many are left?

7. Assume we are only interested in 'novel' mutations. Repeat the filter, this time removing
anything with an rs identifier (a known dbSNP mutation) in the 'REF' column (column 3).
How many novel variants are there? Write down one or two positions for later.

Comparing SNP calls and alignments

Let's visualize the data. Send the original BAM alignment file (imported right at the beginning) to
IGV ('web'). Unfortunately, there currently is no way to send VCF files to IGV directly, so you will
have to either download your final VCF file (or a VCF file from any stage) or use one of the URLs
below (load from URL):

 http://s3.amazonaws.com/hbc_projects/Sequencing_Course/all_variants.vcf

 http://s3.amazonaws.com/hbc_projects/Sequencing_Course/novel_variants.vcf

After IGV starts:

1. Load the ENSEMBL genes (via the menu, load from server, use hg19).

2. Send your bait file to IGV. How does the test bait region compare between IGV and UCSC?

3. Take a look at the gene ‘BCL2L13’. Explore the coverage at the first exon. Go further upstream
to ‘ATP6V1E1’ -- what happened to this gene?

4. Import the VCF files you are interested in (suggested: all variants called, novel variants) and
index them (using File -> Run IGVTools -> Select file, set selector to index, run), then load

LAB SESSION: EXOME SEQUENCING ANALYSIS USING GALAXY

PAGE 8 OF 10! !

http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.broadinstitute.org/gsa/wiki/index.php/Best_Practice_Variant_Detection_with_the_GATK_v2#Making_analysis_ready_calls_SNP_calls_with_hard_filtering
http://www.broadinstitute.org/gsa/wiki/index.php/Best_Practice_Variant_Detection_with_the_GATK_v2#Making_analysis_ready_calls_SNP_calls_with_hard_filtering
http://www.broadinstitute.org/gsa/wiki/index.php/Best_Practice_Variant_Detection_with_the_GATK_v2#Making_analysis_ready_calls_SNP_calls_with_hard_filtering
http://www.broadinstitute.org/gsa/wiki/index.php/Best_Practice_Variant_Detection_with_the_GATK_v2#Making_analysis_ready_calls_SNP_calls_with_hard_filtering
http://www.broadinstitute.org/gsa/wiki/index.php/Best_Practice_Variant_Detection_with_the_GATK_v2#Making_analysis_ready_calls_SNP_calls_with_hard_filtering
http://www.broadinstitute.org/gsa/wiki/index.php/Best_Practice_Variant_Detection_with_the_GATK_v2#Making_analysis_ready_calls_SNP_calls_with_hard_filtering
http://s3.amazonaws.com/hbc_projects/Sequencing_Course/all_variants.vcf
http://s3.amazonaws.com/hbc_projects/Sequencing_Course/all_variants.vcf
http://s3.amazonaws.com/hbc_projects/Sequencing_Course/novel_variants.vcf
http://s3.amazonaws.com/hbc_projects/Sequencing_Course/novel_variants.vcf

them into VCF (load from file). The VCF files available via the S3 URL have been indexed
already.

5. Explore the display. Check for good matches between variant calls and the reads. Try to find
homozygous and heterozygous variants.

6. Explore one or two of the novel variants you wrote down. Are they real? If they have poor
support, i.e., only 2-3 reads, go back to the VCF file and find novel entries with a reasonably high
number in the ‘DP’ column, then go back to IGV and inspect the position.

Prioritizing variants

A vast number of algorithms exists to quantify the likely impact of a genetic variant. We will explore
just a few options.

Predicting SNP effects

To simplify the analysis we will be using an aggregator, i.e., a tool that combines multiple
annotation services, which accepts VCF-formatted data as input. Upload the ‘novel’ variants VCF
file to:

 http://useast.ensembl.org/info/docs/variation/vep/index.html#web

and decide on the annotation you want. Make sure to include SIFT, Polyphen and Condel. In the
ouput, check for deleterious/damaging non-synonymous mutations. Do all predictors agree on the
severity of a change? Pick one mutation and review it in IGV -- what is its coverage? What kind of
change is the variant causing?

Additional tools can be used to re-prioritize SNPs. Most have been developed to gain additional
information from GWA results by exploring variants beyond those reaching genome wide
significance, but many can be adapted to combine candidate regions or genes from other data
sources.

GRAIL

Grail uses text mining approaches, that is, information obtained from analyzing PubMed abstracts,
to link candidate genes. Use the ‘sampleSNPs.txt’ file (provided) and visit the GRAIL website at:

 http://www.broadinstitute.org/mpg/grail/grail.php

Submit the SNPs and select parameters as follows: hg18, CEU population, Pubmed 2011, gene size
correction is requested, query all genes, seed genes equal query genes. While the system is running
(this may take up to an hour) take a look at the query set regions. Why are some dbSNP identifiers
associated with one gene whereas others are linked to a dozen genes? What gene region did
rs2395175 hit?

DAPPLE

LAB SESSION: EXOME SEQUENCING ANALYSIS USING GALAXY

PAGE 9 OF 10! !

http://useast.ensembl.org/info/docs/variation/vep/index.html#web
http://useast.ensembl.org/info/docs/variation/vep/index.html#web
http://www.broadinstitute.org/mpg/grail/grail.php
http://www.broadinstitute.org/mpg/grail/grail.php

While GRAIL is running obtain the ‘sampleRegions.txt’ file (provided) and submit it to the
DAPPLE system at:

 http://www.broadinstitute.org/mpg/dapple/dapple.php#

Make sure to state that this is a ‘test run’ with only 50 iterations, ask for a plot to be returned, and set
‘nearest gene’ to false. Similar to GRAIL you can set ‘seed’ genes -- genes that are known to have an
association with the disease of interest. Here we assume no prior knowledge and ask for links
between all genes rather than just connections between query genes to seed genes.

Once the system mails you your results take a look at the generated PDF and the prioritized genes.
Submit the genes to the GeneMania system at

 http://www.genemania.org/

using default parameters. What functional enrichment is detected in the generated network? Once
you get your GRAIL results, how does the functional enrichment detected in the PPI-based
prioritization relate to the PubMed-generated ones? In the GRAIL results, why did CTLA4 get
such a high score? What disease are you most likely dealing with?

LAB SESSION: EXOME SEQUENCING ANALYSIS USING GALAXY

PAGE 10 OF 10! !

http://www.broadinstitute.org/mpg/dapple/dapple.php#
http://www.broadinstitute.org/mpg/dapple/dapple.php#
http://www.genemania.org
http://www.genemania.org
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list_uids=1493
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list_uids=1493

