Perl Scripting 111

Arrays and Hashes
(Also known as

Data Structures)

Ed Lee & Suzi Lewis

Genome Informatics

Basic Syntax

= In Perl the first character of the variable name
determines how that variable will be interpreted
when the code is run.

= "$" indicates a "scalar" variable
= "@" indicates an "array" variable

= "%" indicates a "hash" variable
= You can have three variables with the same name

= For example $x, @x, and %$x

* These represent three different things

An Array 1Is a List of Values

= For example, consider a list such as this

= the number 3.14 as the first element
= the string 'abA’ as the second element

= the number 65065 as the third element.

= How do you express this list in Perl?

“Literal Representation”
= Most simply

" my @array = (3.14, 'abA', 65065); mm

= Or we can initialize from variables

" my Spi = 3.14;
" my $s = 'abA’;

" my Qarray = (Spi, $s, 65065); 3.14 mm

= We can also do mfeger ranges

" my @array = .5); # shorthand for

ﬂlﬂﬂﬂﬂ

= Counting down not allowed!

Array Variables and Assignment

" my Spi = 3.14;
" my $X = 65065;

< ny e = (spi, Canar, sx); [l
vy ey = o RTe[[s

my @z = ($x, Spi, @x, @y);

ss0ss|3.14 (314 [abarlesoss) 1 | 0 | 1 |2 |3 | 4|5

Array Variables and Assignment

ss0ss|3.14 (314 [abarlesoss) 1 | 0 | 1 |2 |3 | 4|5

" my (S$Sfirst, @rest) = @z;

3.14)3.1¢)cabarlos0ss) -1 | 0 | 1|2 |3 | 4|5

ss0ss|3.14 (314 [abarlesoss) 1 | 0 | 1|2 |3 | 4|5

(01 [11 [2] [3] [4] [5]1 (6] [7] [8] [9] [10] ([11]

Getting at Array Elements

" my S$first = $z[0]; #

= $z[0] = 2; # assign a new value to the 15t item

= Sfirst = $z[0]; #E

" my Smax index = $#z; # 11

" my Slast = S$z[S$#2z]; #E

0 1 2 4 5 7 11
Push

= Add 9 to the end (or top) of @z;
" push @z, 9;

[12]

[11]

top [11]

10
[10] [10]

9
[21] [9]

[8]
[7]
[6]
[5]
[4]
[31]
[2]
[1]
[0]

[8]

[7]

[6]

[5]

[4]

[3]

1

[2]

3.14

[1]

w

bottom [0]

Pop
= Take the 9 and 5 off the end (or top) of @z:
" my $endl = pop @z;

" my $end2 = pop @z;
[10]

[91]
[8]
[7]
[6]
[5]

[4]

[31]

[

[2]

w

[1]

w
w

Ew

[0]

Unshift

= Add 9 to the beginning (or bottom) of @z;

unshift @z,

9;

UNSHIFT

[10]

[91]

[8]

[7]

[6]

[5]

[4]

[31]

w
=
>

[2]

w
=
>

[1]

[0]

[8]

[7]

[6]

[5]

[4]

w

[31]

w

[2]

[1]

[0]

Shift

= Take 9 and then 65065 off the beginning of @z:
" my $bl = shift @z;
" my $b2 = shift Qz;

tel [9]
[9]
[8]
[7]
[6] >
[5]
[4]
[3]
[2]
[1]

[8]
[7]
[6]

[5]

=)

=

[4]
[3]
[2]
[1]

SHIFT

. N
Lo -1
_ =

SHIFT

[0]

Reverse

" my @zr = reverse @z;
(9]
(8]

[7]

[6]

[5]

[4]

[31]

[2]

[1]

[0]

. EETH
N EXTN
2 N
65065
| o
o
65065
Y 2
334 Il
34 KN

Array and Scalar Context

= The notion of array and scalar context is unique fo Perl.
Usually you can remain unaware of it, but it comes up in the
reverse function.

print reverse 'abc';
abc

print reverse 'abc', 'def' , 'ghi' ;
ghidefabc

print scalar reverse 'abc';
cba

my S$ba = reverse 'abc';

print Sba;

cba

Array and Scalar Context

= The notion of array and scalar context can also be
used to get the size of an array.

my @z = (1,2,3,4,5,6,7);

print scalar @z ," the number of elements in the
array\n";

print $#z, ' this is max offset into scalar @z' , "\n";

7 the number of elements in the array

6 this is max offset into scalar @z

Iterating Through Array Contents

TR onnon

[31 [4] [51 (6] [7]1 [8] [9]

= Using a “foreach” loop
foreach my $array_value (@z) {
print “$array_value\n”;
;
= Using a “for” loop
for (my $index = 0; $index < scalar(@z); ++$index) §
my $array_value = $z[$index];

print “$array_value\n”;

Sorting

uefasefabonoss 20 12]3]0

[31 [4] [51 (6] [7]1 [8] [9]

= Alphabetically:

" my @sortedArray = sort Qz;

B3 K 3) S ERT K T

[01 [11 [2] [3]1 [4] [5] (61 [71 [8]

= This does exactly the same alphabetical sort
= @sortedArray = sort {$a cmp $b} @z;

Sorting

= An alphabetical sort (with only numbers in the array)

" my @numberArray = (-1, 3, -20);

" my @sortedNums = sort @numberArray;

= Need a numerical sort to sort as numbers

= my @sortedNums = sort {$a <=> $b} @numberArray;

Sorting
uefasefabonoss 20 12]3]0
[31 [4] [51 (6] [7]1 [8] [9]

= What happens :
" @sortedArray = sort {$Sa <=> $b} Qz;

= Argument "abA" isn't numeric in sort at arraySort.pl line 19.

-0 a1 2] 3]3.14]3.14] 4 65065

[0]1 [1] [2] [31 [4]1 [5] [6] [7] [91] [10]

Split and Join

= Split using a literal

my $string = "one,two,three"”;
my @array = split "," , $string;
print "@array" , " - from array\n";

one two three - from array
= Join it up again

Sstring = join ‘:’, @array;
print S$string , " - rejoined with colons\n";

one two three - from array
one:two:three - rejoined with colons

Split and Join

= Split using a regular expression
my S$Sstring = "oneltwo22three333fin';
my @array = split /\d+/ , $string;

print "@array" , "\n";

one two three fin

Swallowing Whole Files in a Single Gulp

= Read the file from stdin
" my @file = <>;
= Eliminate newlines from each line

= chomp Q@file;

A Hash Is a Lookup Table

* Hashes use a key to find an associated

value.

my %translate; # the percent sign denotes a hash

Stranslate{'atg'} =
Stranslate{ 'taa'} =
Stranslate{'ctt'} =
Stranslate{'ctt'} =

'M'; # codon is the key
'*'s # aa is the wvalue
'K'; # lysine, oops

'L'; # leucine, fixed

print Stranslate{'atg'};

M

Initializing & Removing Key, Value Pairs

= Initializing From a List
$translate = ('atg' => 'M’,
'taa' => ‘'*7,
‘'ctt' => ‘L',

cct' => 'P’');

= Removing key-value pairs

delete Stranslate{'taa'};

Checking if a key exists

if (exists S$Stranslate{‘’atg’}) {
print “Methionine found in translation table\n”;

}

else {
print “Methionine not found in translation table\n”;

}

if (exists S$Stranslate{‘’ata’}) {
print “Isoleucine found in translation table\n”;

}

else {
print “Isoleucine not found in translation table\n”;

}

Methionine found in translation table
Isoleucine not found in translation table

Reaching into a hash

my @codons = keys $%$translate;

print "@codons" , - all keys\n";

atg ctt taa - all keys

my @aa = values %translate;

print "@aa" , - all values\n";

M L * - all values

Iterating Through Hash Contents

= First get all the keys from the hash
my @keys = keys %translate;
= Using a “foreach” loop
foreach my $key (@keys) {
print "The AA code for “, $key, " is *, $translate{$key}, “\n";
;
= Using a “for” loop
for (my $index = 0; $index < scalar(@keys); ++$index) {
my $key = $keys[$index];
print "The AA code for %, $key, " is “, $translate{$key}, “"\n";

Problem Sets

" Problem #1
= Exercises 1-3, page 54, Learning Perl
" Problem #2

= Exercises 1, page 105, Learning Perl
= How the program (call it names.pl) in exercise 1 works:

S names.pl fred
flinstone

S names.pl barney
rubble

S names.pl wilma

flinstone

References

Perl docs online perldoc.perl.org

Learning Perl. Schwartz and Christiansen
= Chapters 3 & 6

Programming Perl. Wall, Christiansen and Schwartz

Effective Perl Programming. Hall and Schwartz

