UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

UNIX - Command-Line Survival Guide

Files, directories, commands, text editors

Lincoln Stein

Lecture Notes

e What is the Command Line?

e Logging In
e The Desktop
e The Shell

e Home Sweet Home

e Getting Around

¢ Running Commands
e Command Redirection

¢ Pipes

Workshop Problem Set

Problem #1

Log into your machine. What is the full path to your home directory?

What is the path to the home directory of user Istein?

What is the path to the home directory of www?

Locate the directory /Users/Shared/unix1. How v many files does it contain? How many
directories?

Qaoop

Problem #2

Without using a text editor examine the contents of the file cosmids1.ixt.

a. How many lines does this file contain?
b. How many characters?

c. What is the first line of this file?

d. What are the last 3 lines?

The files cosmids1.txt, cosmids2.txt, cosmids3.txt, and cosmids4.txt each contain lists of predicted
genes from the C. elegans genome.

Using the grep program, find the file(s) that contains the gene ZK103.4.

Copy these four files into your home directory using one command only.

Rename cosmids1.txt to clones.ixt.

Create a new subdirectory named delete_me. Move all the cosmids file into it.

Use the chmod command to make this new subdirectory and its contents read-only.

Now delete delete_me and all its contents using the recursive form of rm. What effect do the
read-only file permissions have on this?

SQ ~00Q0

Problem #3

1 of 14 10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

Create a text file using the emacs, or acquamacs text editor. Enter your name and address and
save the file as address.txt.

What is the Command Line?

Underlying the pretty Mac OSX GUI is a powerful command-line operating system. The command
line gives you access to the internals of the OS, and is also a convenient way to write custom
software and scripts.

Many bioinformatics tools are written to run on the command line and have no graphical interface. In
many cases, a command line tool is more versatile than a graphical tool, because you can easily
combine command line tools into automated scripts that accomplish tasks without human
intervention.

In this course, we will be writing Perl scripts that are completely command-line based.

Logging into Your Workstation

Your workstation is an iMac. To log into it, provide the following information:

Your username: the initial of your first name, followed by your full last name. For
example, my username is srobb for sofia robb
Your password: changeme

Bringing up the Command Line

To bring up the command line, use the Finder to navigate to Applications->Ultilities and double-click
on the Terminal application. This will bring up a window like the following:

2 of 14 10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

e 06 Terminal — bash — 98x33

]

Last login: Tue Oct 16 16:41:19 on console
Welcome to Darwin!

BASH config loaded from /Jetc/bashrc.
dhcp148-116:~ Isteind [

OSX Terminal

You will be using this application a lot, so | suggest that you drag the Terminal icon into the shortcuts
bar at the bottom of your screen.

OK. I've Logged in. What Now?

The terminal window is running a shell called "bash." The shell is a loop that:

Prints a prompt

Reads a line of input from the keyboard

Parses the line into one or more commands

Executes the commands (which usually print some output to the terminal)
Prints the prompt

Repeat...

IR

There are many different shells with bizarre names like bash, sh, csh, tecsh, ksh, and zsh. The "sh"
part means shell. Each shell was designed for the purpose of confusing you and tripping you up. We
have set up your accounts to use bash. Stay with bash and you'll get used to it, eventually.

Command-Line Prompt

3of 14 10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

4 of 14

Most of bioinformatics is done with command-line software, so you should take some time to learn
to use the shell effectively.

This is a command line prompt:
bush202>

This is another:

(~) 51%

This is another:
lstein@bush202 1:12PM>

What you get depends on how the system administrator has customized your login. You can
customize yourself when you know how.

The prompt tells you the shell is ready to accept a command. When a long-running command is
going, the prompt will not reappear until the system is ready to deal with your next request.

Issuing Commands

Type in a command and press the <Enter> key. If the command has output, it will appear on the
screen. Example:

(~) 53% 1s -F

GNUstep/ cool elegans.movies.txt man/

INBOX docs/ mtv/

INBOX~ etc/ nsmail/
Maile@ games/ pcod/

News/ get this book.txt projects/
axhome/ jcod/ public_html/
bin/ lib/ src/

build/ linux/ tmp/

ccod/

(~) 54%

The command here is Is -F, which produces a listing of files and directories in the current directory
(more on which later). After its output, the command prompt appears agin.

Some programs will take a long time to run. After you issue their command name, you won't recover
the shell prompt until they're done. You can either launch a new shell (from Terminal's File menu), or
run the command in the background using the ampersand:

(~) 54% long_running application&
(~) 55%

The command will now run in the background until it is finished. If it has any output, the output will
be printed to the terminal window. You may wish to redirect the output as described later.

Command Line Editing

Most shells offer command line entering. Up until the comment you press <Enter>, you can go back

10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

over the command line and edit it using the keyboard. Here are the most useful keystrokes:

Backspace
Delete the previous character and back up one.
Left arrow, right arrow
Move the text insertion point (cursor) one character to the left or right.
control-A (*A)
Move the cursor to the beginning of the line. Mnemonic: A is first letter of alphabet
control-E (“E)
Move the cursor to the end of the line. Mnemonic: <E> for the End (*Z was already taken for
something else).
control-D (D)
Delete the character currently under the cursor. D=Delete.
control-K (*K)
Delete the entire line from the cursor to the end. K=Kill. The line isn't actually deleted, but put
into a temporary holding place called the "kill buffer".
control-Y (MY)
Paste the contents of the kill buffer onto the command line starting at the cursor. Y=Yank.
Up arrow, down arrow
Move up and down in the command history. This lets you reissue previous commands,
possibly after modifying them.

There are also some useful shell commands you can issue:

history
Show all the commands that you have issued recently, nicely numbered.
l<number>
Reissue an old command, based on its number (which you can get from history)
I
Reissue the immediate previous command.
l<partial command string>
Reissue the previous command that began with the indicated letters. For example // would
reissue the Is -F command from the earlier example.

bash offers automatic command completion and spelling correction. If you type part of a command
and then the tab key, it will prompt you with all the possible completions of the command. For
example:

(~) 51% fd<tab>

(~) 51% fd
fd2ps fdesign fdformat fdlist fdmount fdmountd fdrawcmd fdumouni
(~) 51%

If you hit tab after typing a command, but before pressing <Enter>, bash will prompt you with a list
of file names. This is because many commands operate on files.

Wildcards

You can use wildcards when referring to files. "*" refers to zero or more characters. "?" refers to any
single character. For example, to list all files with the extension ".txt", run Is with the pattern "*.txt":

(=) 56% 1ls -F *.txt

final exam questions.txt genomics_ problem.txt
genebridge.txt mapping run.txt

5of 14 10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

There are several more advanced types of wildcard patterns which you can read about in the tecsh
manual page. For example, you can refer to files beginning with the characters "f" or "g" and ending
with ".ixt" this way:

(~) 57% 1s -F [f-g]*.txt
final exam questions.txt genebridge.txt genomics_ problem.t:

Home Sweet Home

When you first log in, you'll be placed in a part of the system that is your personal domain, called the
home directory. You are free to do with this area what you will: in particular you can create and
delete files and other directories. In general, you cannot create files elsewhere in the system.

Your home directory lives somewhere way down deep in the bowels of the system. On our iMacs, it
is a directory with the same name as your login name, located in /Users. The full directory path is
therefore /Users/username. Since this is a pain to write, the shell allows you to abbreviate it as
~username (where "username" is your user name), or simply as ~. The weird character (technically
called the "twiddle") is usually hidden at the upper left corner of your keyboard.

To see what is in your home directory, issue the command /s -F:

(~) % 1s -F
INBOX Mail/ News/ nsmail/ public_html/

This shows one file "INBOX" and four directories ("Mail", "News") and so on. (The "-F" in the
command turns on fancy mode, which appends special characters to directory listings to tell you
more about what you're seeing. "/" means directory.)

In addition to the files and directories shown with /s -F, there may be one or more hidden files.
These are files and directories whose names start with a "." (technically called the "dot" character).
To see these hidden files, add an "a" to the options sent to the /s command:

(~) ¢ 1ls -aF

./ .cshrc .login Mail/

./ .fetchhost .netscape/ News/
.Xauthority . fvwmrc .Xinitrc* nsmail/
.Xdefaults .history .xsession@ public_html/
.bash profile .less .Xsession-errors
.bashrc .lessrc INBOX

Whoal! There's a lot of hidden stuff there. But don't go deleting dot files willy-nilly. Many of them are
esential configuration files for commands and other programs. For example, the .profile file contains
configuration information for the bash shell. You can peek into it and see all of bash's many options.
You can edit it (when you know what you're doing) in order to change things like the command
prompt and command search path.

Getting Around

You can move around from directory to directory using the cd command. Give the name of the
directory you want to move to, or give no name to move back to your home directory. Use the pwd

6 of 14 10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

command to see where you are (or rely on the prompt, if configured):

(~/docs/grad _course/i) 56% cd
(~) 57% cd /
(/) 58% 1s -F

bin/ dosc/ gmon.out mnt/ sbin/
boot/ etc/ home@ net/ tmp/
cdrom/ fastboot lib/ proc/ usr/
dev/ floppy/ lost+found/ root/ var/

(/) 59% e¢d ~/docs/

(~/docs) 60% pwd
/usr/home/lstein/docs
(~/docs) 62% c¢d ../projects/
(~/projects) 63% 1ls

Ace-browser/ bass.patch
Ace-perl/ cgi/

Foo/ cgi3/
Interface/ computertalk/
Net-Interface-0.02/ crypt-cbc.patch
Net-Interface-0.02.tar.gz fixer/

Pts/ fixer.tcsh
Pts.bak/ introspect.pl*
PubMed/ introspection.pm
SNPdb/ rhmap/

Tie-DBI/ sbox/

ace/ sbox-1.00/
atir/ sbox-1.00.tgz
bass-1.30a/ zhmapper.tar.gz

bass-1.30a.tar.gz
(~/projects) 64%

Each directory contains two special hidden directories named "." and "..". "." refers always to the
directory in which it is located. ".." refers always to the parent of the directory. This lets you move
upward in the directory hierarchy like this:

(~/docs) 64% cd ..
and to do arbitrarily weird things like this:

(~/docs) 65% c¢d ../../docs
The latter command moves upward to levels, and then into a directory named "docs".

If you get lost, the pwd command prints out the full path to the current directory:

(~) 56% pwd
/Users/lstein

Essential Unix Commands

With the exception of a few commands that are built directly into the shell, all Unix commands are
standalone executable programs. When you type the name of a command, the shell will search

7 of 14 10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

through all the directories listed in the PATH environment variable for an executable of the same
name. If found, the shell will execute the command. Otherwise, it will give a "command not found"
error.

Most commands live in /bin, /usr/bin, OF /usr/local/bin.

Getting Information About Commands

The man command will give a brief synopsis of the command:
(~) 76% man wc
Formatting page, please wait...
WC(1) WC(1)

NAME
wc - print the number of bytes, words, and lines in files

SYNOPSIS
wc [-clw] [--bytes] [--chars] [--lines] [--words] [--help]
[--version] [file...]

DESCRIPTION

This manual page documents the GNU version of wc. \/e]
counts the number of bytes, whitespace-separated words,

Finding Out What Commands are There

The apropos command will search for commands matching a keyword or phrase:

(~) 100% apropos column

showtable (1) - Show data in nicely formatted columns

colrm (1) - remove columns from a file

column (1) - columnate lists

fix132x43 (1) - fix problems with certain (132 column) graphics
modes

Arguments and Command Switches

Many commands take arguments. Arguments are often (but not inevitably) the names of one or
more files to operate on. Most commands also take command-line "switches" or "options" which
fine-tune what the command does. Some commands recognize "short switches" that consist of a
single character, while others recognize "long switches" consisting of whole words.

The we (word count) program is an example of a command that recognizes both long and short
options. You can pass it the -¢, -w and/or -l options to count the characters, words and lines in a text
file, respectively. Or you can use the longer but more readable, --chars, --words or --lines options.
Both these examples count the number of characters and lines in the text file /var/log/messages:

(=) 102% we -c -1 /var/log/messages

23 941 /var/log/messages
(=) 103% wc --chars --lines /var/log/messages

8 of 14 10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

23 941 /var/log/messages
You can cluster short switches by concatenating them together, as shown in this example:

(=) 104% wc -cl /var/log/messages
23 941 /var/log/messages

Many commands will give a brief usage summary when you call them with the -h or --help switch.

Spaces and Funny Characters

The shell uses whitespace (spaces, tabs and other nonprinting characters) to separate arguments.
If you want to embed whitespace in an argument, put single quotes around it. For example:

mail -s 'An important message' 'Lincoln Stein <lstein@cshl.org>'
This will send an e-mail to me. The -s switch takes an argument, which is the subject line for the
e-mail. Because the desired subject contains spaces, it has to have quotes around it. Likewise, my
e-mail address, which contains embedded spaces, must also be quoted in this way.

Certain special non-printing characters have escape codes associated with them:

Escape Code Description

\n new line character

\t tab character

\r carriage return character

\a bell character (ding! ding!)

\nnn the character whose ASCII code in octal is nnn

Useful Commands

Here are some commands that are used extremely frequently. Use man to learn more about them.
Some of these commands may be useful for solving the problem set ;-)

Manipulating Directories

Is
Directory listing. Most frequently used as Is -F (decorated listing) and Is -l (long listing).
mv
Rename or move a file or directory.
cp
Copy afile.
rm
Remove (delete) a file.
mkdir
Make a directory
rmdir
Remove a directory
In

Create a symbolic or hard link.

9 of 14 10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

chmod
Change the permissions of a file or directory.

Manipulating Files

cat
Concatenate program. Can be used to concatenate multiple files together into a single file, or,
much more frequently, to send the contents of a file to the terminal for viewing.
more
Scroll through a file page by page. Very useful when viewing large files. Works even with files
that are too big to be opened by a text editor.
less
A version of more with more features.
head
View the head (top) of a file. You can control how many lines to view.
tail
View the tail (bottom) of a file. You can control how many lines to view. You can also use tail to
view a growing file.
wc
Count words, lines and/or characters in one or more files.
tr
Substitute one character for another. Also useful for deleting characters.
sort
Sort the lines in a file alphabetically or numerically.
uniq
Remove duplicated lines in a file.
cut
Remove sections from each line of a file or files.
fold
Wrap each input line to fit in a specified width.
grep
Filter a file for lines matching a specified pattern. Can also be reversed to print out lines that
don't match the specified pattern.
gzip (gunzip)
Compress (uncompress) a file.
tar
Archive or unarchive an entire directory into a single file.
emacs
Run the Emacs text editor (good for experts).

Networking

telnet

Log into a remote host machine.
ssh

A secure (encrypted) version of telnet.
ping

See if a remote host is up.
ftp

Transfer files using the File Transfer Protocol.
who

See who else is logged in.
Ip

Send a file or set of files to a printer.

10 of 14 10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

Standard I/0 and Command Redirection

Unix commands communicate via the command line interface. They can print information out to the
terminal for you to see, and accept input from the keyboard (that is, from you!)

Every Unix program starts out with three connections to the outside world. These connections are
called "streams" because they act like a stream of information (metaphorically speaking):

standard input
This is a communications stream initially attached to the keyboard. When the program reads
from standard input, it reads whatever text you type in.

standard output
This stream is initially attached to the command window. Anything the program prints to this
channel appears in your terminal window.

standard error
This stream is also initially attached to the command window. It is a separate channel intended
for printing error messages.

The word "initially" might lead you to think that standard input, output and error can somehow be
detached from their starting places and reattached somewhere else. And you'd be right. You can
attach one or more of these three streams to a file, a device, or even to another program. This
sounds esoteric, but it is actually very useful.

A Simple Example

The we program counts lines, characters and words in data sent to its standard input. You can use it
interactively like this:

(~) 62% wc

Mary had a little lamb,
little lamb,

little lamb.

Mary had a little lamb,
whose fleece was white as snow.
“D
6 20 107
In this example, | ran the we program. It waited for me to type in a little poem. When | was done, |
typed the END-OF-FILE character, control-D ("D for short). we then printed out three numbers
indicating the number of lines, words and characters in the input.

More often, you'll want to count the number of lines in a big file; say a file filled with DNA sequences.
You can do this by redirecting we's standard input from a file. This uses the < metacharacter:

(~) 63% wc <big_file.fasta
2943 2998 419272

If you wanted to record these counts for posterity, you could redirect standard output as well using
the > metacharacter:

(~) 64% wc <big_file.fasta >count.txt

11 of 14 10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

12 of 14

Now if you cat the file count.txt, you'll see that the data has been recorded. cat works by taking its
standard input and copying it to standard output. We redirect standard input from the count.txt file,
and leave standard output at its default, attached to the terminal:

(~) 65% cat <count.txt
2943 2998 419272

Redirection Meta-Characters

Here's the complete list of redirection commands for bash:

<fi lename Redirect standard input to file

>fi lename Redirect standard output to file

1>fi lename Redirect just standard output to file (same as above)
2>fi lename Redirect just standard error to file

>fi lenameé@>&1 Redirect both stdout and stderr to file

These can be combined. For example, this command redirects standard input from the file named
/etc/passwd, writes its results into the file search.out, and writes its error messages (if any) into a file
named search.err. What does it do? It searches the password file for a user named "root" and
returns all lines that refer to that user.

(=) 66% grep root </etc/passwd >search.out 2>search.err

Filters, Filenames and Standard Input

Many Unix commands act as filters, taking data from a file or standard input, transforming the data,
and writing the results to standard output. Most filters are designed so that if they are called with
one or more filenames on the command line, they will use those files as input. Otherwise they will
act on standard input. For example, these two commands are equivalent:

(~) 66% grep 'gatttgc' <big file.fasta
(~) 67% grep 'gatttgc' big file.fasta

Both commands use the grep command to search for the string "gatttgc" in the file big_file.fasta.
The first one searches standard input, which happens to be redirected from the file. The second
command is explicitly given the name of the file on the command line.

Sometimes you want a filter to act on a series of files, one of which happens to be standard input.
Many filters let you use "-" on the command line as an alias for standard input. Example:

(~) 68% grep 'gatttgc' big file.fasta bigger_file.fasta -
This example searches for "gatttgc" in three places. First it looks in big_file.fasta, then in

bigger file.fasta, and lastly in standard input (which, since it isn't redirected, will come from the
keyboard).

Standard I/0 and Pipes

10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

The coolest thing about the Unix shell is its ability to chain commands together into pipelines. Here's
an example:

(~) 65% grep gatttgc big file.fasta | wec -1

22
There are two commands here. grep searches a file or standard input for lines containing a
particular string. Lines which contain the string are printed to standard output. we -l is the familiar
word count program, which counts words, lines and characters in a file or standard input. The -I
command-line option instructs we to print out just the line count. The | character, which is known as
the "pipe" character, connects the two commands together so that the standard output of grep
becomes the standard input of we.

What does this pipe do? It prints out the number of lines in which the string "gatttgc" appears in the
fi lebig_file.fasta.

More Pipe Idioms

Pipes are very powerful. Here are some common command-line idioms.
Count the Number of Times a Pattern does NOT Appear in a File

The example at the top of this section showed you how to count the number of lines in which a
particular string pattern appears in a file. What if you want to count the number of lines in which a
pattern does not appear?

Simple. Reverse the test with the grep -v switch:

(~) 65% grep -v gatttgc big_file.fasta | wec -1
2921

Uniquify Lines in a File

If you have a long list of names in a text file, and you are concerned that there might be some
duplicates, this will weed out the duplicates:

(~) 66% sort long_file.txt | uniq > unique.out

This works by sorting all the lines alphabetically and piping the result to the uniq program, which
removes duplicate lines that occur together. The output is placed in a file named unique.out.

Concatenate Several Lists and Remove Duplicates

If you have several lists that might contain repeated entries among them, you can combine them
into a single unique list by cating them together, then uniquifying them as before:

(~) 67% cat filel file2 file3 file4 | sort | uniq
Count Unique Lines in a File

If you just want to know how many unique lines there are in the file, add a we to the end of the pipe:

(~) 68% sort long_file.txt | uniq | wec -1

13 of 14 10/13/10 3:12 PM

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

Page Through a Really Long Directory Listing

Pipe the output of Is to the more program, which shows a page at a time. If you have it, the less
program is even better:

(=) 69% 1ls -1 | more
Monitor a Rapidly Growing File for a Pattern

Pipe the output of tail -f (which monitors a growing file and prints out the new lines) to grep. For
example, this will monitor the Nar/log/syslog file for the appearance of e-mails addressed to
mzhang:

(=) 70% tail -f /var/log/syslog | grep mzhang

14 of 14 10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

Perl Scripting 1

Expressions, Operators, Statements, Variables

Lincoln Stein

Suggested Reading

Chapters 1, 2 & 5 of Learning Perl.

Lecture Notes

What is Perl?

Some simple Perl scripts
Mechanics of creating a Perl script
Statements

Literals

Operators

Functions

Variables

Processing the Command Line

©CoOoNOTA~WN =

Problems

1. Create a script called "add" script to sum two arguments:

% add 2 3
5

2. Modify this script so that it checks that both arguments are present:

% add 2
Please provide two numeric arguments.

3. Create a script called "now" to print the current time of day:
% now
It is now Sun Jun 6 16:35:40 1999
4. Create a script to produce the reverse complement of a sequence (hint, use the reverse and tr//
functions:

% reversec GAGAGAGAGAGTTTTTTTTT
AAAAAAAAACTCTCTCTCTC

What is Perl?

1of 19 10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

Perl is a Programming Language

Written by Larry Wall in late 80's to process mail on Unix systems and since extended by a huge cast of
characters. The name is said to stand for:

1. Pathologically Eclectic Rubbish Lister
2. Practical Extraction and Report Language

Perl Properties

1. Interpreted Language

2. "Object-Oriented"

3. Cross-platform

4. Forgiving

5. Great for text

6. Extensible, rich set of libraries

7. Popular for web pages

8. Extremely popular for bioinformatics

Other Languages Used in Bioinformatics

C, C++
Compiled languages, hence very fast.
Used for computation (BLAST, FASTA, Phred, Phrap, ClustalW)
Not very forgiving.

Java
Interpreted, fully object-oriented language.
Built into web browsers.
Supposed to be cross-platform, but not quite yet.

Python
Interpreted, fully object-oriented language.
Rich set of libraries.
Elegant syntax.
Smaller user community than Java or Perl.

Some Simple Scripts

Here are some simple scripts to illustrate the "look" of a Perl program.
Print a Message to the Terminal

Code:

Outputfile: message.pl
print "When that Aprill with his shoures soote\n";
pr(it 20 PeFbfifSSage Blrch ath perced to the roote \n";
prheD et BRI SRy Ry b ol &80 /AP cour\n" ;
H}&d“@ﬂ%ﬁ&f vearsh atdeRenses &0 dhe Rk, .\n";

And bathed every veyne in swich licour

2 0of 19 10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

Of which vertu engendered is the flour...

Do Some Math

Code:

file: math.pl

print "2 + 2 =", 2+2, "\n";

print "log(le23)= ", log(le23), "\n";

print "2 * sin(3.1414)= ", 2 * sin(3.1414), "\n";

Output:
(~) 51% perl math.pl
2 + 2 =4

log(le23)= 52.9594571388631
2 * sin(3.1414)= 0.000385307177203065

Run a System Command

Code:

file: system.pl
system "1ls";

Output:
(~/docs/grad_course/perl) 52% perl math.pl
index.html math.pl~ problem set.html-~ what is perl.h
index.html~ message.pl simple.html what is perl.h
math.pl problem set.html simple.html~

Return the Time of Day

Code:

file: time.pl
Stime = localtime;
print "The time is now S$time\n";

Output:

(~) 53% perl time.pl
The time is now Thu Sep 16 17:30:02 1999

30f 19 10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

Mechanics of Writing Perl Scripts

Some hints to help you get going.

Creating the Script

A Perl script is just a text file. Use any text (programmer's) editor.
By convention, Perl script files end with the extension .pl.

The Emacs text editor has a Perl mode that will auto-format your Perl scripts and highlight keywords.
Perl mode will be activated automatically if you end the script name with .pl.

Running the Script

Option 1
Run the perl program from the command line, giving it the name of the script file to run.

(~) 50% perl time.pl
The time is now Thu Sep 16 18:09:28 1999

Option 2
Put the magic comment #//usr/bin/perl at the top of the script.

#!/usr/bin/perl

file: time.pl

Stime = localtime;

print "The time is now $time\n";

Make the script executable with chmod +x time.pl:

(~) 51% chmod +x time.pl

Run the script as if it were a command:
(=) 52% ./time.pl
The time is now Thu Sep 16 18:12:13 1999

Note that you have to type "./time.pl" rather than "time.pl" because, by default, bash does not
search the current directory for commands to execute. To avoid this, you can add the current
directory (".") to your search PATH environment variable. To do this, create a file in your
home directory named .profile and enter the following line in it:

export PATH=$PATH:.

The next time you log in, your path will contain the current directory and you can type
"time.pl" directly.

Common Errors

40of 19 10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

50f19

Every script goes through a few iterations before you get it right. Here are some common errors:
Syntax Errors

Code:

#!/usr/bin/perl

file: time.pl

time = localtime;

print "The time is now S$time\n";

Output:

(~) 53% time.pl
Can't modify time in scalar assignment at time.pl line 3, near "localtime;
Execution of time.pl aborted due to compilation errors.

Runtime Errors

Code:

#!/usr/bin/perl
file: math.pl

$six_of one = 6;

$half dozen 12/2;

$result = $six of one/($half dozen - $six of one);
print "The result is $result\n";

Output:

(~) 54% math.pl
Illegal division by zero at math.pl line 6.

Forgetting to Make the Script Executable

(~) 55% test.pl
test.pl: Permission denied.

Getting the Path to Perl Wrong on the #! line
Code:

#!/usr/local/bin/pearl

file: time.pl

Stime = localtime;
print "The time is now S$time\n";

10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

60f 19

(~) 55% time.pl
time.pl: Command not found.

Useful Perl Command-Line Options

You can call Perl with a few command-line options to help catch errors:

-C

Perform a syntax check, but don't run.
-w

Turn on verbose warnings.
-d

Turn on the Perl debugger.

Usually you will invoke these from the command-line, as in perl -cw time.pl (syntax check time.pl with
verbose warnings). You can also put them in the top line: #//usr/bin/per! -w.

Perl Statements

A Perl script consists of a series of statements and comments. Each statement is a command that is
recognized by the Perl interpreter and executed. Statements are terminated by the semicolon character
(;).- They are also usually separated by a newline character to enhance readability.

A comment begins with the # sign and can appear anywhere. Everything from the # to the end of the line
is ignored by the Perl interpreter. Commonly used for human-readable notes.

Some Statements

$Ssum = 2 + 2; # this is a statement

$f = <STDIN>; S$g = $f++; # these are two statements
$g = $f
/
Ssum; # this is one statement, spread across 3 lines

The Perl interpreter will start at the top of the script and execute all the statements, in order from top to
bottom, until it reaches the end of the script. This execution order can be modified by loops and control
structures.

Blocks

It is common to group statements into blocks using curly braces. You can execute the entire block
conditionally, or turn it into a subroutine that can be called from many different places.

Example blocks:

{ # block starts
my SEcoRI = 'GAATTC';

10/13/10 3:12 PM

Perl Scripting 1

70of19

my S$sequence = <STDIN>;
print "Sequence contains an EcoRI site" if $sequence=~/$EcoRI/;
} # block ends

my $sequence2 = <STDIN>;

if (length($sequence) < 100) { # another block starts
print "Sequence is too small. Throw it back\n";
exit 0;

} # and ends

foreach $sequence (@sequences) { # another block
print "sequence length = ",length($sequence),"\n";

}

http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

Literals

Literals are constant values that you embed directly in the program code. Perl supports both string
literals and numeric literals.

String Literals

String literals are enclosed by single quotes (') or double quotes ("):

'The quality of mercy is not strained.'; # a single-quoted string
"The quality of mercy is not strained."; # a double-quoted string

The difference between single and double-quoted strings is that variables and certain special esca

pe

codes are interpolated into double quoted strings, but not in single-quoted ones. Here are some escape

codes:

\n | New line

t |Tab

\r | Carriage return

\f | Form feed

\a | Ring bell

\040 | Octal character (octal 040 is the space character)

\Ox2a | Hexadecimal character (hex 2A is the "*" character)

\cA | Control character (This is the AA character)

\u | Uppercase next character

\I | Lowercase next character

10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

\U | Uppercase everything until \E

\L |Lowercase everything until \E

\Q | Quote non-word characters until \E

\E |[End\U, \L or\Q operation

"Here goes\n\tnothing!";
evaluates to:
Here goes
nothing!

'Here goes\n\tnothing!';
evaluates to:
Here goes\n\tnothing!
"Here goes \unothing!";
evaluates to:
Here goes Nothing!
"Here \Ugoes nothing\E";
evaluates to:
Here GOES NOTHING!
"Alert! \alala";

evaluates to:
Alert! (ding! ding! ding!)

Putting backslashes in strings is a problem because they get interpreted as escape sequences. To
inclue a literal backslash in a string, double it:

"My file is in C:\\Program Files\\Accessories\\wordpad.exe";

evaluates to: C:\Program Files\Accessories\wordpad.exe

Put a backslash in front of a quote character in order to make the quote character part of the string:

"She cried \"Oh dear! The parakeet has flown the coop!\"";

evaluates to: She cried "Oh dear! The parakeet has flown the coop!"

Numeric Literals

You can refer to numeric values using integers, floating point numbers, scientific notation, hexadecimal
notation, and octal. With some help from the Math::Complex module, you can refer to complex numbers
as well:

8of 19 10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

an integer
a floating point number
-1.23; a negative floating point number
scientific notation

1.23E45;

0x7b;

#
#
#

1 000_000; # you can use _ to improve readability
#
hexadecimal notation (decimal 123)
#

0173; octal notation (decimal 123)
use Math::Complex; # bring in the Math::Complex module

12+3*1i; # complex number 12 + 3i

Backtick Strings

You can also enclose a string in backtics (*). This has the unusual property of executing whatever is
inside the string as a Unix system command, and returning its output:

“ls -17;
evaluates to a string containing the output of running the
1ls -1 command

Lists

The last type of literal that Perl recognizes is the list, which is multiple values strung together using the
comma operator (,) and enclosed by parentheses. Lists are closely related to arrays, which we talk
about later.

('one', 'two', 'three', 1, 2, 3, 4.2);
this is 7-member list contains a mixure of strings, integers
and floats

Operators

Perl has numerous operators (over 50 of them!) that perform operations on string and numberic values.
Some operators will be familiar from algebra (like "+", to add two numbers together), while others are
more esoteric (like the "." string concatenation operator).

Numeric & String Operators

90f19 10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

The "." operator acts on strings. The "!I" operator acts on strings and numbers. The rest act on numbers.

| Operator | Description | Example | Result
String concatenate | Teddy' . 'Bear' | TeddyBear
= Assignment $a = Teddy' $a variable contains Teddy'
+ Addition 3+2 5
- Subtraction 3-2 1
- Negation -2 -2
! Not 1 0
* Multiplication 32 6
/ Division 3/2 1.5
% Modulus 3%2 1
* Exponentiation 32 9
<FILEHANDLE> | File input <STDIN> Read a line of input from standard input
>> Right bit shift 3>>2 0 (binary 11>>2=00)
<< Left bit shift 3<<2 12 (binary 11<<2=1100)
| Bitwise OR 312 3 (binary 11110=11
& Bitwise AND 38&2 2 (binary 11&10=10
A Bitwise XOR 312 1 (binary 11710=01

Operator Precedence

When you have an expression that contains several operators, they are evaluated in an order
determined by their precedence. The precedence of the mathematical operators follows the rules of
arithmetic. Others follow a precedence that usually does what you think they should do. If uncertain, use
parentheses to force precedence:

2+3*4; # evaluates to 14, multiplication has precedence over addition
(2+3)*4; # evaluates to 20, parentheses force the precedence

Logical Operators

These operators compare strings or numbers, returning TRUE or FALSE:

| Numeric Comparison | String Comparison
3==2 |equalto 'Teddy' eq 'Bear' |equal to
3!=2 [notequalto 'Teddy' ne 'Bear' |not equal to
3<2 |lessthan 'Teddy' It 'Bear' |less than

10 of 19 10/13/10 3:12 PM

Perl Scripting 1

http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

3>2 |greater than 'Teddy' gt 'Bear' |greater than
3 <=2 |less or equal 'Teddy' le 'Bear' |less than or equal
3 >=2 | greater than or equal | 'Teddy' ge 'Bear' |greater than or equal
3 <=> 2| compare 'Teddy' cmp 'Bear' | compare
'Teddy' =~ /Bear/ |pattern match

The <=> and cmp operators return:

o -1 if the left side is less than the right side
¢ 0 if the left side equals the right side
« +1 if the left side is greater than the right side

File Operators

Perl has special fi le operatorghat can be used to query the file system. These operators generally
return TRUE or FALSE.

Example:

print "Is a directory!\n" if -d '/usr/home';
print "File exists!\n" if -e '/usr/home/lstein/test.txt';
print "File is plain text!\n" if -T '/usr/home/lstein/test.txt';

There are many of these operators. Here are some of the most useful ones:

-e filename

file exists

-r filename

file is readable

-w filename

file is writable

-x filename

file is executable

-z filename

file has zero size

-s filename

file has nonzero size (returns size)

-d filename

file is a directory

-T filename

file is a text file

-B filename

file is a binary file

-M filename

age of file in days since script launched

-A filename

same for access time

Functions

10/13/10 3:12 PM

Perl Scripting 1

12 of 19

http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

In addition to its operators, Perl has many functions. Functions have a human-readable name, such as

print and take one or more arguments passed as a list.

A function may return no value, a single value

(AKA "scalar"), or a list (AKA "array"). You can enclose the argument list in parentheses, or leave the

parentheses off.

A few examples:

The function is print. Its argument
The effect is to print the string to
print "The rain in Spain falls mainly on

Same thing, with parentheses.
print("The rain in Spain falls mainly on

You can pass a list to print.

is a string.
the terminal.
the plain.\n";

the plain.\n");

It will print each argument.

This prints out "The rain in Spain falls 6 times in the plain.”

print "The rain in Spain falls ",2*4-2,

Same thing, but with parentheses.
print ("The rain in Spain falls ",2*%4-2,

times in the plain.\n";

" times in the plain.\n");

The length function calculates the length of a string,

yielding 45.

length "The rain in Spain falls mainly on the plain.\n";

The split function splits a string based on a delimiter pattern

yielding the list ('The','rain in Spain', 'falls mainly', 'on the plain.

")

split '/','The/rain in Spain/falls mainly/on the plain.';

Often Used Functions (alphabetic listing)

For specific information on a function, use perldoc -f function_name to get a concise summary.

abs absolute value

chdir change current directory

chmod change permissions of file/directory
chomp remove terminal newline from string variable
chop remove last character from string variable
chown change ownership of file/directory

close close a file handle

closedir close a directory handle

CcOoS cosine

defined test whether variable is defined

delete delete a key from a hash

10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

Ic@ exit with an error message
each iterate through keys & values of a hash
of test a filehandle for end of file
eval evaluate a string as a perl expression
exec quit Perl and execute a system command
I(M test that a hash key exists
exit exit from the Perl script
lob expand a directory listing using shell wildcards
mtime current time in GMT
Ig@g filter an array for entries that meet a criterion
index find location of a substring inside a larger string
int throw away the fractional part of a floating point number
join join an array together into a string
keys return the keys of a hash
kill send a signal to one or more processes
last exit enclosing loop
Ilg convert string to lowercase
Icfirst lowercase first character of string
length find length of string
local temporarily replace the value of a global variable
localtime return time in local timezone
lo natural logarithm
Im_// pattern match operation
map perform on operation on each member of array or list
mkdir make a new directory
Im_\(create a local variable
next jump to the top of enclosing loop
open open a file for reading or writing
opendir open a directory for listing
pack pack a list into a compact binary representation

13 0f 19 10/13/10 3:12 PM

Perl Scripting 1

http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

package create a new namespace for a module
pop pop the last item off the end of an array
print print to terminal or a file
printf formatted print to a terminal or file
m push a value onto the end of an array
a/STRING/ |generalized single-quote operation
qa/STRING/ | generalized double-quote operation
ax/STRING/ | generalized backtick operation
gw/STRING/ | turn a space-delimited string of words into a list
rand random number generator
read read binary data from a file
readdir read the contents of a directory
readline read a line from a text file
readlink determine the target of a symbolic link
redo restart a loop from the top
l@ return the type of a variable reference
rename rename or move a file
require load functions defined in a library file
return return a value from a user-defined subroutine
reverse reverse a string or list
rewinddir | rewind a directory handle to the beginning
rindex find a substring in a larger string, from right to left
rmdir remove a directory

/// pattern substitution operation

calar

force an expression to be treated as a scalar

T

reposition a filehandle to an arbitrary point in a file

elect make a filehandle the default for output

hift shift a value off the beginning of an array
Isi_n sine

lee put the script to sleep for a while

10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

ort sort an array or list by user-specified criteria

insert/delete array items

—
(o

split a string into pieces according to a pattern

rint formatted string creation

—

FE

square root

[l
1Y
(e

get information about a file

define a subroutine

extract a substring from a string

mlink create a symbolic link

execute an operating system command, then return to Perl

return the position of a filehandle within a file

associate a variable with a database

FEETEE

time return number of seconds since January 1, 1970
tr/// replace characters in a string
truncate truncate a file (make it smaller)

i

uppercase a string

ucfirst uppercase first character of a string
umask change file creation mask

undef undefine (remove) a variable
unlink delete a file

unpack the reverse of pack

untie the reverse of tie
|unshift move a value onto the beginning of an array
use import variables and functions from a library module
values return the values of a hash variable
Iv_vantarray return true in an array context
arn print a warning to standard error

“?

rite formatted report generation

Creating Your Own Functions

You can define your own functions or redefine the built-in ones using the sub function. This is described

15 of 19 10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

in more detail in the lesson on creating subroutines, which you'll be seeing soon..

Variables

A variable is a symbolic placeholder for a value, a lot like the variables in algebra. Perl has several
built-in variable types:

Scalars: $variable_name
A single-valued variable, always preceded by a $ sign.

Arrays: @array_name
A multi-valued variable indexed by integer, preceded by an @ sign.

Hashes: %hash_name
A multi-valued variable indexed by string, preceded by a % sign.

Filehandle: FILEHANDLE_NAME
A file to read and/or write from. Filehandles have no special prefix, but are usually written in all
uppercase.

We discuss arrays, hashes and filehandles later.

Scalar Variables

Scalar variables have names beginning with $. The name must begin with a letter or underscore, and
can contain as many letters, numbers or underscores as you like. These are all valid scalars:

* $foo

e $The_Big_Bad_Wolf

o $R2D2

«$ A23

e $Once_Upon_a_Midnight_Dreary_While_|_Pondered_Weak_and_Weary

You assign values to a scalar variable using the = operator (not to be confused with ==, which is humeric

comparison). You read from scalar variables by using them wherever a value would go.

A scalar variable can contain strings, floating point numbers, integers, and more esoteric things. You
don't have to predeclare scalars. A scalar that once held a string can be reused to hold a number, and
vice-versa:

Code:

$Sp = 'Potato'; # $p now holds the string "potato"

Sbushels = 3; # Sbushels holds the value 3
Spotatoes per bushel = 80; # $potatoes per bushel contains 80;
$total potatoes = S$bushels * $potatoes per bushel; # 240

print "I have S$total potatoes $p\n";

Output:

16 of 19 10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

17 of 19

I have 240 Potato

Scalar Variable String Interpolation

The example above shows one of the interesting features of double-quoted strings. If you place a scalar
variable inside a double quoted string, it will be interpolated into the string. With a single-quoted string,
no interpolation occurs.

To prevent interpolation, place a backslash in front of the variable:

print "I have \$total potatoes \$p\n";

prints: I have $total potatoes $p

Operations on Scalar Variables

You can use a scalar in any string or numeric expression like $shypotenuse = sqrt($x**2 + $y**2) Of
$name = $first name . ' ' . $last name. There are also numerous shortcuts that combine an
operation with an assignment:

$a++
Increment $a by one

$a--

Decrement $a by one
$a += $b

Modify $a by adding $b to it.
$a-=$b

Modify $a by subtracting $b from it.
$a *=$b

Modify $a by multiplying $b to it.
$a/=$b

Modify $a by dividing it by $b.
$a = $b

Modify the string in $a by appending $b to it.

Example Code:

$Spotatoes per bushel = 80; # $potatoes per bushel contains 80;

Sp = 'one’;
$p. LI
Sp -

; # append a space
'potato'; # append "potato"

Sbushels = 3;
$bushels *= $potatoes per bushel; # multiply

10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

18 of 19

print "From $p come S$bushels.\n";

Output:

From one potato come 240.

String Functions that Come in Handy for Dealing with
Sequences

Reverse the Contents of a String

$Sname '"My name is Lincoln';
Sreversed_name reverse S$name;

print $reversed name, "\n";

prints "nlocnil si eman yM"

Translating one set of letters into another set

$name = 'My name is Lincoln';
swap a->g and c->t
Sname =~ tr/ac/gt/;

print $name,"\n";
prints "My ngme is Lintoln"

Can you see how a combination of these two operators might be useful for computing the reverse
complement?

Processing Command Line Arguments

When a Perl script is run, its command-line arguments (if any) are stored in an automatic array called
@ARGV. You'll learn how to manipulate this array later. For now, just know that you can call the shift
function repeatedly from the main part of the script to retrieve the command line arguments one by one.

Printing the Command Line Argument

Code:

#!/usr/bin/perl
file: echo.pl

Sargument = shift;
print "The first argument was S$argument.\n";

10/13/10 3:12 PM

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

Output:

(~) 50% chmod +x echo.pl

(~) 51% echo.pl tuna

The first argument was tuna.

(~) 52% echo.pl tuna fish

The first argument was tuna.

(~) 53% echo.pl 'tuna fish'

The first argument was tuna fish.
(~) 53% echo.pl

The first argument was.

Computing the Hypotenuse of a Right Triangle

Code:

#1/usr/bin/perl
file: hypotense.pl

S$x shift;
Sy = shift;
$x>0 and $y>0 or die "Must provide two positive numbers";

print "Hypotenuse=",sqrt($x**2+Sy**2),"\n";

Output:

(~) 82% hypotenuse.pl

Must provide two positive numbers at hypotenuse.pl line 6.
(~) 83% hypotenuse.pl 1

Must provide two positive numbers at hypotenuse.pl line 6.
(~) 84% hypotenuse.pl 3 4

Hypotenuse=5

(~) 85% hypotenuse.pl 20 18

Hypotenuse=26.9072480941474

(~) 86% hypotenuse.pl -20 18

Must provide two positive numbers at hypotenuse.pl line 6.

19 of 19 10/13/10 3:12 PM

Perl Scripting 11

Conditionals, Logical operators,
Loops, and File handles

Suzi Lewis

Genome Informatics

Control Structures

= Control structures allow you to tell Perl the order

in which you want the interpreter to execute
statements.

= You can create alternative branches in which different
sets of statements are executed depending on
circumstances

= You can create various types of repetitive loops.

Conditional Blocks

$i = 1;
$3 = 2;
if ($1i == $j) { # Curly braces define a “block”

print "i equals j\n";
Si += 1;
}

unless ($i == $j) {
print "i does not equal j\n";
Si += 2;

}

print "\$i is $i\n";

Single line Conditionals

= You can also use the operators if and unless at the end of
a single statement. This executes that one statement
conditionally.

print "i equals j\n" if $i == $3;

print "i is twice j\n" if $i == $j * 2;

print "i does not equal j\n" unless $i == $j;

If-Else Statements

= Use else blocks for either/or constructions.
if ($1i == $3j) |
print "i equals j\n";
$i += $3;
} else {
print "i does not equal j\n";
die "Operation aborted!";
}
= What does this print if $i=2 and $j=27?

If-Else Statements

= You can perform multiple tests in a series using elsif:
if ($i > 100) {
print "i is too large\n";
} elsif ($i < 0) {
print "i is too small\n";
} elsif ($i == 50) {
print "i is too average\n";
} else {

print "i is just right!\n";

= What does this print if $i=50? If $i=517?

Use == to Compare Two Numbers
for Equality

$i = 4 == 4; # TRUE
$i = 4 == 2 + 2; # TRUE
$i = 4 == $7j; # depends on what $j is

= Do not confuse == with =

= == is for numeric comparison.

= = is for assignment.

Use !'= to Compare Two numbers
for Non-Equality

W
-
I

4 '= 4; # FALSE

W
-
I

4 '=2 + 2; # FALSE

$i = 4 '= $j; # depends on what $j is

Use > and < for "Greater than",

"Less than"
$i = 4 > 3; # TRUE
Si = 4 < 3; # FALSE
$Si = 4 > $7; # depends on what $j is

Use >= and <= for "Greater than
or Equal”, "Less than or Equal”

S$Si = 4 >= 3; # TRUE
Si = 4 >= 4; # TRUE

$i = 4 <= $7j; # depends on what $j is

Use <=> to Compare Two Numbers

Sresult = $i <=> $j

= $result is

= -1if the left side is less than the right side
= O if the left side equals the right side
= +1 if the left side is greater than the right side

= Nota Bene: The <=> operator is really useful in
conjunction with the sort() function.

Use eq to Compare Two Strings
for Equality

$i = 'fred' eq 'fred'; # TRUE
$i = 'fred and lucy' eq 'fred'.'and'.'lucy'; # TRUE
$i = 'fred' eq $j; # depends on what $j is

= Do not confuse == with eq

= == is for numeric comparison.

= eq is for string comparison.

$i = 'fred' == 'lucy'; # WRONG WRONG WRONG!

Use ne to Compare Two Strings
for Non-Equality

Si = 'fred' ne 'fred'; # FALSE
Si = 'fred' ne 'lucy'; # TRUE
Si = 'fred' eqg $j # depends on what $j

is

Use gt, 1t, ge, ne for "Greater
than"”, "Less than", "Greater or
Equal” etec.

= String comparison is in ASCII alphabetic order.

= $i = 'fred' gt 'lucy'; # FALSE
* $1i = 'fred' 1t 'lucy'; # TRUE
* $i = 'Lucy' 1t 'lucy'; # TRUE

[

824
K-
I

'Lucy' 1t 'fred'; # TRUE !!

= In ASCII alphabetic order, the set of capital letters is less
than the set of lowercase letters.

Use cmp to Compare Two Strings

Sresult = $i cmp $j

= $result is
= -1if the left side is less than the right side
= 0 if the left side equals the right side
= +1 if the left side is greater than the right side

= Nota Bene: cmp is also really useful in the sort() function.

g »» W N

o

What is TRUE (in Perl)

. The string "0" is False.

. The number O is False.

. The empty string ("" or ") is False

. The empty list is False

. The undefined value is False (e.g. an uninitialized
variable)

. A number is false if it converts to string "0".

. Everything else is True.

What is TRUE (in Perl)

$a; # FALSE (not yet defined)
$a = 1; # TRUE
$b = 0; # FALSE
$c =""; # FALSE

$d = 'true’; # TRUE
$e = 'false'; # TRUE (watch out! "false" is a non-empty string)

$F="" # TRUE (a single space is non-empty)
$g = "\n"; # TRUE (a single newline is non-empty)
@h = (); # FALSE array is empty

$i = 0.0; # FALSE

$j ='0.0'; # TRUE (watch out! The string "0.0" is not the same
as lloll)

Truth and the Comparison
Operations

= If a comparison operation is frue, it returns 1.

= If a comparison operation is false, it returns
undefined.

Si = 4 == 1+3;

print "The answer is $i","\n";

= The answer is 1.

Logical Operators

= To combine comparisons, use the and, or and not logical
operators.

= and also known as &&,
= or also known as ||
= not also known as !

= The short forms have higher precedence (will be interpreted
first by Perl)

$i && $j TRUE if $i AND $j are TRUE
$i || $3 TRUE if either $i OR $j are TRUE

!$i TRUE if $i is FALSE

Logical Operators Examples

if ($i < 100 && $i > 0) {
print "a is the right size\n";
} else {

die "out of bounds error, operation aborted!";

if ($1i >= 100 || $i <= 0) {

die "out of bounds error, operation aborted!";

To Reverse Truth, use not or !

Sok = ($i < 100 and $i > 0);

print "a is too small\n" if not $ok;

same as this:

print "a is too small\n" unless $ok;

and this:

print "a is too small\n" if !'S$ok;

and versus &&, or versus | |

Precedence
= && higher than = which is higher than and.
= || higher than = which is higher than or.

This is an issue in assignments

Example 1

Sok = $1i < 100 and $i > O;

This doesn't mean:

Sok = ($i < 100 and $i > 0);
but:

($ok = $i < 100) and $i > O;
Example 2

Sok = $1 < 100 && $i > 0;

This does mean

Sok = ($1i < 100 && $i > 0);

When in doubt, use parentheses.

The or and || operators do no
more than necessary.

= If what is on the left is true, then what is on the

right is never evaluated, because it doesn't need to
be.

$i = 10;

$j = 99;

$j comparison never evaluated
$i < 100 or $j < 100;

The "or die" Idiom

= The die() function aborts execution with an error
message

= You Combine “or die” and truth statements idiomatically
like this

($i < 100 and $i > 0) or die "\$i is the wrong size";

File Tests

A set of operators are used to check whether files exist,
directories exist, files are readable, efc.

-e <filename> # file exists

-r <filename> # file is readable

-x <filename> # file is executable

-w <filename> # file is writable

-d <filename> # filename is a directory
Examples

(-w "./fasta.out”)or die "Can't write to file";

print "This file is executable\n" if -x
"/usr/bin/perl";

Loops

= Loops let you execute the same piece of code over
and over again.

* A while loop

= Has a condition at the top.

= The code within the block will execute until the condition
becomes false.

while (CONDITION) {

Code to execute

While loop: Print "below 5" until
the number is not below 5

= Code:

#!/usr/bin/perl

file: counter.pl
Snumber = 0;

while ($number < 5) {

print "S$number is less
than 5\n";

Snumber = $number + 1;

Output of: 51% counter.pl
O is less than 5
1 is less than 5
2 is less than 5
3 is less than 5

4 is less than 5

foreach Loops

= foreach will process each element of an array or
list:

foreach $list item (Qarray) {

Do something with $list item;

for Loops

The for loop is the most general form of loop:
for (initialization; test; update) ({

Do something
}

The first time the loop is entered, the code at
initialization iS executed.

Each time through the loop, the test is
reevaluated and the loop stops if it returns false.

After the execution of each loop, the code at
update is performed.

A simple for loop

for ($i = 1; $i < 5; Si++) {

print $i,"\n";

This will print out the numbers 1 to 4:

= From command line: 52% loop.pl
1

2
3
4
This is equivalent to the previous while example.

There are ways to leave loops outside of the conditional, but this
practice is discouraged.

Basic Input & Output (1/0)

Getting computer programs to talk to the
rest of the world.

The STDIN, STDOUT and STDERR
File handles

Every Perl scripts starts out with three connections to the
outside world:

STDIN (Standard input)

= Used fo read input. By default connected to the keyboard, but
can be changed from shell using redirection (<) or pipe (|).

STDOUT (Standard output)

= Used to write data out. By default connected to the terminal,
but can be redirected to a file or other program from the shell
using redirection or pipes.

STDERR (Standard error)

= Intended for diagnostic messages. By default connected to the
terminal, etc.

In addition to these 3 file handles, you can create your own.

Reading Data from STDIN

* To read a line of data into your program use the
angle bracket function:

$Sline = <STDIN>
= <STDIN> will return one line of input as the result.

= You usually will assign the result to a scalar variable.

= The newline character is not removed line automatically;
you have to do that yourself with chomp:

Reading Data from STDIN

"

print "Type your name: ";
Sname = <STDIN>;

chomp S$name;

if ($name eq 'Jim Watson') {

print "Hail great master!;

else {

print "Hello $name\n";

= The read/chomp sequence is often abbreviated as:

chomp ($name = <STDIN>) ;

The Input Loop

= At the "end of file" (or when the user presses "D to end
input) <STDIN> will return whatever's left, which may or may
not include a newline. Thereafter, <STDIN> will return an
undefined value.

= This truthiness leads to typical input loop:
while ($line = <STDIN>) {
chomp $line;
now do something with $line...
}

= This while loop will read one line of text after another. At
the end of input, the <STDIN> function returns undef and
the while loop terminates. Remember that even blank lines
are TRUE, because they consist of a single newline character.

Output

The print function writes data to output. In its full form, it
takes a file handle as its first argument, followed by a list of
scalars to print:

" print FILEHANDLE $datal, $data2, $data3,...

Notice there is no comma between FILEHANDLE and the data
arguments.

If FILEHANDLE is omitted it defaults to STDOUT. So these
alternate statements are equivalent:

print STDOUT "Hello world\n";

print "Hello world\n";

To print to standard error:

print STDERR "Does not compute.\n";

File handles

= You can create your own file handles using the
open function

= read and/or write to them

= clean them up using close.

= Open prepares a file for reading and/or writing,
and associates a file handle with it.

= You can choose any name for the file handle, but the

convention is to make it all caps. In the examples, we use
FILEHANDLE.

Opening files for different purposes

= For reading
open FILEHANDLE, "cosmids.fasta"

= alternative form:
open FILEHANDLE, "<cosmids.fasta"

= For writing
open FILEHANDLE, ">cosmids.fasta"

= For appending
open FILEHANDLE, ">>cosmids.fasta"

= For reading and writing
open FILEHANDLE, "+<cosmids.fasta"

Catching Open Failures

It's very common for open to fail.
= Maybe the file doesn't exist
= you don't have permissions to read or create it.

Always check open's return value, which is TRUE if the
operation succeeded, FALSE otherwise:

Sresult = open COSMIDS, "cosmids.fasta";

die "Can't open cosmids file: $'!'\n" unless $result;

When an error occurs, the $! variable holds a descriptive
string containing a description of the error, such as "file not
found".

The compact idiom for accomplishing this in one step is:

open COSMIDS, "cosmids.fasta" or die "Can't open
cosmids file: $!'\n";

Using a File handle

Once you've created any file handle, you can read from it or write to
it, just as if it were STDIN or STDOUT.

This code reads from file "text.in" and copies lines to "text.out":
open IN,"text.in" or die "Can't open input file: $'\n";
open OUT, ">text.out" or die "Can't open output file: $'\n";
while ($line = <IN>) {

print OUT S$line;
}

Here is a more compact way to do the same thing:
while (<IN>) {

print OUT;
}

And the minimalist solution:

print OUT while <IN>;

Closing a File handle

* When you are done with a filehandle, you should
close it.

= This will also happen automatically when your program ends
= Or if you reuse the same file handle name.

close IN or warn "Errors closing filehandle: $!";

= Some errors, like file system full, only occur when
you close the file handle, so check for errors in the
same way you do when you open a file handle.

Pipes

You can open pipes to and from other programs using the pipe ("[")
symbol:

open PIPEIN, "ls -1 |" or die "Can't open pipe in: $!'\n";
open PIPEOUT,"| sort" or die "Can't open pipe out: $!'\n";
print PIPEOUT while <PIPEIN>;

This mysterious, silly example
= Runs the Is -l command,
= Reads its output a line at a time,

= and does nothing but send the lines tfo the sort command.

More useful pipe example

= Count the # of occurrences of the string pBR322 in a file.

#!/usr/bin/perl
my $file = shift or die "Please provide a file name";
if ($file =~ /\.gz$/) { # a GZIP file
open IN,"gunzip -c $file |" or die "Can't open zcat pipe:
$!'\n";
} else {
open IN,S$file or die "Can't open file: $'\n";
}
Scount = 0;
while (my $line = <IN>) {
chomp $line;
Scount++ if $line eq 'pBR322';
}
close IN or die "Error while closing: $'\n";

print "Found $count instances\n";

The Magic of <>

* The bare <> function when used without any
explicit file handle is magical.

= It reads from each of the files on the command line as if
they were one single large file.

= If no file is given on the command line, then <> reads from
standard input.

= This can be extremely useful.

A Practical Example of <>

= Count the number of lines and bytes in a series of files. If no file is
specified, count from standard input (like wc does).

#!/usr/bin/perl

(Sbytes,$lines) = (0,0);

while (my $line = <>) {
Sbytes += length($line) ;
$Slines++;

}

print "LINES: $lines\n";

print "BYTES: S$bytes\n";

= Because <> uses open internally, you can use "-" to indicate standard
input, or the pipe symbol to indicate a command pipe to create.

Perl Hygeine

= Because you don't have to predeclare variables in
Perl, there is a big problem with typos:

Svalue = 42;

print "Value is OK\n" if $valu < 100; # UH OH

Use Warnings Will Warn of
Uninitialized Variables

#!/usr/bin/perl

use warnings;

Svalue = 42;

print "Value is OK\n" if $valu < 100; # UH OH

= When run from the command line (% perl uninit.pl)

Name "main::valu" used only once: possible typo at
uninit.pl line 4.

Name "main::value" used only once: possible typo at
uninit.pl line 3.

Use of uninitialized value in numeric gt (>) at
uninit.pl line 4.

"use strict"”

= The "use strict" pragma forces you to predeclare all
variables using "my":

#!/usr/bin/perl -w

use strict;

Svalue = 42;

print "Value is OK\n" if $valu < 100; # UH OH
= When run from command line (% perl uninit.pl)

Global symbol "$value" requires explicit package
name at uninit.pl line 4.

Global symbol "$valu" requires explicit package
name at uninit.pl line 5.

Execution of uninit.pl aborted due to compilation
errors.

Using my

Put a my in front of the variable in order to declare it:
#!/usr/bin/perl -w

use strict;

my Svalue = 42;

print "Value is OK\n" if $value < 100;

When run from the command line (% perl uninit.pl)
Value is OK

You can use "'my" on a single variable, or on a list of
variables. The only rule is to declare it before you use it.

my Svalue = 42;

my $a;

$a = 9;

my ($c,$d,Se,S$f);

my ($first,$second) = (1,2);

Take home messages

ALWAYS use warnings
ALWAYS use strict

References

= Perl docs online perldoc.perl.org

= Learning Perl. Schwartz and Christiansen

= Chapter 2

Perl Scripting 111

Arrays and Hashes
(Also known as

Data Structures)

Ed Lee & Suzi Lewis

Genome Informatics

Basic Syntax

= In Perl the first character of the variable name
determines how that variable will be interpreted
when the code is run.

= "$" indicates a "scalar" variable
= "@" indicates an "array" variable

= "%" indicates a "hash" variable
= You can have three variables with the same name

= For example $x, @x, and %$x

* These represent three different things

An Array 1Is a List of Values

= For example, consider a list such as this

= the number 3.14 as the first element
= the string 'abA’ as the second element

= the number 65065 as the third element.

= How do you express this list in Perl?

“Literal Representation”
= Most simply

" my @array = (3.14, 'abA', 65065); mm

= Or we can initialize from variables

" my Spi = 3.14;
" my $s = 'abA’;

" my Qarray = (Spi, $s, 65065); 3.14 mm

= We can also do mfeger ranges

" my @array = .5); # shorthand for

ﬂlﬂﬂﬂﬂ

= Counting down not allowed!

Array Variables and Assignment

" my Spi = 3.14;
" my $X = 65065;

< ny e = (spi, Canar, sx); [l
vy ey = o RTe[[s

my @z = ($x, Spi, @x, @y);

ss0ss|3.14 (314 [abarlesoss) 1 | 0 | 1 |2 |3 | 4|5

Array Variables and Assignment

ss0ss|3.14 (314 [abarlesoss) 1 | 0 | 1 |2 |3 | 4|5

" my (S$Sfirst, @rest) = @z;

3.14)3.1¢)cabarlos0ss) -1 | 0 | 1|2 |3 | 4|5

ss0ss|3.14 (314 [abarlesoss) 1 | 0 | 1|2 |3 | 4|5

(01 [11 [2] [3] [4] [5]1 (6] [7] [8] [9] [10] ([11]

Getting at Array Elements

" my S$first = $z[0]; #

= $z[0] = 2; # assign a new value to the 15t item

= Sfirst = $z[0]; #E

" my Smax index = $#z; # 11

" my Slast = S$z[S$#2z]; #E

0 1 2 4 5 7 11
Push

= Add 9 to the end (or top) of @z;
" push @z, 9;

[12]

[11]

top [11]

10
[10] [10]

9
[21] [9]

[8]
[7]
[6]
[5]
[4]
[31]
[2]
[1]
[0]

[8]

[7]

[6]

[5]

[4]

[3]

1

[2]

3.14

[1]

w

bottom [0]

Pop
= Take the 9 and 5 off the end (or top) of @z:
" my $endl = pop @z;

" my $end2 = pop @z;
[10]

[91]
[8]
[7]
[6]
[5]

[4]

[31]

[

[2]

w

[1]

w
w

Ew

[0]

Unshift

= Add 9 to the beginning (or bottom) of @z;

unshift @z,

9;

UNSHIFT

[10]

[91]

[8]

[7]

[6]

[5]

[4]

[31]

w
=
>

[2]

w
=
>

[1]

[0]

[8]

[7]

[6]

[5]

[4]

w

[31]

w

[2]

[1]

[0]

Shift

= Take 9 and then 65065 off the beginning of @z:
" my $bl = shift @z;
" my $b2 = shift Qz;

tel [9]
[9]
[8]
[7]
[6] >
[5]
[4]
[3]
[2]
[1]

[8]
[7]
[6]

[5]

=)

=

[4]
[3]
[2]
[1]

SHIFT

. N
Lo -1
_ =

SHIFT

[0]

Reverse

" my @zr = reverse @z;
(9]
(8]

[7]

[6]

[5]

[4]

[31]

[2]

[1]

[0]

. EETH
N EXTN
2 N
65065
| o
o
65065
Y 2
334 Il
34 KN

Array and Scalar Context

= The notion of array and scalar context is unique fo Perl.
Usually you can remain unaware of it, but it comes up in the
reverse function.

print reverse 'abc';
abc

print reverse 'abc', 'def' , 'ghi' ;
ghidefabc

print scalar reverse 'abc';
cba

my S$ba = reverse 'abc';

print Sba;

cba

Array and Scalar Context

= The notion of array and scalar context can also be
used to get the size of an array.

my @z = (1,2,3,4,5,6,7);

print scalar @z ," the number of elements in the
array\n";

print $#z, ' this is max offset into scalar @z' , "\n";

7 the number of elements in the array

6 this is max offset into scalar @z

Iterating Through Array Contents

TR onnon

[31 [4] [51 (6] [7]1 [8] [9]

= Using a “foreach” loop
foreach my $array_value (@z) {
print “$array_value\n”;
;
= Using a “for” loop
for (my $index = 0; $index < scalar(@z); ++$index) §
my $array_value = $z[$index];

print “$array_value\n”;

Sorting

uefasefabonoss 20 12]3]0

[31 [4] [51 (6] [7]1 [8] [9]

= Alphabetically:

" my @sortedArray = sort Qz;

B3 K 3) S ERT K T

[01 [11 [2] [3]1 [4] [5] (61 [71 [8]

= This does exactly the same alphabetical sort
= @sortedArray = sort {$a cmp $b} @z;

Sorting

= An alphabetical sort (with only numbers in the array)

" my @numberArray = (-1, 3, -20);

" my @sortedNums = sort @numberArray;

= Need a numerical sort to sort as numbers

= my @sortedNums = sort {$a <=> $b} @numberArray;

Sorting
uefasefabonoss 20 12]3]0
[31 [4] [51 (6] [7]1 [8] [9]

= What happens :
" @sortedArray = sort {$Sa <=> $b} Qz;

= Argument "abA" isn't numeric in sort at arraySort.pl line 19.

-0 a1 2] 3]3.14]3.14] 4 65065

[0]1 [1] [2] [31 [4]1 [5] [6] [7] [91] [10]

Split and Join

= Split using a literal

my $string = "one,two,three"”;
my @array = split "," , $string;
print "@array" , " - from array\n";

one two three - from array
= Join it up again

Sstring = join ‘:’, @array;
print S$string , " - rejoined with colons\n";

one two three - from array
one:two:three - rejoined with colons

Split and Join

= Split using a regular expression
my S$Sstring = "oneltwo22three333fin';
my @array = split /\d+/ , $string;

print "@array" , "\n";

one two three fin

Swallowing Whole Files in a Single Gulp

= Read the file from stdin
" my @file = <>;
= Eliminate newlines from each line

= chomp Q@file;

A Hash Is a Lookup Table

* Hashes use a key to find an associated

value.

my %translate; # the percent sign denotes a hash

Stranslate{'atg'} =
Stranslate{ 'taa'} =
Stranslate{'ctt'} =
Stranslate{'ctt'} =

'M'; # codon is the key
'*'s # aa is the wvalue
'K'; # lysine, oops

'L'; # leucine, fixed

print Stranslate{'atg'};

M

Initializing & Removing Key, Value Pairs

= Initializing From a List
$translate = ('atg' => 'M’,
'taa' => ‘'*7,
‘'ctt' => ‘L',

cct' => 'P’');

= Removing key-value pairs

delete Stranslate{'taa'};

Checking if a key exists

if (exists S$Stranslate{‘’atg’}) {
print “Methionine found in translation table\n”;

}

else {
print “Methionine not found in translation table\n”;

}

if (exists S$Stranslate{‘’ata’}) {
print “Isoleucine found in translation table\n”;

}

else {
print “Isoleucine not found in translation table\n”;

}

Methionine found in translation table
Isoleucine not found in translation table

Reaching into a hash

my @codons = keys $%$translate;

print "@codons" , - all keys\n";

atg ctt taa - all keys

my @aa = values %translate;

print "@aa" , - all values\n";

M L * - all values

Iterating Through Hash Contents

= First get all the keys from the hash
my @keys = keys %translate;
= Using a “foreach” loop
foreach my $key (@keys) {
print "The AA code for “, $key, " is *, $translate{$key}, “\n";
;
= Using a “for” loop
for (my $index = 0; $index < scalar(@keys); ++$index) {
my $key = $keys[$index];
print "The AA code for %, $key, " is “, $translate{$key}, “"\n";

Problem Sets

" Problem #1
= Exercises 1-3, page 54, Learning Perl
" Problem #2

= Exercises 1, page 105, Learning Perl
= How the program (call it names.pl) in exercise 1 works:

S names.pl fred
flinstone

S names.pl barney
rubble

S names.pl wilma

flinstone

References

Perl docs online perldoc.perl.org

Learning Perl. Schwartz and Christiansen
= Chapters 3 & 6

Programming Perl. Wall, Christiansen and Schwartz

Effective Perl Programming. Hall and Schwartz

References

Simon Prochnik, Dave Messina, Lincoln Stein, Steve Rozen
PfB 2010

Tuesday, October 12, 2010

What good are references?

Sometimes you need a more complex
data structure than a list.

What if you want to keep together
several related pieces of information!?

Gene Sequence Organism

H OX Bz ATCAGCAATATACAATTATAAAGGCCTAAATTTAAAA mouse

HDAC | GAGCGGAGCCGCGGGCGGGAGGGCGGACGGAC human

Tuesday, October 12, 2010

What is a reference?

Well first, what is a variable?

A variable is a labeled memory address
that holds a value.The location's label is
the name of the variable.

0x84048ec
Sx=1; really means SCALAR x:| 1

Tuesday, October 12, 2010

What is a list?

‘a’, 23);

really means

ARRAY y:

0x82056b4

1

lal

23

Tuesday, October 12, 2010

A variable is a labeled memory address.

When we read the contents of the
variable, we are reading the contents of
the memory address.

0x82056b4
ARRAY y:| 1 ra’ |23

Tuesday, October 12, 2010

So, what is a reference!?

A reference is a variable that contains
the memory address of some data.

It does not contain the data itself. It
contains the memory address where
some data is stored.

Tuesday, October 12, 2010

We can create a reference to hamed

variable @y this way:

SCALAR
ref to y: 0x82056b4

ARRAY Yy:

0x82056b4

1

lal

23

Tuesday, October 12, 2010

SCALAR ref to y: 0x82056b4

If we try to print out $ref to_y, we see

the raw memory address:

print $ref to y,"\n";
ARRAY (0x82056b4)

Tuesday, October 12, 2010

SCALAR

ref to y: 0x82056b4

0x82056b4

ARRAY vy:

1

lal

23

To see the contents of what $ref to_ vy
points to, we have to dereference it:

print join '

1 a 23

",@{%ref to vy};

Tuesday, October 12, 2010

You can create references to scalars,
arrays and hashes

create some references

$scalar _ref = \$count;
$array ref = \@array;
$hash ref = \%hash;

To dereference a reference, place the
appropriate symbol ($, @, %) in front of the
reference:

dereference your references:
$count copy ${$scalar _ref};
@array_copy @{%array ref};
%hash copy %{$hash ref};

Tuesday, October 12, 2010

10

A reference is a pointer to the data. It isn't
a copy of the data.

When you make a reference to a variable,

you have only created another way to get
at the data.

There is still only one copy of the data.

@y = (1,'a",23);
$ref to vy = \@y;

print join ' ',@{$ref _to y};
1a23

push @{%ref to y}, 'newl', 'new2';

print join ' ', @y;
1 a 23 new1 new?2

Tuesday, October 12, 2010 11

This is in contrast to doing a direct copy
from one variable to another, which creates a

new data structure in a new memory
location.

@y = (1,'a',23);
@z = Q@y;
push @y, 'newl’', 'new2";

print join ' ', @y;
1 a 23 new1 new2

print join ' ',@z;
1a23

Tuesday, October 12, 2010

12

If you have a reference to an array or a
hash, you can access any element.

Svalue = $y[2]: directly access the 3rd
element in @y
$value = ${%ref to y}I[2]; dereference the
reference, then
access the 3rd
element in @y
${$ref to y}[2] = 'new';

orint Join ' '@y change the value of the
1 a new T 3rd element in @y

Tuesday, October 12, 2010

%Z = (‘dog® => 'animal',
‘potato’ => 'vegetable',
‘quartz’ => 'mineral’,
“tomato’ => 'vegetable');
bref_to_z = \%z; directly access the value
iated with the key
$value = $z{‘dog’}; <« 550l
L dog] ‘dog’ in the hash 7%z
$value = ${%ref to z}{‘dog’}; dereference the
reference, then get the
value associated with the
key ‘dog’in the hash %z
${$ref to z}{‘tomato’} = 'fruit'; change the value
print $z{"tomato’}, “\n”; associated with the key
fruit

‘tomato’ in the hash %z

Tuesday, October 12, 2010

14

Anonymous Hashes and Arrays

You will not usually make references to existing
variables. Instead you will create anonymous hashes
and arrays. T hese have a memory location, but no
symbol or name, i.e. you can't write @my_data.The
reference is the only way to address them.

To create an anonymous array use the form:
sref to arry = ['iteml’', 'item2’,...]

To create an anonymous hash, use the form:

sref to hash = {’keyl’=>"vall’', ‘key2’'=>"value2'}

Tuesday, October 12, 2010

15

$y_gene_families = ['DAZ', 'TSPY', 'RBMY', 'CDYl',
'CDY2'];

Sy gene family counts = { 'DAZ' => 4,
'TSPY' => 20,
'RBMY' => 10,
'CDY2' => 2 };

Sthird item of array = $y gene families->[2];
$daz count Sy gene family counts->{DAZ};

$y gene_ families is a reference to an array, and
$y gene_ family counts is a reference to a hash.

Tuesday, October 12, 2010 16

Making a Hash of Hashes

The beauty of anonymous arrays and hashes is that you can nest them:

my 3y gene data = (

‘DAZ' => {’'family size’' => 4,

‘description’ => 'deleted in azoospermia' },
‘TSPY’ => {’family size’ => 20,

‘description’ => 'testis specific protein'},
‘RBMY’ => {’family size’ => 10,

‘description’ => 'RNA-binding motif Y'},
‘CDY2' => {’family size’' => 2,

‘description’ => 'chromodomailin protein' }

) ;

what is the size of the RBMY family?
my $size = $y gene data{‘'RBMY’}{‘family size'};

what is the description of TSPY?
my $desc = Sy gene data{’'TSPY’'}{’description’};

Tuesday, October 12, 2010

17

Making an Array of Arrays

my @spotarray

Il
—_

'0.124, 43.2, 0.102,

'0.113, 60.7, 0.091,

'0.084, 112.2, 0.144,
) i

my Scell 1 0 = S$spotarray[1][0];

print $cell 1 0;

0.113

80.41,
22.61,
35.3]

Tuesday, October 12, 2010

18

Examining References

Inside a Perl script, the ref function tells you what kind
of value a reference points to:

print ref(Sy gene data), "\n";
HASH

print ref($Sspotarray), "\n";
ARRAY

Sx = 1;
print ref($x), "\n";
(empty string)

Tuesday, October 12, 2010

19

Examining complex data structures in the debugger

Inside the Perl debugger, the "x" command will pretty-print the
contents of a complex reference:

DB<3> x $y gene data
0 HASH(0x8404bb0)
'CDY2' => HASH(0x8404b80)
'description' => 'chromodomain protein, Y-linked'
'family size' => 2
'DAZ' => HASH(0x84047fc)
'description' => 'deleted in azoospermia'
'family size' => 4
'RBMY' => HASH(0x8404b50)
'description' => 'RNA-binding motif Y'
'family size' => 10
'TSPY' => HASH(0x8404b20)
'description' => 'testis specific protein Y-linked'
'family size' => 20

Tuesday, October 12, 2010

20

Scripting Example: Creating a Hash of Hashes

We are presented with a table of sequences in the following format:
the ID of the sequence, followed by a tab, followed by the sequence
itself.

21.52.1 atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattggaagtaag...
4R79.2 tcaaatacagcaccagctcctttttttatagttcgaattaatgtccaact...
AC3.1 atggctcaaactttactatcacgtcatttccgtggtgtcaactgttattt...

For each sequence calculate the length of the sequence and the count
for each nucleotide. Store the results into a hash of hashes in which
the outer hash's key is the ID of the sequence, and the inner hashes’
keys are the nucleotides and the values are the counts.

Tuesday, October 12, 2010

21

#!/usr/bin/perl -w

use strict;

tabulate nucleotide counts,

my %seqgs; # initialize hash
while (my S$line = <>) {

chomp S$line;

my (id,Ssequence) = split "\t",S$line;

my @nucleotides = split , Ssequence;
foreach my $n (@nucleotides) {
Sseqgs{$id}{$Sn}++; # count nucleotides and keep tally

}
}

print table of results
print jOin("\t",'id','a','C','g','t'),"\n";

foreach my $id (sort keys %seqgs) {
print join("\t",S$id,

$segs{sid}{a},

$segs{s$id}{c},

$seqgs{$id}{g},

$segs{$id}{t},
)/ "\1‘1";

store into %$sequences

array of base pairs

Tuesday, October 12, 2010

22

The output will look something like this:

1d a C g t

2L.52.1 23 4 12 11
4R79.2 15 12 5 18
AC3.1 11 11 8 20

Tuesday, October 12, 2010

23

Perl References

Simon Prochnik, Lincoln Stein (From Steve Rozen, 2001)

Problem Set

1. What kind of data structure could you use to represent the data in the table below?

CDC2 |45 liver

PLK1 || 34.2 || heart

MCM4 || 9 kidney

2. Write a script to generate a data structure which represents the table above.

3. The table below is the same as the table above, but has labels added as headings.

Modify your script such that the data is now stored according to the labels, so that you can
access the data using those labels. For example, if your data structure is called %hash,
you should be able to look up the data related the CDC2 gene like this:

$gene = 'CDC2';
my $expression_for_gene
my $tissue for_ gene

$hash{%gene}{'expression'};
$hash{$gene}{'tissue'};

| gene |expression|| tissue |
CDC2 | 45 liver
PLK1 || 34.2 heart
MCM4 || 9 kidney

4. Modify your script so that the data for MCM4 is printed out like this:

gene expression tissue
MCM4 9 kidney

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

Perl6 - Subroutines and Modules

Lincoln Stein
Suggested Reading

Chapters 4 and 11 of Learning Perl, especially the section Using Simple Modules. Chapter 6 of Beginning
Perl for Bioinformatics.

Lecture Notes

Subroutines

1. Creating Subroutines
2. Subroutine Arguments
3. Subroutine Position in Scripts

Modules

Using a Module

Getting Module Documentation

Installing Modules

Where are Modules Installed?

The Anatomy of a Module

Exporting Variables & Functions from Modules

Problem Set

ok wh -~

1. Write a subroutine to concatenate two strings of DNA.

2. Write a subroutine to report the percentage of each nucleotide in DNA. You've seen the plus operator
+. You will also want to use the divide operator / and the multiply operator *. Count the number of each
nucleotide, divide by the total length of the DNA, then multiply by 100 to get the percentage. Your
arguments should be the DNA and the nucleotide you want to report on. The int function can be used
to discard digits after the decimal point, if needed.

3. Using the CPAN web site, locate a module for verifying credit card numbers. Download and build it
(don't try to install it, because you need root privileges to do this).

4. Using the standard object-oriented Math::Biglnt library, which allows you to store really big integers,
write a script that will read in a 100+ digit integer and calculate its square root.

5. (extra credit) Create a module that counts the number of times a restriction site appears in a
nucleotide string. The exported function should be named count_sites() and should be called like this:

$count = count sites('name of site',$nucleotide string);
for example

$count = count sites('ecoRI', 'GGGATTTGACCGGAATTCCGATCCCAAGGTTC');

Hints: Use a parenthesized regular expression and assign the results of a string match to an array.
Store the relationships between the name of a restriction site and its regular expression in a hash.

Subroutines

1 of 14 10/14/10 9:32 AM

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

Subroutines are blocks of code that you can call in different places and contexts. Subroutines can take
arguments, and return results.

Why is this useful? Because it lets you solve a problem once and then reuse your solution over and over
again. For example, say you've written a chunk of code that normalizes a DNA sequence by removing
unwanted characters. By turning it into a named subroutine, you can reuse this piece of code over and over
again within the same program without cutting and pasting. Later, you'll be able to put this subroutine into a
personal code library and reuse it among many scripts.

Subroutines also make scripts shorter and easier to understand.

Example: Cleansing a Sequence

Sequences that come out of GenBank are "contaminated" with line numbers and whitespace, like this:

1
61
121
181
241
301
361
421
481
541
601
661
721
781
841
901
961
1021

aagacacgga
agacaaaccg
taccctgtgce
ccaccctata
ccaggggctg
cccatggceccc
ccagtcggtc
ggtgccagat
cctcccaatg
aaggggaact
gccacctttg
ttagtcatat
cccaaacttt
cctaaagcat
cctaaggatt
agtaataaaa
ccaaattatt
atggaacgca

agtagctccg
gacccgcaac
agcctcctgg
ccgatgctcce
ccacagtccc
agtctgtggc
ccatctatcc
ttggagctgg
ctgctcagct
tcttcatggg
tgccgggaaa
taacctgaag
caggcacttt
tttgaggtag
ttcctttaat
catcaaatta
ctgattggtc
ttagttgtct

aacaggaaga
caccatgaac
gaatccagta
acctgcctac
caccatgtca
tgttgggcct
acctggctcc
ggctactgct
tgcagtcatg
tggttcagat
gacatcacat
ttgcagttta
tcaaatttaa

gggaggtatc
ttctctggag

ggtttggagg
tttaatctcc
gccttttect

ggacgaaaaa
agcaaaggcc
taccctcaga
tcagagctct
gccgcatttce
ttaggttcca
acagtgctgg
ggcaacattc
cagggagcca
ggtggctaca
accttcagca
gacacatgtt
taaggaacca
cattcataaa
taatactgta
gaactttgat
tttaagtctt
ttccatccct

aataaccgtc
aatatccaac
ccttgcatct
atcgtccgag
ctggagcctc
caatccccat
tggaaggagg
ctccteccacc
acgtcctcgt
ccatctggtg
cttctcacaa
gttggggtgt
tgtaatggta
atgaatgtgg
ccatactggt
cttcctaaga
tgatatatat
tgccccaccce

cgcgacgccg
acagccaacc
tcctcaggcet
ctttgtgcac
tctgtatectt
ggcttattat
gtatgatgca
tcctggatge
aactcagcgg
aggaaccaag
tgtaactgct
ctttctggtg
gcagtacctc
gtgaagccgc
ctttgctttt
attaaagttg
tactttataa
atcccatctc

1081 caaccctagt c
You want to remove all this extraneous stuff and turn the sequence into a single long string:
aagacacggaagtagctccgaacaggaagaggacgaaaaaaataaccgtccgcgacgccgagacaaaccggacccge

To do this, you've written several statements that lowercase the sequence, and remove whitespace. If the
sequence contains unexpected characters after this, we die:

$sequence = lc $sequence; # translate everything into lower case
$sequence =~ s/[\s\d]//g; # remove whitespace and numbers
$sequence =~ m/"[gatcn]+$/ or die "Sequence contains invalid characters!";

We can turn this into a named subroutine with the following three steps:

1. Turn it into a block:

{
$sequence = lc $sequence; # translate everything into lower cas
$sequence =~ s/[\s\d]//g; # remove whitespace and numbers
$sequence =~ m/"[gatcn]+$/ or die "Sequence contains invalid cha:
}

2. Label the block with sub subroutine name:

sub cleanup_sequence

2 of 14 10/14/10 9:32 AM

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

{
$sequence = lc $sequence; # translate everything into lower cas
$sequence =~ s/[\s\d]//g; # remove whitespace and numbers
$sequence =~ m/"[gatcn]+$/ or die "Sequence contains invalid cha:
}

3. Add statements to read the subroutine argument(s) and return the subroutine result(s):

sub cleanup_ sequence

{
my ($sequence) = @ ;
$sequence = lc $sequence; # translate everything into lower cast
$sequence =~ s/[\s\d]//g; # remove whitespace and numbers
$sequence =~ m/"[gatcn]+$/ or die "Sequence contains invalid cha:
return $sequence;

}

cleanup_sequence() NOW acts like a built-in function. It takes a list of arguments (in this case only one, the
original sequence) and returns a list of results (in this case, only one, the cleaned-up sequence):

my S$seq;
while (my $seqgline = <IN>) { # read sequence from a file

my S$clean = cleanup sequence($segline); # clean it up

Sseq = S$clean; # add it to full sequence
}

Getting Data in and out of a Subroutine

When you invoke a subroutine, you pass it a list of arguments and receive a list of results:
my @results = my subroutine('argl',6 'arg2',6 'arg3'...);

You'll now see how subroutines can retrieve its arguments and return its results.

Getting the Subroutine Arguments

Within the subroutine, the arguments are passed to it in an automatic ("magic") array variable named e_.
One common idiom is for the first statement in a subroutine to copy e_ into a list of named variables:

sub my subroutine {
my (Sargl,S$arg2,$arg3) = @ ;

}
Returning the Subroutine Results

To return a list of results from a subroutine to its caller, use the return operator. Usually you will call return
at the very end of the subroutine, but you can call it earlier in special cases if you want to exit the subroutine
earlier.

This subroutine will add a PCR primer sequence to the beginning and end of a DNA sequence and return
the result.

sub add_linkers {
my (S$linker,$sequence) = @ ;

3of 14 10/14/10 9:32 AM

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

4 of 14

my Sreverse linker = $linker;

$reverse linker ~ tr/gatcGATC/ctagCTAG/; # reverse complement it
my Sresult $linker . S$sequence . Sreverse linker;

return Sresult;

}

You can return a single value, a list, or nothing:

return $single value; # scalar

return ('a','long','list','of','items'); # list

return @an_array; # list contained in an array variable

return; # return empty list or undef, depending on context

Subroutine Anatomy

Anatomy of a Subroutine

Lastly, the age old question, Where do you put the subroutines in your script?. Usually the subroutine
definitions go at the bottom of the script, following the last statement.

To visually separate the statements from the subroutine, you can add a comment line if you like.

#!/usr/bin/perl -w

comments describing what the script does
more comments, including author and script name

my (Svariables, $variables, @more variables); # declare some variables
while (my $line = <IN>) {
my @results = subroutine 1();

my Sresult = subroutine 2(\@results);

}

do_something at end of script;

Subroutines

sub subroutine 1 {

my ($locall,$local2,$local3) = e ;
do_something;

}

sub subroutine 2 {
my ($locall,$local2,$local3) = @ ;

do something;

Modules

10/14/10 9:32 AM

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

Using a Module

A module is a package of useful subroutines and variables that someone has put together. Modules extend
the ability of Perl.

Example 1: The File::Basename Module

The File::Basename module is a standard module that is distributed with Perl. When you load the
File::Basename module, you get two new functions, basename and dirname.

basename takes a long UNIX path name and returns the file name at the end. dirname takes a long UNIX
path name and returns the directory part.

#!/usr/bin/perl
file: basename.pl

use strict;
use File::Basename;

my S$path = '/bush home/bushl/lstein/C1829.fa’';
my S$base = basename($path);
my $dir = dirname($path);

print "The base is $base and the directory is $dir.\n";

The output of this program is:
The base is C1829.fa and the directory is /bush_home/bushl/lstein.

The use function loads up the module named File::Basename and imports the two functions. If you didn't
use use, then the program would print an error:

Undefined subroutine &main::basename called at basename.pl line 8.

Example 2: The Env Module

The Env module is a standard module that provides access to the environment variables. When you load it,
it imports a set of scalar variables corresponding to your environment.

#1/usr/bin/perl
file env.pl

use strict;
use Env;

print "My home is S$HOME\n";

print "My path is $PATH\n";
print "My username is SUSER\n";

When this runs, the output is:

My home is /bush home/bushl/lstein

5of 14 10/14/10 9:32 AM

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

My path is /net/bin:/usr/bin:/bin:/usr/local/bin:/usr/X11R6/bin:/bush home/bt
My username is lstein

Finding out What Modules are Installed

Here are some tricks for finding out what modules are installed.

Preinstalled Modules

To find out what modules come with perl, look in Appendix A of Perl 5 Pocket Reference. From the
command line, use the perldoc command from the UNIX shell. All the Perl documentation is available with

this command:

% perldoc perlmodlib
PERLMODLIB(1l) User Contributed Perl Documentation PERLMODLIB(1)

NAME
perlmodlib - constructing new Perl modules and finding
existing ones

DESCRIPTION

THE PERL MODULE LIBRARY
Many modules are included the Perl distribution. These

are described below, and all end in .pm. You may discover

Standard Modules
Standard, bundled modules are all expected to behave in a
well-defined manner with respect to namespace pollution

because they use the Exporter module. See their own docu-
mentation for details.

AnyDBM File Provide framework for multiple DBMs
AutoLoader Load subroutines only on demand
AutoSplit Split a package for autoloading

B The Perl Compiler

To learn more about a module, run perldoc with the module's name:

% perldoc File::Basename

NAME
fileparse - split a pathname into pieces
basename - extract just the filename from a path
dirname - extract just the directory from a path
SYNOPSIS

use File::Basename;

6 of 14 10/14/10 9:32 AM

Perl 6 - Subroutines and Modules

7 of 14

http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

($name, $Spath,$suffix) = fileparse($fullname,@suffixlist)
fileparse set fstype($os_string);

Sbasename = basename($fullname,@suffixlist);

Sdirname = dirname($fullname);

Optional Modules that You May Have Installed

perldoc perllocal will list the names of locally installed modules.

% perldoc perllocal
Thu Apr 27 16:01:31 2000: "Module" the DBI manpage

(e]

(¢]

(¢]

o

"installed into: /usr/lib/perl5/site perl"
"LINKTYPE: dynamic"
"VERSION: 1.13"

"EXE_FILES: dbish dbiproxy"

Thu Apr 27 16:01:41 2000: "Module" the Data::ShowTable

manpage

o "installed into: /usr/lib/perl5/site perl"
o "LINKTYPE: dynamic"

o "VERSION: 3.3"

o "EXE_FILES: showtable"

Tue May 16 18:26:27 2000: "Module" the Image::Magick man-

page

But often it's just easier to test directly using perl itself:

% perl -e 'use File::Basename;'

If you get no error when you try to use the module, then the module is installed.

Installing Modules

You can find thousands of Perl Modules on CPAN, the Comprehensive Perl Archive Network:

http://www.cpan.org

10/14/10 9:32 AM

Perl 6 - Subroutines and Modules

Installing Modules Manually

http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

Search for the module on CPAN using the keyword search. When you find it, download the .tar.gz module.

Then install it like this:

8 of 14

% tar zxvf bioperl-1.6.1.tar.gz

bioperl-1.6.1/

bioperl-1.6.1/Bio/
bioperl-1.6.1/Bio/DB/
bioperl-1.6.1/Bio/DB/Ace.pm
bioperl-1.6.1/Bio/DB/GDB.pm
bioperl-1.6.1/Bio/DB/GenBank.pm
bioperl-1.6.1/Bio/DB/GenPept.pm
bioperl-1.6.1/Bio/DB/NCBIHelper.pm
bioperl-1.6.1/Bio/DB/RandomAccessI.pm
bioperl-1.6.1/Bio/DB/SeqI.pm
bioperl-1.6.1/Bio/DB/SwissProt.pm
bioperl-1.6.1/Bio/DB/UpdateableSeqI.pm
bioperl-1.6.1/Bio/DB/WebDBSeql.pm
bioperl-1.6.1/Bio/AlignIO.pm

% perl Makefile.PL
Generated sub tests. go make show tests to see available subtests

Writing Makefile for Bio

% make

cp Bio/Tools/Genscan.pm blib/lib/Bio/Tools/Genscan.pm

cp Bio/Root/Err.pm blib/lib/Bio/Root/Err.pm

cp Bio/Annotation/Reference.pm blib/lib/Bio/Annotation/Reference.pm

cp bioback.pod blib/lib/bioback.pod

cp Bio/AlignIO/fasta.pm blib/lib/Bio/AlignIO/fasta.pm

cp Bio/Location/NarrowestCoordPolicy.pm blib/lib/Bio/Location/NarrowestCoordl
cp Bio/AlignIO/clustalw.pm blib/lib/Bio/AlignIO/clustalw.pm

cp Bio/Tools/Blast/Run/postclient.pl blib/lib/Bio/Tools/Blast/Run/postclient.
cp Bio/LiveSeq/Intron.pm blib/lib/Bio/LiveSeq/Intron.pm

Manifying blib/man3/Bio::LiveSeq: :Exon.3
Manifying blib/man3/Bio::Location::CoordinatePolicyI.3
Manifying blib/man3/Bio::SeqFeature::Similarity.3

% make test

PERL DL _NONLAZY=1 /net/bin/perl -Iblib/arch -Iblib/lib
-I/net/lib/perl5/5.6.1/i686-1inux -I/net/lib/perl5/5.6.1 -e 'use
Test::Harness gw(&runtests S$verbose); $verbose=0; runtests @ARGV;' t/*.t

t/AAChange.......... ok
t/AAReverseMutate. ..ok
t/AlignI0..cceeenenn. ok
t/Allele....ceeeeecnn ok
t/WWW. e e et eeeeecocese ok

All tests successful, 95 subtests skipped.

Files=60,

Tests=1011, 35 wallclock secs (25.47 cusr +

1.60 csys = 27.07 CPU;

% make install

Installing /net/lib/perl5/site perl/5.6.1/bioback.pod
Installing /net/lib/perl5/site perl/5.6.1/biostart.pod
Installing /net/lib/perl5/site perl/5.6.1/biodesign.pod

10/14/10 9:32 AM

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

Installing /net/lib/perl5/site perl/5.6.1/bptutorial.pl

Installing Modules Using the CPAN Shell

Perl has a CPAN module installer built into it. You run it like this:
% cpan

cpan shell -- CPAN exploration and modules installation (v1.59 54)
ReadLine support enabled

cpan>

From this shell, there are commands for searching for modules, downloading them, and installing them.

[The first time you run the CPAN shell, it will ask you a lot of configuration questions. Generally, you can just
hit return to accept the defaults. The only trick comes when it asks you to select CPAN mirrors to download

from. Choose any ones that are in your general area on the Internet and it will work fine.]
Here is an example of searching for the Text::Wrap program and installing it:

cpan> i /Wrap/

Going to read /bush _home/bushl/lstein/.cpan/sources/authors/0Olmailrc.txt.gz

CPAN: Compress::Zlib loaded ok

Going to read /bush_home/bushl/lstein/.cpan/sources/modules/02packages.detail

Database was generated on Tue, 16 Oct 2001 22:32:59 GMT
CPAN: HTTP::Date loaded ok

Going to read /bush home/bushl/lstein/.cpan/sources/modules/03modlist.data.g:

Distribution B/BI/BINKLEY/CGI-PrintWrapper-0.8.tar.gz

Distribution C/CH/CHARDIN/MailQuoteWrap0.01l.tgz

Distribution C/CJ/CIM/Text-Wrapper-1.000.tar.gz

Module Text: :NWrap (G/GA/GABOR/Text-Format0.52+NWrap0.1l.tar.gz!
Module Text::Quickwrap (Contact Author Ivan Panchenko)

Module Text::Wrap (M/MU/MUIR/modules/Text-Tabs+Wrap-2001.0929.1
Module Text::Wrap: :Hyphenate (Contact Author Mark-Jason Dominus)
Module Text::WrapProp (J/JB/JBRIGGS/Text-WrapProp-0.03.tar.gz)
Module Text: :Wrapper (C/CJ/CIM/Text-Wrapper-1.000.tar.gz)

Module XML: :XSLT: :Wrapper (M/MU/MULL/XML-XSLT-Wrapper-0.32.tar.gz)

41 items found

cpan> install Text::Wrap
Running install for module Text::Wrap

Running make for M/MU/MUIR/modules/Text-Tabs+Wrap-2001.0929.tar.gz

CPAN: LWP::UserAgent loaded ok
Fetching with LWP:

ftp://archive.progeny.com/CPAN/authors/id/M/MU/MUIR/modules/Text-Tabs+Wrap-

CPAN: MD5 loaded ok
Fetching with LWP:

ftp://archive.progeny.com/CPAN/authors/id/M/MU/MUIR/modules/CHECKSUMS
Checksum for /bush_home/bushl/lstein/.cpan/sources/authors/id/M/MU/MUIR/modul

Scanning cache /bush home/bushl/lstein/.cpan/build for sizes
Text-Tabs+Wrap-2001.0929/

Text-Tabs+Wrap-2001.0929/MANIFEST
Text-Tabs+Wrap-2001.0929/CHANGELOG
Text-Tabs+Wrap-2001.0929/Makefile.PL
Text-Tabs+Wrap-2001.0929/t/

9of 14

10/14/10 9:32 AM

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

Text-Tabs+Wrap-2001.0929/t/£fill.t
Text-Tabs+Wrap-2001.0929/t/tabs.t
Text-Tabs+Wrap-2001.0929/t/wrap.t
Text-Tabs+Wrap-2001.0929/README
Text-Tabs+Wrap-2001.0929/1ib/
Text-Tabs+Wrap-2001.0929/1ib/Text/
Text-Tabs+Wrap-2001.0929/1ib/Text/Wrap.pm
Text-Tabs+Wrap-2001.0929/1ib/Text/Tabs.pm

CPAN.pm: Going to build M/MU/MUIR/modules/Text-Tabs+Wrap-2001.0929.tar.gz

Checking if your kit is complete...
Looks good
Writing Makefile for Text
cp lib/Text/Wrap.pm blib/lib/Text/Wrap.pm
cp lib/Text/Tabs.pm blib/lib/Text/Tabs.pm
Manifying blib/man3/Text::Wrap.3
Manifying blib/man3/Text::Tabs.3
/usr/bin/make -- OK
Running make test
PERL_DL NONLAZY=1 /net/bin/perl -Iblib/arch -Iblib/lib
-I/net/lib/perl5/5.6.1/i686-1inux -I/net/lib/perl5/5.6.1 -e 'use
Test::Harness gw(&runtests S$verbose); S$verbose=0; runtests @QARGV;' t/*.t

t/fill.e.eeeeeeennnn. ok

t/tabs....ccieeeeeeen ok

L/WEAP et eeecnaonnns ok

All tests successful.

Files=3, Tests=37, 0 wallclock secs (0.20 cusr + 0.00 csys = 0.20 CPU)
/usr/bin/make test -- OK

Running make install

Installing /net/lib/perl5/5.6.1/Text/Wrap.pm

Installing /net/man/man3/Text::Wrap.3

Installing /net/man/man3/Text::Tabs.3

Writing /net/lib/perl5/5.6.1/i686-1inux/auto/Text/.packlist

Appending installation info to /net/lib/perl5/5.6.1/i686-linux/perllocal.pod
/usr/bin/make install UNINST=1 -- OK

cpan> quit
Lockfile removed.

Where are Modules Installed?

Module files end with the extension .pm. If the module name is a simple one, like Env, then Perl will look for
a file named Env.pm. If the module name is separated by :: sections, Perl will treat the :: characters like
directories. So it will look for the module File::Basename in the file File/Basename.pm

Perl searches for module files in a set of directories specified by the Perl library path. This is set when Perl
is first installed. You can find out what directories Perl will search for modules in by issuing perl -V from the
command line:

% perl -V
Summary of my perl5 (revision 5.0 version 6 subversion 1) configuration:
Platform:

osname=linux, osvers=2.4.2-2smp, archname=i686-linux

Compiled at Oct 11 2001 11:08:37

10 of 14 10/14/10 9:32 AM

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

@INC:
/usr/lib/perl5/5.6.1/1i686-1inux
/usr/lib/perl5/5.6.1
/usr/lib/perl5/site perl/5.6.1/i686-1inux
/usr/lib/perl5/site perl/5.6.1
/usr/lib/perl5/site perl

You can modify this path to search in other locations by placing the use lib command somewhere at the top
of your script:

#!/usr/bin/perl

use lib '/home/lstein/lib';
use MyModule;

This tells Perl to look in /home/lstein/lib for the module MyModule before it looks in the usual places. Now
you can install module files in this directory and Perl will find them.

Sometimes you really need to know where on your system a module is installed. Perldoc to the rescue again
-- use the -1 command-line option:

% perldoc -1 File::Basename
/System/Library/Perl/5.8.8/File/Basename.pm

The Anatomy of a Module File

Here is a very simple module file named "MySequence.pm":

package MySequence;
#file: MySequence.pm

use strict;
our S$EcoRI = 'ggatcc';

sub reverseq {
my S$sequence = shift;
$sequence = reverse $sequence;
$sequence =~ tr/gatcGATC/ctagCTAG/;
return $sequence;

}

sub seqglen {
my $sequence = shift;
$sequence =~ s/["“gatcnGATCN]//g;
return length $sequence;

}

1;

A module begins with the keyword package and ends with "1;". package gives the module a name, and the

11 of 14 10/14/10 9:32 AM

Perl 6 - Subroutines and Modules

12 of 14

http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

1; is a true value that tells Perl that the module compiled completely without crashing.

The our keyword declares a variable to be global to the module. It is similar to my, but the variable can be
shared with other programs and modules ("my" variables cannot be shared outside the current file,
subroutine or block). This will let us use the variable in other programs that depend on this module.

To install this module, just put it in the Perl module path somewhere, or in the current directory.

Using the MySequence.pm Module

Using this module is very simple:

#!/usr/bin/perl
#file: sequence.pl

use strict;
use MySequence;

my $sequence = 'gattccggatttccaaagggttcccaatttggg';
my $complement = MySequence::reversed(S$sequence);

print "original = $sequence\n";
print "complement = S$complement\n";

% sequence.pl

original = gattccggatttccaaagggttcccaatttggg

complement

cccaaattgggaaccctttggaaatccggaatce

Unless you explicitly export variables or functions, the calling function must explicitly qualify each

MySequence function by using the notation:
MySequence: : function name
For a non-exported variable, the notation looks like this:

$MySequence: :EcCoRI

Exporting Variables and Functions from Modules

To make your module export variables and/or functions like a "real" module, use the Exporter module.

package MySequence;
#file: MySequence.pm

use strict;
use base 'Exporter';

our @EXPORT
our @EXPORT_OK

gw(reverseq sedlen);
gw(SECORI);

our S$EcoRI = 'ggatcc';

sub reverseq {
my S$sequence = shift;
$sequence = reverse $sequence;

10/14/10 9:32 AM

Perl 6 - Subroutines and Modules

13 of 14

http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

$sequence =~ tr/gatcGATC/ctagCTAG/;

return $sequence;

}

sub seqlen {

my S$sequence = shift;
$sequence =~ s/["“gatcnGATCN]//g;
return length $sequence;

}

1;

The use base 'Exporter' line tells Perl that this module is a type of "Exporter" module. As we will see later,
this is a way for modules to inherit properties from other modules. The Exporter module (standard in Perl)
knows how to export variables and functions.

The our @EXPORT = qw(reverseq seqlen) line tells Perl to export the functions reverseq and seqlen
automatically. The our @EXPORT_OK = qw($EcoRl) tells Perl that it is OK for the user to import the
$EcoRl variable, but not to export it automatically.

The qw() notation is telling Perl to create a list separated by spaces. These lines are equivalent to the

slightly uglier:

our @EXPORT =

('reverseq', 'seqlen');

Using the Better MySequence.pm Module

Now the module exports its reverseq and seqlen functions automatically:

#!1/usr/bin/perl

#file: sequence2.pl

use strict;
use MySequence;

my $sequence = 'gattccggatttccaaagggttcccaatttggg';

my $complement =

print "original
print "complement

reverseq($sequence);

$sequence\n";
Scomplement\n";

The calling program can also get at the value of the $EcoRl variable, but he has to ask for it explicitly:

#!/usr/bin/perl

#file: sequence3.pl

use strict;
use MySequence;

my $sequence = 'gattccggatttccaaagggttcccaatttggg';

my Scomplement =

print "original
print "complement

reverseq($sequence) ;

$sequence\n";
Scomplement\n";

if ($complement =~ /$EcoRI/) {

10/14/10 9:32 AM

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

print "Contains an EcoRI site.\n";
} else {
print "Doesn't contain an EcoRI site.\n";

}

POD - Documenting your code

We've used the # sign to comment out lines in our programs, and they're a good form of documenting our
code. But comment are only visible when we look at the code, not when we run the program.

But there are other ways to document your code, and the one most commonly used in Perl is POD. When
you add POD to your code, then you can produce your very own man page for your program.

14 of 14 10/14/10 9:32 AM

Object Oriented Perl or ‘OOP’

Simon Prochnik
CSHL 2009

To understand object-oriented syntax in perl, we need to recap three things:
references, subroutines, packages.

These three elements of perl are recycled with slightly different uses to provide
object-oriented programming

The OOP paradigm provides i) a solid framework for sharing code -- reuse

and ii) a guarantee or contract or specification for how the code will work and
how it can be used -- an interface

and iii) hides the details of implementation so you only have to know how to use
the code, not how it works -- saves you time, quick to learn

Here we are briefly introducing you to OOP and objects so that you can quickly
add code that’s already written into your scripts, rather than spend hours re-
inventing wheels. Many more people use objects than write them.

Why objects? A programming paradigm

Objects store data and use methods to do things with that data

they keep the data separate from the rest of the program to stop
people (and/or poorly-written code) from messing with the data.
The kind of data you can store in an object is specific to a certain
class of object.

the methods (functionality) are also specific to an object and
come with it for free (i.e. someone else wrote them and you can
use them)

Objects look after namespace

e ‘use strict’ and ‘my’ avoid conflicts between two variables with the same
name

® objects avoid conflicts between two subroutines (methods) with the same
name

they are a very convenient way to share code that will actually
work in the way you expect

|: Recap references

example of syntax

$ref_to_hash = {keyl=>'valuel', key2=>'value2',...}

code example

my $microarray = {gene => ‘CDC2’, We can store any
expression => 45, pieces of data we
tissue => ‘liver’, would like to keep

together in a hash
1

Here is the data structure in memory

scalar hash — $microarray anonymous hash
reference R key value
gene CDC2
expression 45
tissue liver

ll: recap subroutines: example from yesterday

e solve a problem, write code once, and re-use the code

® reusing a single piece of code instead of copying, pasting and modifying
reduces the chance you’ll make an error and simplifies bug fixing.

#1/usr/bin/perl -w
use strict;

my $seq;
while (my $seqgline = <>) { # read sequence from standard in
my S$clean = cleanup_ sequence($seqline); # clean it up
$seq = S$Sclean; # add it to full sequence
}
sub cleanup_ sequence {
my ($sequence) = @ ; # set $sequence to first argument
$sequence = lc $sequence; # translate everything into lower case
$sequence =~ s/[\s\d]//g; # remove whitespace and numbers
$sequence =~ m/"[gatcn]+$/ or die "Sequence contains invalid
characters!";

return $sequence;

lll: now let’s recap packages

® organise code that goes together into reusable modules, packages

#1/usr/bin/perl -w

#File: read clean_sequence.pl
use strict;

use Sequence;

read_clean_sequence.pl

my S$seq;
while (my $seqgline = <>) { # read sequence from standard in

my Sclean = cleanup_sequence($seqgline); # clean it up

$seq .= $clean; # add it to full sequence
}

#file: Sequence.pm

package Sequence; Sequence¢nn
use strict;

use base Exporter;

our @EXPORT = (‘cleanup_sequence’);

sub cleanup sequence {
my ($sequence) = @ _; # set $sequence to first argument
$sequence = lc $sequence; # translate everything into lower case
$sequence =~ s/[\s\d]//g; # remove whitespace and numbers
$sequence =~ m/"[gatcn]+$/ or die "Sequence contains invalid

characters!";

return $sequence;
}
1

.
4

Let’s recap subroutines: new example with references

#!/usr/bin/perl -w
use strict;

my $microarray = { gene => ‘CDC2,
expression => 45,
tissue => ‘liver’,

}s

my $gene_name = gene($microarray);

sub gene {
my ($ref) = @_;
return $ref->{gene};
ks
sub tissue {

my ($ref) = @_;
return $ref->{tissue};

recap packages

main script
file
perl module file
Microaray.pm
. script.ol #File: Microarray.pm
#!(usr'/bln(per‘l -W S package Microarray;
#File: §cr1pt.p1 use strict;
use strict; use base ‘Exporter’;

use Microarray;

our @EXPORT = (‘gene’, ‘tissue’);
my $microarray = {gene => ‘CDC2’,

expr"ession => 45, sub gene {
tissue => ‘liver’, my ($ref) = @_;
} return $ref->{gene};
my $gene_name = gene($microarray); 1
print “Gene for this microarray is sub tissue {
$gene\n”; my ($ref) = @_;

return $ref ->{tissue};
}
1

)

Three Little Rules

e Rule |:To create a class, build a package
® Rule 2:To create a method, write a subroutine

e Rule 3:To create an object, bless a reference

Bug.pm
package Bug; Rule 1:
use strict;
To create a class,
¢ ?ub new build a package.
my ($class) = @_;
Rule 2 my $objref = {};
To create a method, :
write a subroutine. bless sobjref, selass;

}
A sup printk

{
my ($self) = @_; \ Rule 3:

) To create an object,
) bless a referent.

Rule |:To create a class, build a package

® all the code that goes with an object (methods, special
vaiables) goes inside a special package

e perl packages are just files whose names end with ‘pm’ e.g.
Microarray.pm

® package filenames should start with a capital letter

e the name of the perl package tells us the class of the object.This is
really the type or kind of object we are dealing with.

® Micorarray.pm is a package, so it will be easy to
convert into object-oriented code

Rule 2:To create a method, write a subroutine

e we already have gene() in Microarray.pm
® this can be turned into a method
® we need one extra subroutine to create new objects

e the creator method is called new() and has one piece of magic...

Rule 3:To create an object, bless a reference

¢ The new() subroutine uses the bless function to create an object

o full details coming up... but here’s the skeleton of a new() method

create a reference, a
ashref {} is the most
sub new { common seen in perl

my S$self = {};
bless $self, $class; «—
bless a reference

} into a class

recap packages

#!/usr/bin/perl -w
#File: script.pl
use strict;
use Microarray;
#File: Microarray.pm

my $microarray = { gene => ‘CDC2’, package Microarray;
expression => 45, use strict;
tissue => ‘liver’, use base Exporter;
s
my $gene_name = gene($microarray); our @EXPORT = (‘gene’, ‘tissue’);

print “Gene for this microarray is $gene\n”;

sub gene {
my $ref = shift;
return $ref->{gene};

}

sub tissue {
my $ref = shift;
return $ref ->{tissue};

[

transforming a package into an object-oriented module or class

procedural perl package ...transforming the package into a class...
(what you saw yesterday)

#File: Microarray.pm #File: Microarray.pm
package Microarray; package Microarray;
use strict; use strict;

use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene { » sub gene {
my ($ref) = @_; my $self = shift; # same as my ($self) = @_;
return $ref->{gene}; return $self->{gene};
1 }
sub tissue { sub tissue {
my ($ref) = @_; my $self = shift;
return $ref ->{tissue}; return $self ->{tissue};
} }
1; 1;

the new() method

the first argument is always the
class of the object you are
making. perl gives you this as

sub new { the first argument
my Sclass = shift; automatically
my %$args = @ ;
my $self = {L < ® a hash reference is the data
foreach my S$key (keys %args) { structure you build an object from
$self -> {$key} = in perl
Ssargs{skey};
} here we initialise variables in the
the quasi-religious magic object (in case there are any)

happens here

bless $self, S$Sclass;
return S$self;
} bless makes the object $self (which is

a hash reference) become a member
of the class $class

bless associates an object with its class

Make an anonymous hash in the debugger

$a = {};
p ref $a;
HASH

Make a MySequence object in the debugger

Sself = {};
$class = ‘MySequence’;
bless S$self , Sclass;

x $self

0 MySequence=HASH(0x18bd7cc)
empty hash

p ref Sa

MySequence

final step

#File: Microarray.pm
package Microarray;
use strict;

object-oriented module or class

sub new {
my $class = shift;
my %args = @_;
my S$self = {};
foreach my S$key (keys %args) {
$self -> {$key} = $args{Skey};
}
the magic happens here
bless $self, $class;
return S$self;

}

sub gene {
my $self = shift;
return $self->{gene};
}
sub tissue {
my $self = shift;
return S$self ->{tissue};

}
1;

#File: script.pl

OORP script

procedural version

my $microarray = (gene => ‘CDC2’,

my $gene_name =

expression => 45,
tissue => ‘liver’,

gene($microarray);

print “Gene for this microarray is $gene\n”;

)) OO version
#File: 00_script.pl

my $microarray = Microarray->new(gene => ‘CDC2’,
expression => 45,
tissue => ‘liver’,
D5

my $gene_name = $microarray->gene();

print “Gene for this microarray is $gene_name\n”;

my $tissue = $microarray->tissue();

print “The tissue is $tissue\n”;

Did | mention “code lazy™?

® This lecture has introduced you to object-oriented
programming

® We are biologists, not computer scientists.

you only really need to understand how to use objects

use other people’s packages (classes) to do exciting things so you
don’t have to write them yourself see bioperl with > 1,000 modules

this saves a lot of time

® create your own modules and objects if you have to

e check CPAN to see if see if someone has already done it for you

Problems

I) Add a method to Microarray.pm called expression() which returns the
expression value

2) Curently calling $a = $m->gene() gets the value of gene in the object $m.
Modify the gene() method so that it can also set the value of gene if you call gene

() with an argument, e.g.
$m->gene(‘FOXPI’); # this should set the gene name to ‘FOXPI’

print $m->gene(); # this should print the value ‘FOXPI’

Further reading

. An object is nothing but a way of tucking away complex behaviours into a neat little
easy-to-use bundle. (This is what professors call abstraction.) Smart people who have
nothing to do but sit around for weeks on end figuring out really hard problems make
these nifty objects that even regular people can use. (This is what professors call
software reuse.) Users (well, programmers) can play with this little bundle all they
want, but they aren't to open it up and mess with the insides. Just like an expensive
piece of hardware, the contract says that you void the warranty if you muck with the
cover. So don't do that.

. Just what is an object really; that is, what's its fundamental type? The answer to the
first question is easy. An object is different from any other data type in Perl in one and
only one way: you may dereference it using not merely string or numeric subscripts as

with simple arrays and hashes, but with named subroutine calls. In a word, with
methods.

. The answer to the second question is that it's a reference, and not just any reference,
mind you, but one whose referent has been bless()ed into a particular class (read:

package). What kind of reference? Well, the answer to that one is a bit less concrete.

That's because in Perl the designer of the class can employ any sort of reference they'd

like as the underlying intrinsic data type. It could be a scalar, an array, or a hash

reference. It could even be a code reference. But because of its inherent flexibility, an
object is usually a hash reference.

ken from http: rl. .com

Bioperl |

Sofia Robb
University of Utah

What is Bioperl?
Collection of tools to help you get your work done
Open source, contributed by users
Used by GMOD, wormbase, flybase, me, you

http://www.bioperl.org

Why use BioPerl?

Code is already written.

Manipulate sequences.

Run programs (e.g., blast, clustalw and phylip).

Parsing program output (e.g., blast and alignments).

And much, much more. (ttp://www.bioperl.org/wiki/Bptutorial.pl)

Learning about bioperl:
Navigating bioperl website
Deobfuscator
Bioperl docs
Manipulation of sequences from a file
Query a local fasta file
Query a remote database
Creating a sequence record

File format conversions

Retrieving annotations

Learning about Bioperl:

Navigating Bioperl website
Deobfuscator
Bioperl docs

www.bioperl.org Main Page

S
BioPerl

main links

= Main Page

= Getting Started
= Downloads

= |nstallation

= Recent changes
= Handom page

documentation

= Quick Start

= FAQ

= HOWTOs

= AP| Docs

= Scrapbook

= BioPerl Tutorial
= Tutorials

= Deobfuscator

= Hrowse Modules

page discussion

Main Page

view source

history

Welcome to BioPerl, a community effort to produce Perl code which is useful in biology.

For more background on the BioPerl project please see the History of BioPeri

BioFerl is distributed under the Perl Artistic License. For more information, see licensing BioPerl.

Installation

Linux
Windows

Mac OSX
Ubuntu Server

Developers

= Using Subversion
= Advanced BioPerl
= The SeqlO

Documentation

= APl Docs and BioPerl

docs &
« HOWTO
» Scrapbook

« The (in)famous
Deobfuscator

How Do I...7

« ...learn Perl?
= ...find a nice, readable
BioPerl overview?

Support

« FAQ

BioPerl mailing list &
#bioperl &

BioPerl Media
options

BioPerl-related
Distributions
=« Core

= BioSQL adaptors
(BioPerl-db)

OIBIF Ne

Helease 1
network

BioPerl 1.
BioPerl 1.
BioPerl br
BioPerl 1.
Bioperl 1.
new Biopt
Bioperl 1.
Bioperl 1.
PopGen |

See also our

m Main Page

» (Getting Started
= Downloads

= [nstallation

m HRecent changes
® HRandom page

documentation
m Cluick Start

BioPerl

main links

HOWTO= h

Scrapbook
BioPer Tutonal

5, LYY T LIDaLs alasliun

page discussion view source history

HOWTOs

HOWTOs are narrative-based descriptions of BioPerl modules focusing more on a concept or a task than one
specific module.

BioPerl HOWTOs
Beginners HOWTO <«E—

An introduction to BioPerl, including reading and writing sequence files, running and parsing BLAST, retrieving
from databases, and more.

SeqlO HOWTO
Seguence file /0, with many script examples.

SearchlO HOWTO

Parsing reports from sequence comparison programs like BLAST and writing custom reports.
Tiling HOWTO

Using search reports parsed by SearchlO to obtain robust overall alignment statistics

Feature-Annotation HOWTO
Heading and writing detailed data associated with seqguences.

SimpleWebAnalysis HOWTO

Submitting sequence data to Web forms and retrieving results.

Flat Databases HOWTO
Indexing local sequence files for fast retrieval.

PAML HOWTO
Using the PAML package using BioFerl.

OBDA Access HOWTO

BioPerl

main links

Main Page
Getting Started
Downloads
Installation
Hecent changes
Handom page

documentation

Cluick Start
FAQ
HOWTOs
AP| Docs

Scrapbook
BioParl Tutorial

Tutornals
Deobfuscator
Browse Modules

community

Mews
Mailing lists
Supporting BioPerl

howto discussion VIEW S0Urce history

HOWTO:Beginners

Contents [hide]

1 Authors

2 Copyright

3 Abstract

4 Introduction

5 Installing Bioperl

6 Getting Assistance

7 Perl Itself

8 Writing a script in Unix

9 Creating a sequence, and an Object
10 Writing a sequence 1o a file

11 Retrieving a sequence from a file
12 Retrieving a sequence from a database
13 Retrieving multiple sequences from a database
14 The Sequence Object

15 Example Sequence Objects

16 BLAST

17 Indexing for Fast Retrieval

18 More on Bioperl

18 Perl's Documentation System

20 The Basics of Perl Objects

21 A Simple Procedural Example

22 A Simple Object-Oriented Example

BioPerl

main links

Main Page
Getting Started
Downloads
Installation
Hecent changes
Handom page

documentation

Cluick Start
FACH

HOWTOs

APl Docs
Scrapbook
BioPerl Tutonal

Tutorials

Deobfuscator

Browse Modules

community

Mews
Mailing lists
Supporting BioPerl

BEiaParl Macdi =

Deobfuscator

Contents [hide]

1 What is the Deobfuscator?

2 Where can | find the Deobfuscator?
3 Have a suggestion?

4 Feature requests

5 Bugs

What is the Deobfuscator?

The Deobfuscator was written to make it easier to determine the methods that are available from a given BioPerl
module (a common BioPerl FAQ).

BioPerl is a highly object-oriented g software package, with often multiple levels of inheritance. Although each
individual module is usually well-documented for the methods specific to it, identifying the inherited methods is less
straightforward.

The Deobfuscator indexes all of the BioPerl POD documentation, taking account of the inheritance tree (thanks to
Class::Inspector &), and then presents all of the methods available to each module through a searchable web
interface.

Where can | find the Deokb ator?

The Deobfuscator is currently availgble here &, indgxing bioper/-five.

Welcome to the BioPerl Deobfuscator [bioperl-live] what is it?

Search class names by string or Perl regex (examples: Bio::SeqlO, seq, fasta$)

blast

fr.5u bmit Quew?‘

OR select a class from the list:

=

Bic::SearchID::blast

Event generator for event based parsing of blast reports

Bio::SearchlQ::blast pull

& parser for BLAST output

Bic::SearchlQ::blasttable

Driver module for SearchIO for parsing NCBI -m 8/9 format

Bio::SearchlD::blastxml

& SearchIO implementation of NCBI Blast XML parsing.

Bio::SearchlD::megablast

a driver module for Bio::SearchIO to parse megablast reports (format 0)

q

Bio::Tools::Run::RemoteBlast Object for remote execution of the NCBI Blast via HTTP
— y Object for the local execution of the NCBI BLAST program suite (blastall, blastpgp, bl2seq).
Si0: ;Tools::Run: : StandMloneBlast There is experimental support for WU-Blast and NCBI rpsblast.

Bio::Tools::Run::StandAloneMCBIBlast

Object for the local execution of the NCBI BLAST program suite {blastall, blastpgp, bl2seq).
With experimental support for NCBI rpsblast.

Bio::SearchID:: XML: :BlastHandler

Deobfuscator

XML Handler for NCBI Blast XML parsing.

Bio::SearchIO:: XML: :PsiBlastHandler

XML Handler for NCBI Blast PSIBLAST XML parsing.

~ sort by method '+ |

methods for Bio::Tools::Run::StandAloneBlast

o . . string representing the full path to the | my $exe =
executable Bio::Tools::Run: . :S5tandAloneBlast exe tblastfactory->executable('blastz
finally Bio::Root::Root not documented not documented
io Bio::Tools::Run: :WrapperBase Bio::Root:: 10 object Sobj-=io($newval)

new Bio::Tools:

‘RBun::StandAloneBlast

Bio::Tools: :Run: :StandAloneMCBIBlast
or StandaloneWUBlast

my $obj =
Bio::Tools::Run::StandAloneBlasi

[

no param_checks Bio::Tools: :Run::WrapperBase value of no_param_checks Sobj-=no_param_checks{$newwva
otherwise Bio::Root::Root not documented not documented
putfile _name Bio::Tools::Run::WrapperBase string my $outfile = swrapper->outfile_ '

Drogram Bio::Tools:

(Run::StandAloneBlast | not documented

not documented

€

A EIR

BioPerl

main links

Main Page
Getling Started
Downloads
Installation
Recent changes
Random page

documentation

Quuick Start

FAD

HOWTOs

AP DOCS e
Scrapbook

BioPerl Tutoral

Tutorials

Deobfuscator

doc.bioperl.org

2 Log in / credte account

page discussion View source history

API Docs

Contents [hide]
1 Online POD Documentation
2 Documentation from the Deobfuscator
3 Documentation from the CPAN
4 Browsing Subversion repositories

Online POD Documentation

POD Documentation is available for bioperl-live and past releases fit doc.bioperl.org .

Alternatively you can enter the module name in the search box and sehess e Wiki documentation for the

module.

Documentation from the Deobfuscator

The Deobfuscator indexes all of the BioPerl POD documentation, taking account of the inheritance tree, and then
presents all of the methods available to each module through a searchable web interface g

Documentation from the CPAN

Perldoc (Pdoc rendered) documentation for BioPerl Modules

=

BioPerl

Released Code

Otticial documentation for released code 1S avallable hora:

BloFean 1.6.0, download the enting doc Sat hare.
BloFer 1.5.2, download the enlire doc set here.
BioFerl 1.5.1, download the entire Goc Sat hera.
BioFerl 1.4, download the entirg doc Set heng.

BioFer 1.2.3, download the entire Soc sat hera.
BioPer 1.2.2, download the entire Soc sat hera.
BioPar 1.2, download the antire doc Set hers.

BioPar 1.0.2, download the antire doc 5at hera.
BloFer 1.0.1, download the entire doc et here.
BioFearl 1.0, download the entire doc Set hera.

Active Code

This documentation represents the active development code and s autogenerated dally from the SVN repository:

® bioperi-live

Module Description
BiaPorl Core Code

-corba-server BloPerl BioCORBA Server Toolkit (wraps bloper! objects as BioCORBA objects and runs them in an ORBit DREB)

® bloper-corba-client Biopaerl BioGORBA Client Toolkit (wraps BioCGORBA objects as bloperl objects)

All Modules TOC All ()| Bio SeqlO

bioperl-live Included || Package : . General
bioperl-live::Bio Summary libraries || variables Synopsis| Description documentation Methods

bioperl-live::Bio:: Align

bioperl-live::Bio:: AlignIO . Toolbar

gl— | |r WebCvs

I

“PhyloNeiwork ~ | |Summary

PrimarySeq Bio::SeqlIO - Handler for SeqIO Formats

PrimarySeql

PullParserl Package variables

Range Privates (from "my" definitions)

Rangel %valid_alphabet_cache;

SearchDist Sentry =0

SearchlIO

Seq Included modules

SegAnalysisParserl Hin::Factnr}'::FI:LucatiunFactur}'

SeqFeaturel H!n::Seq::Squmlder

Seql Bio::Tools::GuessSeqFormat

...................... Symbol

Seqlo !

SeqUtils Inherit

SimpleAlign Bio::Factory::SequenceStreamI Bio::Root::I0 Bio::Root::Root
Simple Analysisl »

Iﬂwnnnniu:

Bio::SeqlO module synopsis
doc.bioperl.org

Synopsis

use Bio::SeqlO;

Sin = Bio::Seql0->new(-file => "inputfilename" ,
-format => 'Fasta');

Bio::Seql0->new(-file => ">outputfilename" ,
-format => 'EMBL');

Sout

while (my Sseq = $in->next seq()) {
sout->write_seq($seq);
}

Now, to actually get at the sequence cbject, use the standard Bio::S5eq
methods (look at Bio::S5eq if you don't know what they are)

use Bio::SeqlO;

$in = Bio::SeqlO->new(-file => "inputfilename" ,
-format => 'genbank');

while (my $seq = $in->next seq()) {
print "Sequence ",Sseg->id, " first 10 bases ",
Sseg->subseq(1,10), "\n";
}

The SeqI0 system does have a filehandle binding. Most people find this

Bio::SeqlO module description
doc.bioperl.org

Description

Bio::SeqlO is a handler module for the formats in the SeqlO set (eg,
Bio::SeqlO::fasta). It is the officially sanctioned way of getting at
the format objects, which most people should use.

The Bio::SeqlO system can be thought of like biological file handles.
They are attached to filechandles with smart formatting rules (eg,
genbank format, or EMBL format, or binary trace file format) and
can either read or write sequence objects (Bio::Seq objects, or

more correctly, Bio::Segl implementing objects, of which Bio::Seq is
one such object). If you want to know what to do with a Bio::Seq
object, read Bio::Seq.

The idea is that you request a stream object for a particular format.
All the stream objects have a notion of an internal file that is read
from or written to. A particular SeqlQO object instance is configured
for either input or output. A specific example of a stream object is
the Bio::SeqlO::fasta object.

Each stream object has functions

Sstream->next seq();

and

Sstream->write seq($seq);

Bio::SeqlO method list
doc.bioperl.org

Methods

new Description Code
newFh Description Code
th Description Code
_initialize No description Code
next_seq Description Code
write_seq Description Code
alphabet Description Code
_load_format_ module Description Code
_concatenate_lines Description Code
_filehandle Description Code
_guess_format Description Code
DESTROY No description Code
TIEHANDLE Description Code
READLINE No description Code

Bio::SeqlO new method description
doc.bioperl.org

Methods descriptinn

. Usage : Sstream = Bio::SeqlIO0->new(-file => Sfilename,
| -format => 'Format’)
. Function: Returns a new seguence stream
. Returns : A Bio::SeqI0 stream initialised with the appropriate format
. Args : Named parameters:
5 -file => §filename
-fh => filehandle to attach to
-format => format

Additional arguments may be used to set factories and
builders invelved in the sequence object creaticn. None of
these must be provided, they all have reascnable defaults.
-seqgfactory the Bio::Factory::SequenceFactoryl object
-locfactory the Bio::Factory::LocationFactoryIl object
-objbuilder the Bio::Factory::0bjectBuilderI object

See Bio::SeqlO::Handler

Manipulation of sequences from a file

Problem:

You have a sequence file and you want to do
something to each sequence.

What do you do first?
HowTo:
http://www.bioperl.org/wiki’HOWTOs

N

BioPerl

main links

m Main Page

» (Getting Started
= Downloads

= [nstallation

m Hecent changes
® Handom page

documentation

m Quick Start

= FAQ

 HOWTOs h
m ARl Docs

» Scrapbook
m BioPer Tutornal

L, LYY T LIDaLs gl

page discussion VIEW SOUrce history

HOWTOs

HOWTOs are narrative-based descriptions of BioPerl modules focusing more on a concept or a task than one
specific module.

BioPerl HOWTOs
Beginners HOWTO <«E—

An introduction to BioPerl, including reading and writing sequence files, running and parsing ELAST, retrieving
from databases, and more.

SeqlO HOWTO
Seguence file /0, with many script examples.

SearchlO HOWTO

Parsing reports from sequence comparison programs like BLAST and writing custom reports.
Tiling HOWTO

Using search reports parsed by SearchlO to obtain robust overall alignment statistics

Feature-Annotation HOWTO
Heading and writing detailed data associated with seqguences.

SimpleWebAnalysis HOWTO
Submitting sequence data to Web forms and retrieving results.

Flat Databases HOWTO

Indexing local sequence files for fast retrieval.

PAML HOWTO
Using the PAML package using BioFerl.

OBDA Access HOWTO

BioPerl

main links

Main Page
Getting Started
Downloads
Installation
Hecent changes
Handom page

documentation

Cluick Start
FAQ
HOWTOs
AP| Docs

Scrapbook
BioParl Tutorial

Tutornals
Deobfuscator
Browse Modules

community

Mews
Mailing lists
Supporting BioPerl

howto discussion VIEW S0Urce history

HOWTO:Beginners

Contents [hide]

1 Authors

2 Copyright

3 Abstract

4 Introduction

5 Installing Bioperl

6 Getting Assistance

7 Perl Itself

8 Writing a script in Unix

9 Creating a sequence, and an Object

10 Writing a sequence 1o a file

11 Retrieving a sequence from a file h
12 Retrieving a sequence from a database
13 Retrieving multiple sequences from a database
14 The Sequence Object

15 Example Sequence Objects

16 BLAST

17 Indexing for Fast Retrieval

18 More on Bioperl

18 Perl's Documentation System

20 The Basics of Perl Objects

21 A Simple Procedural Example

22 A Simple Object-Oriented Example

One beginner's mistake is to not fise Bio::SeglO whep working with sequence files. This is understandable
fpen function, and Bioperl's way of retrieving

sequences may look odd and overly compliCated, at first. But don't use open! Using open immediately

forces you to do the parsing of the sequence file and this can get complicated very quickly. Trust the
SeqlO object, it's built to open and parse all the common sequence formats, it can read and write to files,
and it's built to operate with all the other Bioperl modules that you will want to use.

Let's read the file we created previously, "sequence.fasta”, using SeqglO. The syntax will look familiar:

#! /bin/perl -w

E use Bio::SegIlO;
E Ssegio obj = Bio::S5egl0O-rnew(-file => "seguence.fasta", -format => "fasta")

One difference is immediately apparent: there is no > character. Just as with with the open () function this
means we'll be reading from the "seqguence.fasta” file. Let's add the key line, where we actually retrieve
the Sequence object from the file using the next seg method:

#! /bin/perl -w
use Bio::SegIlO;
$segio obj = Bio::Segl0O->new(-file => "seguence.fasta", -format => "fasta")

sseq_obj = $segio_obj->next segq;

b]

35, LW NN LI DAL alasiun

page dizcussion View source history

HOWTOs

HOWTOs are narrative-based descriptions of BioPerl modules focusing more on a concept or a task than one
specific module.

| >\ BioPerl HOWTOs
BiOPEI-]. Beginners HOWTO

An introduction to BioPerl, including reading and writing sequence files, running and parsing BLAST, retrieving
from databases, and more.

main links
m Main Fage

= Getting Started Seqi0 HOWTO < G——

s Downloads Sequence file 110, with many script examples.

m Installation SearchlO HOWTO

= Aecent changes Parsing reports from sequence comparison programs like BLAST and writing custom reports.

» Random page Tiling HOWTO

. Using search reports parsed by SearchlO to obtain robust overall alignment statistics
documentation

Feature-Annotation HOWTO

= Quick Start

FAC) Heading and writing detailed data associated with seqguences.
u
n HOWTOS < SIMPleWebAnalysis HOWTO B
= AP Docs Submitting sequence data to Web forms and retrieving results.
» Scrapbook Flat Databases HOWTO
]

BioPerl Tutorial Indexing local sequence files for fast retrieval.

- ' PAML HOWTO
Using the PAML package using BioPerl.

OBDA Access HOWTO

howto discussion VIEW SO0Urce history

HOWTO:SeqlO

>\ This HOWTO will teach you about the Bio::SeqglO system for reading and writing sequences of various formats

B 1 (:)Perl Contents [hide]

mair links 1 The basics
2 10 second overview

3 Background Information
4 Formals

5 Working Examples

= Recent changes 6 To and From a String

= Random page 7 And more examples...
8 Caveals

9 Error Handling

m Main Fage
m Getting Started
® Downloads
= [nstallation

documentation

Quick Start
= Lduick Star 10 Speed, Bio::Seq::SeqBuilder
= FAQ
B HOWTOs i
o Do The basics
m SFFEF'WU'“ _ This section assumes you've never seen EioPerl before, perhaps you're a biologist trying to get some informatio
= BioPerl Tutorial something about this hot topic, "bicinformatics”. Your first script may want to get some information from a file cor
m Tutorials

= Deobfuscator A piece of advice: always use the module Bio::SeqlO! Here's what the first lines of your script might look like:

B Browse Modules | | s--mommmmmmmmoomim oo oo
#!/bin/perl

community
= MNews use strict;

= Supporting BioPerl my 5file = shift; # get the file name, somehow

my $segic object = Bio::SeglO0->new(-file => §$file);
my $seg object = $segio cbject->next seq;

m BioPer Media

m Hot Topics
m AR FRie efa L . __ __

= Mailing lists use Bio::S8eqlO;

#!'/usr/bin/perl -w
#file: inFasta loop.pl
use strict;

use Bio: :SeqIO;

my S$file = shift;

Bio: :SeqIO->new (
-file => $file,
-format => ‘fasta’,

my $seqlO object

) ;

while (my $seq object = $seqlO object->next seq) {
#do stuff to each sequence in the fasta

}

What is a SeqlO object?
What is a Seq object?

Objects

Objects are like boxes that hold
your data and
tools (methods) for your data

data:

[SV31.000265(43441 . . 442127
[TCCACCAGAAACCGGAATATCGGCACCAGTAATGTACTTTGCCATGTCTGACGCCAAAAACAAGCAAACCCGA
[AGAGCTCCCAATGGAATTAGTGTTTTCATTTTATCAATTTCATTTTCGTAGAAAGTGTTTCCTTTAATTCTCA
(CTAGCAGAGGCGTATAAATGATTCCTGGAGAAACAGAGTTTACTCGAACTCCATTTTCTGCTTCATCGAGAG!
[TACTGCACCTTTTGTGATGGCATAAGTAACCGCGTTGCGTTGACCAATAGAACCGACTTGACTGCTCATGTTT]
(CGAAGCAGTGGCATTGAATATTTCGAAAACAAAAAATGGCTTTTAACATTAACATTAAATATGAAATCCAAAT|
[TTTTTCTGTCTTCCGGATGAGTTCCGACATTGTTTATTATACAGTCTAATTTTTCACCGTGCGTTTTATTGAT]
GTTTTCTTCTATAATAACGTCACAGAATAAAAAGGTGACATTCCTACCCTCTAATTCTTGAACGAGTTTATGA
(CAGAAGATGACTGTACCTTTTGCGGCTGAAAAATGTCTAACACATGCAGCACCTATTCCAGACGAACCTCCAN
CAAMATTCATATGGGAAAATAA

[>v31.000314(123941. .124255)
ATGATTAATAATAGTCCTATAAATCAGATAAAATATGATGACATGATTGTCGACAATTGTTCAATGCAAATG!
[ACGTAATGGTCATGCCAAATTTATATGGTAATGTTATTGGGAATATCGGAGCTGGTATAGT TGGTGGTGCTGY
[TGGTACGTCTTGTGCGGTGTTTGAATCTGGCACTCGAAATTCTGGTAGGAATCTCGTTGGGAAAAACATAGC
[ACGTCCTGTGACATGTTAGACTATTTAGGTGAT

[>v31.0003493(76077 . .76235,76277..76441,78806. .78931,78963. .79247)
(GAAATTAAAGCTTCTTTAGAAAGTGCTCTTAATTTAGGTTACAATCACATTGATTGCGCATGGGTGTATTGCA
[TTTTAGAAGACTATATTTCAAATGGTAAAATTAAACGAGAAGAATTATTCGTAACTAGCAAGGTTNNNCTATH
[ACTAGTGAAAGTCGGATTTGAAGAAACACTTAGTAATCTCCGATTAGATTATTTAGATTTATATCTGATTCAT]
[TTTTAATATTATATCTCATTTTCATTTATTTTCATTTTAGCCTGGNNNGAAATGGAAAAACTCGTTGATTCAL
[TGTCTAATTTCAATATTAGACAAATTCAAAATATTCTTGATCATTGCAAAATTAAACCAGCAATGCTTCAAGT)
GGTCAATATTTATTTTCCGAATAAAAAACTAGTGGAATTTTGCCTGAAAAATGATATTCAAGTCACTGCATAT|
GATCGACCTGGAGCGACAGAGGGAGAAAAACGTCCTCTTAGTGATCCAACAGTTTTAGAGTTAGCTAAAAAAT)
[TATTGATAAGCTATATTATTCATCGGGGTTTGATCTGCATTCCTAAGAGTGTATCCTCAGCCAGATTGGAGGA
>v31.000482(133155..133514,136192. . 136467)
[ATGACGTTAAATTACAATTTTTCTGGAAAAACAGT TTTAGTAACAGGCGGTTCGAAAGGAATAGGAAAACAGT]
(CTGGAGCTAGTGTTATTTCATTAAGCAGATCTACTGGTGTATTTCAAAATTTTAGTTCAAACGGAAATAATTT|
[TGATATTAGTAATTGGGATGAATT TAATTCCATAATAAATTCTTTGTTGCCTGTGGATTATCTTGTTAATAAT)
[AMATTTGGTGACATCAATGAAAAAGAAATTGACGAAATGATCAATACAAATGTCAAATCAGTTATCAACATTT]
[AGGCGGCACTGGATGCTATTACACGAAATATGGCTCTTGAGCTTGGCCCGCATAACATACGGGTGAATTCTGT]
[AGATATGGGTCGTCTTTATTGGAATGACGAGTCTAAGAGGGATAAGTTGATTTCGAGAATTCCTTTGGCGAGA
GTCGATGTTATTATGTATTTGTTGACAGATCATTGCACGCTTGTGACGGGGGCGGCAATTCCCATTGATGGT!

new ()

methods:

new ()
next seq()

I

o Object

B.‘O. SeQ\

seq:

V3L,

[TCCACCAGAAACCGGAATATCGGCACCAGTAA

[AGAGCTCCCAATGGAATTAGTGTTTTCATTT

| CTAGCAGAGGCGTATAAATGATTCCTGGAGAA

[TACTGCACCTTTTGTGATGGCATAAGTAACCH

[CGAAGCAGTGGCATTGAATATTTCGAAAAK
CTGTCTTCCGGAT

data:

[>V31.000265(43441 . . 24213

TCCACCAGAAACCGGAATATCGGCACCAGTAATGTACTTTGCCATGTCTGACGCCAAAAACAAGCAAACCCGA
AGAGCTCCCAATGGAATTAGTGTTTTCATTTTATCAATTTCATTTTCGTAGAAAGTGTTTCCTTTAATTCTCA
CTAGCAGAGGCGTATAAATGATTCCTGGAGAAACAGAGTTTACTCGAACTCCATTTTCTGCTTCATCGAGAG
TACTGCACCTTTTGTGATGGCATAAGTAACCGCGTTGCGTTGACCAATAGAACCGACTTGACTGCTCATGTT]
CGAAGCAGTGGCATTGAATATTTCGAAAACAARAAATGGCTTTTAACATTAACATTAAATATGAAATCCAAAT]

CTGTCTTCCGGATGAGTTCCGACATTGTTTATTATACAGTCTAA ‘CACCGTGCGTTTTATTGAT]
GTTTTCTTCTATAATAACGTCACAGAATAAAAAGGTGACATTCCTACCCTCTAATTCTTGAACGAL
CAGAAGATGACTGTACCTTTTGCGGCTGAAAAATGTCTAACACATGCAGCACCTATTCCAGACG
(CAAAATTCATATGGGAAAATAA
>v31.000314(123941..124255)
ATGATTAATAATAGTCCTATAAATCAGATAAAATATGATGACATGATTGTCGACAATTGTTCAAT!
ACGTAATGGTCATGCCAAATTTATATGGTAATGTTATTGGGAATATCGGAGCTGGTATAGTTGGT
TGGTACGTCTTGTGCGGTGTTTGAATCTGGCACTCGAAATTCTGGTAGGAATCTCGTTGGG:

1,78806. . 78931,78963. . 79247)
GGTTACAATCACATTGATTGCGCATGGGTGTATTGCA
GAGAAGAATTATTCGTAACTAGCAAGGTTNNNCTATG
TCTCCGATTAGATTATTTAGATTTATATCTGATTCAT]

AGCCTGGNNNGAAATGGAAAAACTCGTTGATTCA(
TTGATCATTGCAAAATTAAACCAGCAATGCTTCAAGT]

TTTTGCCTGAAAAATGATATTCAAGTCACTGCATAT]
CTTAGTGATCCAACAGTTTTAGAGTTAGCTAAAAAAT]
GCATTCCTAAGAGTGTATCCTCAGCCAGATTGGAGGA

36467)
AGTAACAGGCGGTTCGAAAGGAATA

#'!'/usr/bin/perl -w
#file: inFasta loop.pl
use strict;

use Bio: :SeqlO;

get fasta filename from user input
my Sfile = shift;

create a SeqIO obj with $file as filename
$SeqIO object contains all the individual sequence
that are in file named S$file
my $seqlO object = Bio::SeqIO->new (
-file => Sfile,
-format => ‘fasta’,

) ;

using while loop and next seq method to “get to”

and create a Seq obj for each individual sequence

in the SeqIO obj of many sequences

while (my $seq object = $seqlO object->next seq) {
#do stuff to each sequence in the fasta

}

#file: inFasta_doStuff outFasta.pl

1. Get a file name from user #!/usr/bin/perl -w

input (@ARGV) and stores in use strict;

$file use Bio::SeqlO;
my $file = shift;

2. Create a new seqlO object 366410, objoct = Bio::SeqI0->new(
in $seqlO_object, using / my $seqlO_object = Bio::5eqlO->new
ns -file => $file,

filename $file and format ‘ ,

‘ ; -format => ‘fasta’,

fasta)

my Sout = Bio::SeqlO->new(-format => ‘fasta’);
3. Create a second seqlO y$: ()

object in $out using format while (my $seq_object = $seqlO_object->next_seq){

fasta’ my $id = $seq_object->id;
/ my $desc = $seq_object->desc;

4. Loop thru each seq object my $seqString = $seq_object->seq;
in $seqlO_object storing my $revComp = $seq_object->revcom;
information from the object in my $alphabet = $seq object-> alphabet;
variables. my $translation _seq obj = $seq object-> translate;

my $translation = $translation_seq_obj -> seq;
5. Print out the stored my $seqlen = $seq_object->length;
information \

print “translation: $translation\n”;
6. Print out $seq_object using print “alphapet: $alphabet\n”;

the method or tool ‘write print “seqLen: $seqLen\n”;

gcej? and the seql® ObJeCt\ #prints to STDOUT

$out->write_seq($seq_object);
}

fasta input:

>segName seq description is blah blah blah
AGGCTCAATTTAGTTTTCCTTGTCCTTATTTTAAAAGGTGTCCAGTG
TGATGTGCAGCTGGTGGAGTCTGGGGGAGGCTTAGTGCAGCCTGGAG
GGTCCCGGAAACTCTCCTGTGCAGCCTCTGGATTCACTTTCAGTAGC
TTTGGAATGCACTGGGTTCGTCAGGCTCCAGAGAAGGGGCTGGAGTG
GGTCGCATACATTAGTAGTGGCAGTAGTACCCTCCACTATGCAGACA
CAGTGAAGGGCCGATTCACCATCTCAAGAGACAATCCCAAGAACACC

CTGTTCCTGCAAATGACCAGTCTAAGGTCTGAGGACACGGCCATGTA
TTACTGTGLAACATCCCCTAACTACCCTTACTATCOTATOGACTACT

ceeeTeaaltranslation: RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFTFSSF
GMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSLRSEDTAM
YYCARWGNYPYYAMDYWGQGTSVTVSS

alphapet: dna

OUtPUt: seqlLen: 408

>segName seq description is blah blah blah
AGGCTCAATTTAGTTTTCCTTGTCCTTATTTTAAAAGGTGTCCAGTGTGATGTGCAGCTG
GTGGAGTCTGGGGGAGGCTTAGTGCAGCCTGGAGGGTCCCGGAAACTCTCCTGTGCAGCC
TCTGGATTCACTTTCAGTAGCTTTGGAATGCACTGGGTTCGTCAGGCTCCAGAGAAGGGG
CTGGAGTGGGTCGCATACATTAGTAGTGGCAGTAGTACCCTCCACTATGCAGACACAGTG
AAGGGCCGATTCACCATCTCAAGAGACAATCCCAAGAACACCCTGTTCCTGCAAATGACC
AGTCTAAGGTCTGAGGACACGGCCATGTATTACTGTGCAAGATGGGGTAACTACCCTTAC
TATGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA

Table from

http://www.bioperl.org/wiki/lHOWTO:Beginners

List of seq object methods

Table 1: Sequence Object Methods

Name Returns Example Note
new Sequence object 550 = Bio::Seg-=new(-seq == "MPQRAS") | create a new one, see Bio::Seq for more
5eq sequence string $seq = $so-»seq get or set the sequence
display_id identifier $so->display_id("NP_123456") get or set an identifier
primary_id identifier Sso->primary_id(12345) get or set an identifier
desc description Ss0-=desc("Example 1") get or set a description
accession identifier Sacc = $so0-=accession get or set an identifier
length length, a number Slen = $so-=length get the length
alphabet alphabet $so->alphabet{'dna') get or set the alphabet ('dna’,'rna','protein’)
subseq seguence string Sstring = $seq_obj->subseq(10,40) Arguments are start and end
trunc Sequence object £502 = Ss01->trunc(10,40) Arguments are start and end
revcom Sequence object $502 = Ss01->revcom Reverse complement
translate protein Sequence object Sprot_obj = $dna_obj->translate See the Bioperl Tutorial & for more
species Species object Sspecies_obj = $so->species See Bio::Species for more

Change

‘format’

in

the

new() method from ‘fasta’
to ‘genbank’ to change the
way the SeqlO object $out
is displayed in STDOUT.

—~~—

LOCUS

DEFINITION

ACCESS

ION

FEATURES

BASE COUNT

ORIGIN

s

1
61
121
181
241
301
361

segName

#file: inFasta_outGenBank.pl

my $file = shift;

my $seqlO object = Bio::SeqlO->new(
-file => $file,
-format => ‘fasta’,

);
my $out = Bio::SeqlO->new(-format => ‘genbank’);

while (my $seq_object = $seqlO_object->next_seq){
$out->write_seq($seq_object); #prints to STDOUT
}

linear UNK

408 bp dna

seq description is blah blah blah

unknown

95 a

aggctcaatt
gtggagtctg
tctggattca
ctggagtggg
aagggccgat
agtctaaggt
tatgctatgg

Location/Qualifiers

98 ¢

tagttttcct
ggggaggctt
ctttcagtag
tcgcatacat
tcaccatctc
ctgaggacac
actactgggg

111 g

tgtccttatt
agtgcagcct
ctttggaatg
tagtagtggc
aagagacaat
ggccatgtat
tcaaggaacc

104 t

ttaaaaggtg
ggagggtccc
cactgggttc
agtagtaccc
cccaagaaca
tactgtgcaa
tcagtcaccg

tccagtgtga
ggaaactctc
gtcaggctcc
tccactatgc
ccctgttect

gatggggtaa
tctecctcea

tgtgcagctg
ctgtgcagcc
agagaagggag
agacacagtg
gcaaatgacc
ctacccttac

Query a local fasta file

Query a local fasta file

You have a fasta file that contains many records.
You want to retrieve a specific record.

You do not want to loop through all records until you
find the correct record.

Use Bio::DB::Fasta.

BioPerl

main links

Main Page
Getting Started
Downloads
Installation
Hecent changes
Handom page

documentation

Cluick Start
FACH
HOWTOs
APl Docs

Scrapbook
BioPer Tutonal

Tutornals

Decbfuscator

Browse Modules

community

Mews
Mailing lists
Supporting BioPerl

HinBarl AMadi=

Deobfuscator

Contents [hide]
1 What is the Deobfuscator?
2 Where can | find the Deobfuscator?
3 Have a suggestion?
4 Feature requests

5 Bugs

What is the Deobfuscator?

The Deobfuscator was written to make it easier to determine the methods that are available from a given BioPerl
module (a common BioPerl FAQ).

BioPerl is a highly object-oriented g software package, with often multiple levels of inheritance. Although each
individual module is usually well-documented for the methods specific to it, identifying the inherited methods is less
straightforward.

The Deobfuscator indexes all of the BioPerl POD documentation, taking account of the inheritance tree (thanks to
Class::Inspector &), and then presents all of the methods available to each module through a searchable web
interface.

Where can | find the Deobfuscator?

exing bioperl-live.

The Deobfuscator is currently avail;

Welcome to the BioPerl Deobfuscator [bioperl-live]

Search class names by string or Perl regex (examples: Bio::SeqlO, seq, fasta$)

fasta

h

f'fSu bmit Quew?‘

OR select a class from the list:

Bio:

AlignlD: :fasta

fasta MSA Segquence input/output stream

Bio:

:AlignlD: :largemultifasta

Largemultifasta MSA Seguence input/output stream

Bio:

(AllgnlI0: :metafasta

Metafasta MSA Seguence input/output stream

Bio:

:DB::Fasta E—

Fast indexed access to a directory of fasta files

Bio:

:DB::Flat::BDB::fasta

fasta adaptor for Open-bio standard BDB-indexed flat file

Bio:

:Index: :Fasta

Interface for indexing {multiple) fasta files

Bio:

:Search::HSP: :FastaHSP

HSP object for FASTA specific data

Bio:

:Search::Hit::Fasta

Hit object specific for Fasta-generated hits

Bio:

:SearchlQ::fasta

A SearchIO parser for FASTA results

Bio:

Seq::SegfFastaspeedFactory

Instantiates a new Bio::PrimarySeqgl (or derived class) through a factory

" sort by method |+ |

Bio: :AlignlD: :metafasta

Metafasta MSA Sequence input/output stream

Bio::DB::Fasta

Fast indexed access to a directory of fasta files

Bio::DB::Flat::BDB::fasta

fasta adaptor for Open-bio standard BDB-indexed flat file

Bio::Index::Fasta

Interface for indexing {multiple) fasta files

Bio::Search::HSP::FastaHSP

HSP object for FASTA specific data

Bio::Search::Hit::Fasta

Hit object specific for Fasta-generated hits

Bio::SearchID::fasta

A SearchIQ parser for FASTA results

Bio::Seq::SegFastaSpeedFactory

Instantiates a new Bio: :PrimarySeqgl (or derived class) through a factory

~ sort by method |+ |

methods for Bio::DB::Fasta
Method Class Returns Usage
alphabet Bio::DB::Fasts < Cee————nt documented not documented
basename Bio::DB::Fasta not documented not documented
calculate offsets Bio::DB::Fasta not documented | not documented
caloffset Bio::DB::Fasta not documented | not documented
carp Bio: :Root::Rootl not documented not documented
CLEAR Bio::DB::Fasta not documented | not documented
confess Bio::Root::Rootl not documented | not documented
dbmargs Bio:.:DB::Fasta not documented not documented
dehua Rin::Root: :Ront none Sohi-=dehual"This is dehuoainag outnoty:

Other packages in the module: Bio::DB::Fasta Bio::PrimarySeq::Fasta

Summary Included libraries Package variables Synopsis Description

Toolbar

|Wel}(3vs

Summary

Bio::DB::Fasta -- Fast indexed access to a directory of fasta files

Package variables

No package variables defined.

Included modules

AnyDBM_File

Fentl

File::Basename qw (basename dirname)
I10::File

Inherit

Bio::DB::Seql Bio::Root::Root

Synopsis

use Bio::DB::Fasta:

create database from directory of fasta files
my S$db = Bio::DB::Fasta->new(' /path/to/fasta/files’);

Can also find these pages at http://doc.bioperl.org/bioperl-live/

Bio::DB::fasta module synopsis
doc.bioperl.org

Synopsis

use Bio::DB::Fasta;

create database from directory of fasta files
my Sdb = Bio::DB::Fasta->new('/path/to/fasta/files');

simple access (for those without Einperl}

my S$seq = $db->seq('CHROMOSOME I',4 000 000 => 4 100 _000);
my Srevseq Sdb->seq/("’ CHRDMDEDHE_I (4 100 _000 => 4 000 _000);
my @ids = Sdb->ids;

my Slength $db->length('CHROMOSOME I');

my Salphabet $db->alphabet (' CHROMOSOME I');

my Sheader $db->header('CHROMOSOME I');

Bioperl-style access
my Sdb = Bio::DB::Fasta->new('/path/to/fasta/files');

my Sobj $db->get Seq by id('CHROMOSOME I');

my S$seq = Sobj->seq; # sequence string

my $subseq = $obj->subseqg(4_000_000 => 4 100 _000); # string

my Strunc = Sobj->trunc(4_000_ 000 => 4 100 _000); # seq object
my Slength = $obj->length;

(etc)

Bio::8eqlO-style access
my S$stream = Bio::DB::Fasta->new(’'/path/to/files’')->get PrimarySeq stream;
while (my $seq = $stream->next seq) {
Blo::PrimarySeqgl stuff
}

mir E€fkh = RAIiacs MR s Facta_s>raewFhi ' faat+bh fM+a/ Faagtra €3 Taal § -

Bio::DB::fasta module description
doc.bioperl.org

Description

Bio::DB::Fasta provides indexed access to one or more Fasta files. It
provides random access to each sequence entry, and to subsequences
within each entry, allowing you to retrieve portions of very large
sequences without bringing the entire sequence into memory.

‘When you initialize the module, you point it at a single fasta file or

a directory of multiple such files. The first time it is run, the

module generates an index of the contents of the file or directory
using the AnyDBM module (Berkeley DB* preferred, followed by GDBEM_File,
NDBM_File, and SDBM_File). Thereafter it uses the index file to find
the file and offset for any requested sequence. If one of the source
fasta files is updated, the module reindexes just that one file. (You

can also force reindexing manually). For improved performance, the
module keeps a cache of open filehandles, closing less-recently used
ones when the cache is full.

The fasta files may contain any combination of nucleotide and protein
sequences; during indexing the module guesses the molecular type.
Entries may have any line length up to 63,536 characters, and
different line lengths are allowed in the same file. However, within

a sequence entry, all lines must be the same length except for the

last.

Bio::DB::fasta method description
doc.bioperl.org

Title : get_Seq by id
Usage : my $seq = $Sdb->get Seq by id($id)
Function: Bio::DB::RandomAccessI method implemented
Returns : Bio::PrimarySegql object

Args : id

Query a local
fasta file

output

my = ‘uniprot_sprot.fasta’;
my = Bio::DB::Fasta->new();

retrieve a sequence
my $id = 'sp|Q13547|HDAC1_HUMAN’;
my = $db->get_Seq_by_id($id);

if () {

print “seq: *, ->seq,’\n’;
} else {

warn(“Cannot find $id\n”);

}

#file:local _seq_query.pl

seq: MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIRMTHNLLLNYGLYRKMEIYRPHKANAE
EMTKYHSDDYIKFLRSIRPDNMSEYSKQMQRFNVGEDCPVFDGLFEFCQLSTGGSVASAVKLNKQQT
DIAVNWAGGLHHAKKSEASGFCYVNDIVLAILELLKYHQRVLYIDIDIHHGDGVEEAFYTTDRVMTV
SFHKYGEYFPGTGDLRDIGAGKGKYYAVNYPLRDGIDDESYEAIFKPVMSKVMEMFQPSAVVLQCGS
DSLSGDRLGCFNLTIKGHAKCVEFVKSFNLPMLMLGGGGYTIRNVARCWTYETAVALDTEIPNELPY
NDYFEYFGPDFKLHISPSNMTNQNTNEYLEKIKQRLFENLRMLPHAPGVQMQAIPEDAIPEESGDED
EDDPDKRISICSSDKRIACEEEFSDSEEEGEGGRKNSSNFKKAKRVKTEDEKEKDPEEKKEVTEEEK

TKEEKPEAKGVKEEVKLA

Query a remote database

Query a remote database

You do not have a fasta file that contains the needed
records.

You want to retrieve a specific record or set of
records.

Records are available through GenBank.

Use Bio::DB::GenBank.

Query a remote database: GenBank with an ID

(acc, gi, or unique identifier)
#file:.getSeqRecord _genbank.pl

can change from
1. Use ‘genbank’ to ‘fasta

Bio::DB::Genbank or other format

#!/usr/bin/perl -w
module. L

use strict;

use Bio::DB::GenBank;

2. Create new SeqlO

object ($out). \ my $out = Bio::SeqlO->new(-format => ‘genbank’);
3. Create new GenBank— — 2§ ggﬁg; E|$\;I:BSBI:(:BGHegAB\1a,r.1k->new;

DB object ($dbh). my $seq obj = $dbh->get_Seq by id($query);

4. Use get_Seq_by id : .

method. ($seq_obj) {

/ $out->write_seq($seq_obj);
} else {

5. Print $out (Seq object warn(“cannot find sequence $query\n”);

in genbank format) to }
STDOUT.

LOCUS MUSIGHBAL 408 bp mRNA linear ROD 27-APR-1993
DEFINITION Mouse Ig active H-chain V-region from MOPC21, subgroup VH-ITI,
mRNA.
- ACCESSION Jo0522
utput- VERSTION J00522.1 GI:195052
KEYWORDS constant region; immunoglobulin heavy chain; processed gene; variable region; variable region sub-
group VH-ITI.
Gen Ban k SOURCE Mus musculus (house mouse) .
ORGANISM Mus musculus
. Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
flle Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
Sciurognathi; Muroidea; Muridae; Murinae; Mus.

REFERENCE 1 (bases 1 to 408)

AUTHORS Bothwell,A.L., Paskind,M., Reth,M., Imanishi-Kari,T., Rajewsky, K.
and Baltimore,D.
TITLE Heavy chain variable region contribution to the NPb family of
antibodies: somatic mutation evident in a gamma 2a variable region
JOURNAL Cell 24 (3), 625-637 (1981)
PUBMED 6788376
COMMENT Original source text: Mouse C57B1/6 myeloma MOPC21, cDNA to mRNA,
clone pAB-gamma-1-4. [1] studies the response in C57Bl/6 mice to
NP proteins. It is called the b-NP response because this mouse
strain carries the b-IgH haplotype. See other entries for b-NP
response for more comments.
FEATURES Location/Qualifiers
source 1..408
/db_xref="taxon:10090"
/mol type="mRNA”
/organism="Mus musculus”
CDS <1..>408

/db_xref="GI:195055"
/codon_start=1
/protein id="AAD15290.1"”
/translation="RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT
FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGREFTISRDNPKNTLFLOMTSL
RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS”
/note="Ig H-chain V-region from MOPC21”
<1..48
49..>408
/product="Ig H-chain V-region from MOPC21 mature peptide”
343..344
/note="V-region end/D-region start
356..357
/note="D-region end/J-region start”
95 a 98 ¢ 111 g 104 ¢
57 bp upstream of Pvull site, chromosome 12.

sig peptide
mat peptide

misc_ recomb
(+/- 1bp)”
misc_ recomb

BASE COUNT
ORIGIN

61
121
181
241
301
361
//

aggctcaatt
gtggagtctg
tctggattca
ctggagtggg
aagggccgat
agtctaaggt
tatgctatgg

tagttttcct
ggggaggctt
ctttcagtag
tcgcatacat
tcaccatctc
ctgaggacac
actactgggg

tgtccttatt
agtgcagcct
ctttggaatg
tagtagtggc
aagagacaat
ggccatgtat
tcaaggaacc

ttaaaaggtg
ggagggtccc
cactgggttc
agtagtaccc
cccaagaaca
tactgtgcaa
tcagtcaccg

tccagtgtga
ggaaactctc
gtcaggctcc
tccactatgce
ccctgttcect

gatggggtaa
tctcctceca

tgtgcagctg
ctgtgcagcc
agagaagggyg
agacacagtg
gcaaatgacc
ctacccttac

Creating a sequence record

Creating a sequence record

You have a sequence and want to create a Seq object
on the fly.

Use Bio::Seq.

Create a sequence record on the fly.

#!/usr/bin/perl -w
use strict;

use Bio::Seq;
use Bio::SeqlO;

#file:createSeqOnFly.pl

1. Create a new seq
my $seqObj = Bio::Seqg->new(-seq => ‘ATGAATGATGAA, / object
-display id => ‘seq_example’,
-description=> ‘this seq is awesome’);

my $out = Bio::SeqlO->new(-format => ‘fasta’); 2. Create and print

$out->write _seq($seqObj); > a new seqlO object
in fasta format using
$seqObj

print “Id: “,$seqObj->display _id, “\n”;

print “Length: “, $seqObj->length, “\n”; 3. Get features of

print “Seq: “,$seqObj->seq,”\n”; $seqObj by using

print “Subseq (3..6): “, $seqObj->subseq(3,6), “\n”; seqODbj methods

print “Translation: “, $seqObj->translate->seq, “\n”;

:

Notice the coupling of methods.

Output

>seq example this seqg 1s awesome
ATGAATGATGAA

Id: seqg example

Length: 12

Seq: ATGAATGATGAA

Subseqg (3..6): GAAT

Translation: MNDE

File format conversions

File format conversions

You have GenBank files and want to extract only the
sequence in fasta format.

Use Bio::SeqlO.

Formats

BioPerl's SeqlO system understands lot of formats and can interconvert all of them. Here is a current listing of

formats, as of version 1.5.

Table 1: Bio::SeqlO modules and formats supported

Name Description File extension Module
abi ABI tracefile abli1] Bio::SeqlO::abi
ace Ace database ace Bio::SeqlQ::ace
agave AGAVE XML Bio::SeqlO::agave
alf ALF tracefile alf Bio::SeqlO::alf
asciitree write-only, to visualize features Bio::SeqlQ::asciitree
bsml BSML, using XML::DOM g7 bsmil Bio::SeqlO::bsmi
bsml_sax BSML, using XML::SAX & Bio::SeqlO::bsml_sax
chadoxml CHADOQO sequence format Bio::SeqlO::chadoxml|
chaos CHAQS sequence format Bio::SeqlO::chaos
chaosxmi Chaos XML Bio::SeqlO::chaosxmi
e ATE bumnnfila b Dime @ mm P nbd

http://www.bioperl.org/wiki/HOWTO:SeqlO

//

LOCUS MUSIGHBAT 408 bp mRNA linear ROD 27-APR-1993
DEFINITION Mouse Ig active H-chain V-region from MOPC21, subgroup VH-IT,
mRNA.
IACCESSION J00522
[VERSION J00522.1 GI:195052
KEYWORDS constant region; immunoglobulin heavy chain; processed gene; variable re-
gion; variable region subgroup VH-II.
SOURCE Mus musculus (house mouse) .
ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 408)
AUTHORS Bothwell,A.L., Paskind,M., Reth,M., Imanishi-Kari,T., Rajewsky,K.
and Baltimore,D.
TITLE Heavy chain variable region contribution to the NPb family of
antibodies: somatic mutation evident in a gamma 2a variable region
JOURNAL Cell 24 (3), 625-637 (1981)
PUBMED 6788376
COMMENT Original source text: Mouse C57B1/6 myeloma MOPC21, cDNA to mRNA,
clone pAB-gamma-1-4. [1] studies the response in C57B1/6 mice to
NP proteins. It is called the b-NP response because this mouse
strain carries the b-IgH haplotype. See other entries for b-NP
response for more comments.
FEATURES Location/Qualifiers
source 1..408
/db xref="taxon:10090”
/mol type="mRNA”
/organism="Mus musculus”
CDS <1..>408
/db xref="GI:195055"
/codon_start=1
/protein i1d="AAD15290.1"”
/translation="RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFET
FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGREFTISRDNPKNTLEFLOMTSL
RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS”
/note="1g H-chain V-region from MOPC21”
sig peptide <1..48
mat peptide 49..>408
/product="Ig H-chain V-region from MOPC21 mature peptide”
misc recomb 343..344
/note="V-region end/D-region start (+/- lbp)”
misc recomb 356..357
/note="D-region end/J-region start”
BASE COUNT 95 a 98 c 111 g 104 t
ORIGIN 57 bp upstream of Pvull site, chromosome 12.
1 aggctcaatt tagttttcct tgtccttatt ttaaaaggtg tccagtgtga tgtgcagctg
61 gtggagtctg ggggaggctt agtgcagcct ggagggtccc ggaaactctc ctgtgcagcc
121 tctggattca ctttcagtag ctttggaatg cactgggttc gtcaggctcc agagaagggg
181 ctggagtggg tcgcatacat tagtagtggc agtagtaccc tccactatgc agacacagtg
241 aagggccgat tcaccatctc aagagacaat cccaagaaca ccctgttcct gcaaatgacc
301 agtctaaggt ctgaggacac ggccatgtat tactgtgcaa gatggggtaa ctacccttac
361 tatgctatgg actactgggg tcaaggaacc tcagtcaccg tctcctca

= GenBank Format

Fasta Format

>MUSIGHBAl Mouse Ig active H-chain V-region from MOPC21,
subgroup VH-II, mRNA.
AGGCTCAATTTAGTTTTCCTTGTCCTTATTTTAAAAGGTGTCCAGTGTGATGTGCAGCTG
GTGGAGTCTGGGGGAGGCTTAGTGCAGCCTGGAGGGTCCCGGAAACTCTCCTGTGCAGCC
TCTGGATTCACTTTCAGTAGCTTTGGAATGCACTGGGTTCGTCAGGCTCCAGAGAAGGGG
CTGGAGTGGGTCGCATACATTAGTAGTGGCAGTAGTACCCTCCACTATGCAGACACAGTG
AAGGGCCGATTCACCATCTCAAGAGACAATCCCAAGAACACCCTGTTCCTGCAAATGACC
AGTCTAAGGTCTGAGGACACGGCCATGTATTACTGTGCAAGATGGGGTAACTACCCTTAC
TATGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA

Convert from GenBank to fasta.

#!/usr/bin/perl -w #file:convert_genbank2fasta.pl
use strict;
use Bio::SeqlO;

my ($informat,$outformat) = (‘genbank’, fasta’);
my ($infile,$outfile) = @ARGYV,;

my $in = Bio::SeqlO->new(
-format => $informat,
-file => Sinfile,
);

my $out = Bio::SeqlO->new(
-format => $outformat,
-file => “>$outfile”

);

while (my $seqObj = $in->next_seq) {
$out->write_seq($seqObj);
}

Retrieving annotations

Retrieving annotations

You have GenBank files and want to retrieve
annotations.

Use Bio::SeqlO.

Sample GenBank file with Features/Annotations

LOCUS MUSIGHBAL 408 bp mRNA linear ROD 27-APR-1993
DEFINITION Mouse Ig active H-chain V-region from MOPC21, subgroup VH-ITI,
mRNA.
ACCESSION Jo0522
VERSION J00522.1 GI:195052
KEYWORDS constant region; immunoglobulin heavy chain; processed gene; variable re-
gion; variable region subgroup VH-II.
SOURCE Mus musculus (house mouse) .

ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 408)
AUTHORS Bothwell,A.L., Paskind,M., Reth,M., Imanishi-Kari,T., Rajewsky,K.
and Baltimore,D.
TITLE Heavy chain variable region contribution to the NPb family of
antibodies: somatic mutation evident in a gamma 2a variable region
JOURNAL Cell 24 (3), 625-637 (1981)
PUBMED 6788376
COMMENT Original source text: Mouse C57B1/6 myeloma MOPC21, cDNA to mRNA,
clone pAB-gamma-1-4. [1] studies the response in C57B1/6 mice to
NP proteins. It is called the b-NP response because this mouse
strain carries the b-IgH haplotype. See other entries for b-NP
Lo £ s,
FEATURES Location/Qualifiers
source 1..408
/db_xref="taxon:10090"
/mol type="mRNA”
/organism="Mus musculus”
CDS <1..>408
/db_xref="GI:195055"
/codon_start=1
/protein id="AAD15290.1"”
/translation="RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFEFT
FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGREFTISRDNPKNTLFLOMTSL
RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS”
/note="Ig H-chain V-region from MOPC21”

sig peptide <1..48
mat peptide 49..>408
/product="Ig H-chain V-region from MOPC21 mature peptide”
misc recomb 343..344
/note="V-region end/D-region start (+/- 1lbp)”
misc recomb 356..357
/note="D-region end/J-region start”
BASE COUNT 95 a 98 ¢ 111 g 104 t
ORIGIN 57 bp upstream of Pvull site, chromosome 12.

1 aggctcaatt tagttttcct tgtccttatt ttaaaaggtg tccagtgtga tgtgcagctg
61 gtggagtctg ggggaggctt agtgcagcct ggagggtccc ggaaactctc ctgtgcagcece
121 tctggattca ctttcagtag ctttggaatg cactgggttc gtcaggctcc agagaagggg
181 ctggagtggg tcgcatacat tagtagtggc agtagtaccc tccactatgc agacacagtg
241 aagggccgat tcaccatctc aagagacaat cccaagaaca ccctgttcct gcaaatgacc
301 agtctaaggt ctgaggacac ggccatgtat tactgtgcaa gatggggtaa ctacccttac
361 tatgctatgg actactgggg tcaaggaacc tcagtcaccg tctcctca
//

FEATURES
source

CDS

sig_peptide
mat_peptide

misc_recomb

misc_recomb

T

primary_tag

Location/Qualifiers

1..408

/db_xref="taxon:10090"

/mol_type="mRNA"

/organism="Mus musculus”

<l..>408

/db_xref="GI:195055"

/codon_start=1

/protein_id="AAD15290.1"
/translation="RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT
FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSL
RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS™

/note="Ig H-chain V-region from MOPC21"

<1..48

49, .>408

/product="Ig H-chain V-region from MOPC21 mature peptide”
343..344

/note="V-region end/D-region start (+/- 1lbp)"

356..357

/note="D-region end/J-region start"

T

tag=value

Senbpete Get annotations from a GenBank file

use Bio::SeqlO;
#file: get_annot_from_genbank.pl
my $infile = shift;
my $seqlO = Bio::SeqlO->new(
-file => Sinfile,

-format => ‘genbank’, get_Sequature
) produces an array of

while (my $seqObj = $seqlO -> next_seq){ . .
my $name = $seqObj -> id; / Bio::SeqgFeaturel objects
foreach my $feature ($seqObj->get_SeqFeatures){

my $primary_tag = $feature->primary_tag;
my ($start, $end) = ($feature->start , $feature->end);
my $range = $start . “..” . $end;
foreach my $tag (sort $feature ->get_all _tags) {
my @values = $feature->get_tag_values($tag);
my $value_str = join “,”, @values;

print “Sname($range)\t$primary_tag\ttag:$value str\n”;

} Output

[MUSIGHBATI (1..408) source db xref:taxon:10090

MUSTIGHBAIL (1..408) source mol type:mRNA

MUSIGHBAI (1..408) source organism:Mus musculus

MUSIGHBAI (1..408) CDS codon start:1

MUSIGHBAI (1..408) CDS db xref:GI:195055

MUSTIGHBAL (1..408) CDS note:Ig H-chain V-region from MOPC21

MUSTIGHBAIL (1..408) CDS protein id:AAD15290.1

MUSIGHBAL (1..408) CDS translation:RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFTFSSF
GMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGREFTISRDNPKNTLFLOMTSLRSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS
MUSIGHBAI (49..408) mat peptide product:Ig H-chain V-region from MOPC21 mature pep-
tide

MUSTIGHBAIL (343..344) misc recomb note:V-region end/D-region start (+/- 1lbp)
MUSTIGHBAI (356..357) misc recomb note:D-region end/J-region start

Bioperl I

Sofia Robb
University of Utah

BLAST
Multiple Alignments

Other cool things

BLAST

Parsing BLAST reports

Running BLAST

Parsing BLAST reports

Use Bio::SearchlO

BioPerl

main links

Main Page
Getting Started
Downloads
Installation
Recent changes
Handom page

documentation

Quick Start

FAQ

HOWTOs ¢
AP| Docs
Scrapbook

BioPerl Tutonal
Tutorials
Deobfuscator

Oermasrmem Bdlarslae

Where do you start?

howto

HOWTO:Beginners

discussion View source

Contents [hide]

1 Authors

2 Copyright

3 Abstract

4 Introduction

5 Installing Bioperl

6 Getting Assistance

7 Perl Itself

B Writing a script in Unix

9 Creating a sequence, and an Object
10 Writing a sequence to a file

11 Retrieving a sequence from a file

12 Retrieving a sequence from a database

history

13 Retrieving multiple sequences from a database

14 The Sequence Object
15 Example Sequence Objects

16 BLAST (——

Here's an example of how one would use SearchlD to extract data from a BELAST report:

rsearchI0|-format => "blast’,
-file => 'report.bls');

while($result = §report_obj->next result) {
while($hit = $result->next_hit) {
while($hsp = $hit->next_hsp) {

if { Shsp->percent_identity > 75) {

print "Hit\t", Shit-rname, "\a", "Length\t”, Shsp->length('total'},
"\n", "Percent_id\t", Shsp->percent_identity, "\n";

}
}
}
}
howto discussion ViEwW s0urce history
HOWTO:SearchlO
Abstract
B 1 DPEf]. This is a HOWTO about the Bio::SearchlO system, how to use it, and how one goes about
main links writing new adaptors to different output formats. We will also describe how the
= Main Page Bio::SearchlO::Writer modules work for outputting various formats from Bio::Search objects.
» Getting Started
" Downloads Contents [hide]
= |nstallation
m Hecent changes 1 Abstract
= Random page 1.1 Authors
2 Background
documentation 3 Design
= Quick Start 4 Parsing with Bio::SearchlO
= FAQ 4.1 Avoiding possible confusion
|

HOWTOs 4.2 Using SearchlO

— A P

Result

Hit

HSP

BLASTX 2.2.12 [Aug-07-2005]

Reference: Altschul,
Jinghui Zhang, Zheng Zhang,

“Gapped BLAST and PSI-BLAST:
programs”, Nucleic Acids Res.

Stephen F., Thomas L. Madden, Alejandro A.
Webb Miller, and David J. Lipman (1997),

a new generation of protein database search
25:3389-3402.

Query= smed-HDAC1l-1
(1213 letters)

Schaffer,

Database: swissprot.aa
427,028 sequences; 157,875,145 total letters
ST et o e 5o Y done
Score E
Sequences producing significant alignments: (bits) Value
sp|P56517|HDAC1 CHICK RecName: Full=Histone deacetylase 1; Short... 535 e-151
>sp|P56517 |HDAC1 CHICK RecName: Full=Histone deacetylase 1; Short=HD1
Length = 480
Score = 535 bits (1379), Expect = e-151
Identities = 255/343 (74%), Positives = 292/343 (85%), Gaps = 1/343 (0%)
Frame = +3
Query: 3 CPVEFDGLFEFCQLSAGGSVASAVKLNKNKADIAINWSGGLHHAKKSEASGFCYVNDIVMG 182
CPVEFDGLFEFCQLSAGGSVASAVKLNK + DIA+NW+GGLHHAKKSEASGFCYVNDIV+
Sbjct: 100 CPVFDGLFEFCQLSAGGSVASAVKLNKQQTDIAVNWAGGLHHAKKSEASGFCYVNDIVLA 159
Query: 183 ILELLKYHERVLYVDIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFPXXXXXXXXXXXXX 362
ILELLKYH+RVLY+DIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFP
Sbjct: 160 ILELLKYHQRVLYIDIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFPGTGDLRDIGAGKG 219
Query: 363 XNYAVNEFPLRDGIDDESYESIFKPVVEKVIESFKPNAIVLQCGADSLSGDRLGCENLSLK 542
YAVN+PLRDGIDDESYE+IFKPV+ KV+E+F+P+A+VLQCG+DSLSGDRLGCENL++K
Sbjct: 220 KYYAVNYPLRDGIDDESYEAIFKPVISKVMETFQPSAVVLQCGSDSLSGDRLGCFNLTIK 279
Query: 543 GHGKCVEYMRQQPIPLLMLGGGGYTIRNVARCWTYETALALGTTIPNELPYNDYYEYFTP 722
GH KCVE+++ +P+LMLGGGGYTIRNVARCWTYETA+AL T IPNELPYNDY+EYF P
Sbjct: 280 GHAKCVEFVKSENLPMLMLGGGGYTIRNVARCWTYETAVALDTEIPNELPYNDYFEYFGP 339
Query: 723 DFKLHISPSNMANQONTPEYLERMKQKLFENLRSIPHAPSVQMQODIPEDAMDIDDGEQMDN 902
DFKLHISPSNM NQNT EYLE++KQ+LFENLR +PHAP VQMQ IPEDA+ D G++ +
Sbjct: 340 DFKLHISPSNMTNQONTNEYLEKIKQRLFENLRMLPHAPGVQMQPIPEDAVQEDSGDE-EE 398
Query: 903 ADPDKRISILASDKYREHEADLSDSEDEGD-NRKNVDCFKSKR 1028
DP+KRISI SDK + + SDSEDEG+ RKNV FK +
Sbjct: 399 EDPEKRISIRNSDKRISCDEEFSDSEDEGEGGRKNVANFKKAK 441

NCBI BLAST
Report

Result

Database:

Posted date:
Number of letters in database:
Number of sequences in database:

Lambda

0.318

Gapped
Lambda

0.267

Matrix:

Gap Penalties:

Number
Number
Number
Number
Number
Number
Number
Number
Number
length

effective
effective
effective
frameshift window,

T: 12
A: 40
X1l: 16
X2: 38
X3: 64
Sl: 41

/common/data/swissprot.aa

Oct 4, 2009 2:02 AM
157,875,145
427,028

K H

0.134 0.401

K H

0.0410 0.140

BLOSUM62

Existence: 11, Extension: 1
of 281,587,467
of
of
of
of
of
of
of
of
of

Hits to DB:
Sequences: 427028

extensions: 5577736

successful extensions: 16223

sequences better than 1.0e-10: 1

HSP’s better than 0.0 without gapping: 15290
HSP’s successfully gapped in prelim test: 0O
HSP’s that attempted gapping in prelim test:
HSP’s gapped (non-prelim): 16078

database: 157,875,145

HSP length: 119
length of database:
search space used:
decay const:

107,058,813
30404702892
40, 0.1

0

Bookmark it!!

See
http://www.bioperl.org/wiki/HOWTO:SearchlO
for a GREAT example of a blast report,
code to parse i,

a table of methods,

and the values the methods return.

Bio::SearchlO object for BLAST reports

#!/usr/bin/perl -w

use strict;

use Bio::SearchlO:

#file: blast_parser_intro.pl

my $blast report = shift;

my $searchlO obj = Bio::SearchlO->new(
-file => $blast_report,
-format => ‘blast’

);

Result object and methods

_ #file: sample Blast _parse 1.pl
#!/usr/bin/perl -w

use strict;
use Bio::SearchlO;

my $blast report = shift;

my $searchlO_obj = Bio::SearchlO->new(
-file => $blast report,
-format => ‘blast’

);

while (my $result_obj = $searchlO_obj ->next_result) {
my $program = $result obj ->algorithm;
my $queryName = $result_obj ->query_name;
my $queryDesc = $result_obj ->query_description;
my $queryLen = $result_obj ->query_length;
print “program=%program\tqueryName=%queryName\t”;
print “queryDesc=%$queryDesc\tqueryLen=$queryLen\n”;

Output:
program=BLASTX queryName=smed-HDAC1-1 queryDesc=histone deacetylase 1 queryLen=1213

http://www.bioperl.org/wiki/HOWTO:SearchlO

|object | Method

| Example

| Description

|FIesuIt |a|g+:-rithm

|BLAST}(

|a|g+:rrithm string

|Fiesult |a|g+:rrithm version

[2.2.4 [Aug-26-2002)

|a|g+:rrithm Version

|FIesuIt |query_ name

|2£I'521 485/dbjlAP004641.2

|q uery name

|Fiesult |query_ accession

|AP004541 2

|{] Lery accession

|FIesuIt |query_ length

|3059

|qu ery length

Result |query_description

Oryza sativa ... 937 7CE9AF
checksum.

query description

|FIesuIt |database name |test.fa |database name
|Fiesult |databaﬁe letters |1291 |numbernf residues in database
|FIesuIt |database enfries |5 |number0f database entries

|FIe5uIt |available statistics

|effectivespaceused ... dbletters

|statistics used

|FIesuIt |available parameters

|gapext matrix allowgaps gapopen

|param eters used

|FIe5uIt |num_ hits

|number of hits

|F:esu|t |hits | |List of all Bio::Search::Hit::GenericHit object(s) for this Result
. Reset the internal iterator that dictates where next_hit() is pointing, useful for re-iterating
Result |rewind . .
through the list of hits.

Hit object and methods

use strict; #file: sample_Blast_parser_2.pl
use Bio::SearchlO;

#!/usr/bin/perl -w

my $blast report = shift;

my $searchlO obj = Bio::SearchlO->new(
-file => $blast report,
-format => ‘blast’
); must get hit objects
from a result object
while (my $result_obj = $searchlO obj->next_result) {
while (my $hit_obj = $result_obj->next_hit){
my $hitName = $hit_obj->name;
my $hitAcc = $hit_obj->accession;
my $hitLen = $hit_obj->length;
my $hitSig = $hit_obj->significance;
my $hitScore = $hit_obj->raw_score;

print “hitName=%hitName\thitAcc=$hitAcc\thitLen=%$hitLen\t”;
print “hitSig=%$hitSig\thitScore=%hitScore\n”;

Output:

hitName=sp|P56517|HDAC1_CHICK hitAcc=P56517 hitLen=480 hitSig=1e-151 hitScore=535

http://www.bioperl.org/wiki/HOWTO:SearchlO

Hit [name 4438931124775 |hit name

Hit [length [331 |Length of the Hit sequence

Hit accession 4saan accession (usually when this is a genbank formatted id this will be an accession number-
the part after the gbor emb)

|Hit |descripti+:rn |LaF+:rras seguence |hit description

|Hit |a|g+:-rithrr1 |BLASTK |a|g+:-rithrr1

|Hit |raw_ SCore |QE |hit raw score

Hit |significance [2e-022 |hit significance

Hit |[bits 192.0 |t bits

Hit |hsps | |List of all Bio::Search::HSP::GenericHSP object(s) for this Hit

|Hit |num_ hsps |I |number of HSPs in hit

|Hit |Iccu5 |IE4??5 |Iccus name

|Hit |accessinn, number |443393 |accessinn number

Hit rewind Hesets the internal counter for next_hsp() so that the iterator will begin at the beginning of

the list

st - HSP object and methods

use strict; \
#file: sample_Blast_parser.pl
use Bio::SearchlO;

my $blast_report = shift;

my $searchlO_obj = Bio::SearchlO->new(

-file => $blast_report, _
format => ‘blast’ must get hsp objects

) from a hit object

while (my $result_obj = $searchlO obj->next_result) { /

while (my $hit_obj = $result_obj->next_hit){
while (my $hsp obj = $hit_obj ->next_hsp){
my $evalue = $hsp obj->evalue;
my $hitString = $hsp_obj->hit_string;
my $queryString = $hsp_obj->query_string;
my $homologyString = $hsp_obj->homology_string;

print “hsp evalue: $evalue\n”;

print “HIT : “,substr($hitString,0,50),”\n”;

print “‘HOMOLOGY: “,substr($homologyString,0,50),”\n”;
print “QUERY : “,substr($queryString,0,50),"\n”;

) Output:

} hsp evalue: le-151
HIT : CPVFDGLFEFCQLSAGGSVASAVKLNKQQTDIAVNWAGGLHHAKKSEASG
HOMOLOGY: CPVEDGLFEFCQLSAGGSVASAVKLNK + DIA+NW+GGLHHAKKSEASG
QUERY : CPVFDGLFEFCQLSAGGSVASAVKLNKNKADIAINWSGGLHHAKKSEASG

http://www.bioperl.org/wiki/HOWTO:SearchlO

HSP [algorithm [BLASTX lalgorithm
|H5F’ |evalue |29-GEE ‘e-value
|H5F’ |expect |2&-DEE ‘alias for evalue()
HSP irac_identical |0.884615384615385 [Fraction identical
fraction conserved (conservative and identical replacements aka "fraction similar")
HSP | |frac_conserved 0.923076923076523 , - , . .
(only valid for Protein alignments will be same as frac_identical)

|H5P |g aps |2 ‘number of gaps
|H5F’ |query_ string |DMGHGSEG . ‘query string from alignment
HSP [hit_string [DIVaNSS ... lhit string from alignment
|H5P |h0m0|09y String D+ L Deramad |n-lrinn framm alimnenomt
| | |_ |H5F’ |seq inds('guery’,'conserved'’) |t955,95?,969.9?1,9?3_.9?4.9?5, cee) |cc:nser1.fed or identical positions as array
HSF ||length{‘total’) 52

HSP [seq_inds(hit, identical) |(197,202,203,204,205, ... |identical positions as array
[HSP [length(it) [s0

seq_inds('hit','conserved-
|H5F’ || ength('query’) |ﬁ HSP noiin.dentifzal'jl. (188,200) conserved not identical positions as array
|H5P |hsp length E |H5F’ |seq inds('hit','conserved’,1) |t19?,202-245} |cunsewed or identical positions as array, with runs of con!
|H5P |frame |D_ |H5F’ |sc0re |22? |scare
[HSP |num_conserved 8 [Hsp |oits [02.0 [score in bits
|H5P |num_ dentice |E |H5F’ |range{'query'] |t2395,3051} |start and end as array
HSP [Jrank ! [HSP range(hit) |(197,246) [start and end as array
[HSP [seq_inds(‘queryidentical’ @ [HSP |[percent identity [88.4615384615385 % identical
HSP SE? _;”“?_[“‘l‘f”’" consenved- (o€ [HSP[[strand(nit) i [strand of the hit
not-identica

|H5F’ |strandt’query'] |1 |strand of the query

|H5F’ |start['quen,f'} |EEQE |start position from alignment

HSP [end(query) [3051 |end position from alignment

HSP [start(hit) 197 [start position from alignment

[HSP lend(hit) 246 |end position from alignment

|H5F’ |matches['hit'} |t45,48] |number of identical and conserved as array

HSP | matches(query) |146,48) |number of igentical and conserved as array

|H5F’ |g et_aln

|sequenf:e alignment |Bi0::5impleﬁ.lign object

|H5F’ |hsp group

|Nﬂt available in this report |Gn:rup field from WU-BLAST reports run with -topcomboN

|H5F= |Iinks

|Nﬂt avaifable in this report |Links field from WU-BLAST reports run with -links showiny

Running BLAST

Running BLAST

on the command line

with Bioperl

BLAST on the command line:
get it.
install It.

run it.

Get BLAST

http://www.ncbi.nlm.nih.gov/Ftp/

-

I FTP site
PubMed Entrez BLAST OMIM Books TaxBrowser Structure
EEEFI':-I"I[All Databases »-:-\]fnr

NCBI Major resources available by ftp (ftp.ncbi.nih.gov):

SITE MAP
Guide to NCBI
resources

I+ BLAST Basic Local Alignment Search Tool

Download the BLAST database and stand-alone sequence comparison
software.

About NCBI I» CDD Data

The science behind
our resources. An Download data from the Conserved Domain Database.

introduction for

researchers, b CD-Tree

educators and the

public. Download the protein domain hierarchy viewer and editor.

http://www.bioperl.org/wiki/HOWTQO:StandAloneBlast

HOWTQO:StandAloneBlast

Contents [hide]

1 Author
2 Copyright
3 Revisions
4 Introduction
5 Checklist
5.1 Install the binaries
5.2 The NCBI configuration file
5.3 Locating the binaries
5.4 Default location of BLAST indices
6 Example session
7 Using WU-BLAST
B Further reading

Running BLAST on the command line

blastall -p blastn -d database -i QUERY -o out. QUERY

see ftp://ftp.ncbi.nih.gov/blast/documents/blastall.html for more information on options

formatdb

Included in the blastall package.
Used to format fasta files as blast databases.

For parameters, run the following at the command line
formatdb --help’.

Common usage:

formatdb -i yourFasta-p T/F -0 T

Running BLAST with Bioperl

Use Bio:: Tools::Run::StandAloneBlast

Getting sequences from a fasta file

#!/usr/bin/perl -w

#file:runblast _fasta parse reportObj_1.pl
use strict;

use Bio::SeqlO;
use Bio::Tools::Run::StandAloneBlast;
use Bio::SearchlO;

my $inFasta = shift;
my $seqlO obj = Bio::SeqlO -> new (
-format => ‘fasta’,
-file => JinFasta
);
while (my $seqObj = $seqlO obj->next_seq){
#run blastall with $seqObj
}

Setting up BLAST parameters

#!/usr/bin/perl -w
#file:runblast_fasta_parse reportObj_2.pl
use strict;

use Bio::SeqlO;

use Bio::Tools::Run::StandAloneBlast;
use Bio::SearchlO;

my $SinFasta = shift;
my $seqlO obj = Bio::SeqlO -> new (
-format => ‘fasta’,
-file => $inFasta
);
#create blast parameters
my @params = (program => ‘blastx’,
database => ‘/common/data/swissprot.aa’,
expect =>1e-40,b=>5,v=>5
);
while (my $seqObj = $seqlO obj->next_seq){
#run blastall with blast parameters
#run blastall with $seqObj

#!/usr/bin/perl -w

use strict; RU n n | n g B LAST

e Bio:Tools, Run:StandAloneBlast
R e #file:runblast_fasta_parse_reportObj_3.pl
my $inFasta = shift;
my $seqlO obj = Bio::SeqlO -> new (
-format => ‘fasta’,
-file => $inFasta
);
#create blast parameters
my @params = (program => ‘blastx’,
database => ‘/common/data/swissprot.aa’,
expect => 1e-40,b=>5,v=>5
);
while (my $seqObj = $seqlO_obj->next_seq){
#set up blast object with parameters
my $blast _obj = Bio::Tools::Run::StandAloneBlast->new(@params);
#run blastall with blast object

my $report_obj = $blast obj->blastall($seqObj);

sosrict | o Parsing Report Object
use Bio::SeqlO; my $inFasta = shift; #file: runBlast_fasta_parse_reportObj.pl
use Bio::Tools::Run::StandAloneBlast, my $S€C{|O_Obj = BIO::SGC]'O -> new (

use Bio::SearchlO; -format - 'fasta',
-file => $inFasta
);
#create blast parameters
my @params = (program => 'blastx’,
database => '/common/data/swissprot.aa’,
expect => 1e-40,b=>5,v=>5
);
print "QueryName\tHit Name\tEvalue\n";
while (my $seqObj = $seqlO obj->next_seq){
#set up blast object with parameters
my $blast_obj = Bio::Tools::Run::StandAloneBlast->new(@params);
#run blastall with blast object
my $report_obj = $blast obj->blastall($seqObj);
#parse report object
while(my $result_obj = $report_obj->next_result) {
my $queryName = $result_obj->query _name;
while(my $hit_obj = $result_obj->next_hit) {
my $hitName = $hit_obj->name;
while (my $hsp obj = $hit_obj -> next_hsp){
my $hspEvalue = $hsp obj->evalue;
print "$queryName\t$hitName\tbhspEvalue\n;

#lust/bin/perl -w ertlng BLAST results to STDOUT

use strict;

use Bio::SeqlO;

use Bio::SearchlO;

use Bio::Tools::Run::StandAloneBlast;

use Bio::SearchlO::Writer:: TextResultWriter;

#file:runblast_inFasta_write report.pl

my $inFasta = shift;
my $seqlO_obj = Bio::SeqlO -> new (
-format => ‘fasta’,
-file => $inFasta
);
while (my $seqObj = $seqlO_obj->next_seq){
my @params = (program => ‘blastx’,
database => ‘/common/data/swissprot.aa’,
expect => 1e-40);
#set up blast object with parameters
my $blast obj = Bio::Tools::Run::StandAloneBlast->new(@params);
#run blastall with blast object
my $report_obj = $blast_obj->blastall($seqObj);
#parse report object
print “Hit_Name\tEvalue\n”;
while(my $result_obj = $report_obj->next_result) {
while(my $hit_obj = $result_obj->next_hit) {
print $hit_obj->name,"\t”, $hit_obj->significance, “\n”;
}
}

#write output to STDOUT

my $writer = Bio::SearchlO::Writer:: TextResultWriter->new();
my $out = Bio::SearchlO->new(-writer => $writer);
$out->write_result($report_obj->next_result);

#!/usr/bin/perl -w
use strict;
use Bio::SeqlO;

u50 Bio: SearchlO; | Writing BLAST results to a
use Bio::Tools::Run::StandAloneBlast;
use Bio::SearchlO::Writer:: TextResultWriter; fi Ie
my $inFasta = shift;
my $seqlO_obj = Bio::SeqlO -> new (#file:runblast_inFasta_write report.pl
-format => ‘fasta’,
-file => $inFasta
);
while (my $seqObj = $seqlO_obj->next_seq){
my @params = (program => ‘blastx’,
database => ‘/common/data/swissprot.aa’,
expect => 1e-40);
#set up blast object with parameters
my $blast obj = Bio::Tools::Run::StandAloneBlast->new(@params);
#run blastall with blast object
my $report_obj = $blast_obj->blastall($seqObj);
#parse report object
print “Hit_ Name\tEvalue\n”;
while(my $result_obj = $report_obj->next_result) {
while(my $hit_obj = $result_obj->next_hit) {
print $hit_obj->name,”\t”, $hit_obj->significance, “\n”;
}

}

#write output to file
my $writer = Bio::SearchlO::Writer:: TextResultWriter->new();
my $out = Bio::SearchlO->new(-writer => $writer.

-file => ‘blast.out’);
$out->write_result($report_obj->next_result);

Bio::SearchlO::Writer modules
doc.bioperl.org

operitive:Ris:Nearch Tiing Bio::SearchiO: Writer HTMLResultWriter
bioperl-live::Bio::SearchIO

bioperl-live::Bio::SearchIO:: Writer

| Summary || Included libraries | Package variables | Synopsis | Description | General de

bioperl-live::Bio::SearchlO:: XML m Toolbar
bioperl-live::Bio::Seq 'WebCvs|
bioperl-live::Bio::Seq::Meta -
bioperl-live::Bio::SeqEvolution | |Summary

Bio::SearchIO::Writer:: HTMLResultWriter - write a Bio::Search::Resultl in HTML

Package variables
GbrowseGFF No package variables defined.
HSFTableWriter Inherit
HitTableWriter Bio::Root::Root Bio::SearchIO::SearchWriterl
ResultTableWriter Synopsis

TextResultWriter

use Bio::SearchIO;
use Bio::SearchIO::Writer::HTMLResultWriter;

my $in = Bio::SearchIO->new(-format => 'blast’,
-file => shift BARGV);

my Swriter = Bio::SearchIO::Writer::HTMLResultWriter->new|();
my Sout = Bio::SearchIO->new(-writer => Swriter);
$out->write result($in->next result);

www.bioperl.org/wiki’HOWTO:SearchlO

Table 1: SearchlO modules and formats supported

Name Description
blast BLAST (BLAST, PSIBLAST, PSITBLASTN, APSBLAST, WUBLAST, bl2seq, WU-BLAST, BLASTZ, BLAT, Paracel BTK)
fasta FASTA -m89 and -m0
blasttable | BLAST tabular -m3 or -m8 (NCBI) and -mformat 2 or -mformat 3 (WU-BLAST)
blastxml | NCBI BLAST XML and WU-BLAST XML
erpin ERFIN versions 4.2.5 and above
infernal Infernal versions 0.7 and above
megablast | MEGABLAST
psl UCSC formats PSL
waba WABA
axt AXT
simd Sim4
hmrmer HMMER hmmpfam and hmmsearch
exonerate | Exonerate CIGAR
wise Genewise -genesf
rmamotit | raw rnamotif output for RMNAMotif versions 3.0 and above

Multiple Alignments

Use Bio::AlignlO

for parsing and writing multiple alignment file formats
including:

fasta, phylip, nexus, clustalw, msf, mega,
meme, pfam, psi, selex, stockholm.

Convert from fasta_aln to nexus

#file: multi_align_convert.pl

#!/usr/bin/perl -w
use strict;
use Bio::AlignlO;

my $align_fasta = shift;

my $in_alignlO_obj = Bio::AlignlO->new(
-format => 'fasta’,
-file => $align_fasta

);
next_a|n produces a my $Out_a||gn|O_ObJ = B|OAI|gnIO'>neW(
Bio::SimpleAlign object -format => 'nexus’,
\ -file => ">$align_fasta.nex"
);

while(my $align_obj = $in_alignlO_obj->next_aln){
$out_alignlO obj->write_aln($align_obj);
}

Bio::SimpleAlign Object

Remove some sequences and rewrite the result
Extract or remove columns

Calculate consensus string and percent identity

Other Cool Things

Whole set of wrappers for running Bioinformatics tools
In bioperl-run

Run BLAST locally or submit remote jobs (through NCBI)

Run PAML - handles setup and take down of temporary
files and directories

Run alignment progs through similar interfaces: TCoffee, MUSCLE,
Clustalw

Create and query databases
Relational Databases for sequence and features

Repository of scripts to do really cool things. (http://www.bioperl.org/wiki/Scripts)

Building Biological Databases

Sheldon McKay

What is a database?

Outline

Existing databases

Types of databases

SQL and relational database basics

Normalization

Denormalization

Dealing with very dense data

Factors in database choice

Why do | need a database?

» Keeping data in flat files has limits
—requires parsers
— little or no organizing principles
— inefficient and awkward to query

Existing Biological Databases

Don’t reinvent the wheel; has someone already solved your
problem?

+ Genome annotation
— Ensembl, Bio::DB::GFF, etc.
* Model organism and general purpose
— Chado
* Maps
— CMap, ArkDB
+ Pathways
— Reactome, Panther, BioCyc
» Warehousing/data mining
— Biomart

Existing Biological Databases

However there is still a need for...

— Create lab databases, such as LIMS

— Design databases for the special and unique data
that only your group possesses

— Extend and improve existing models and schemas
to suit your needs.

Selected Data Models

Flat Model

» Hierarchical Model

Object Model

Relational Model

Flat (Table) Model

» A single, two-dimensional array of data elements
» All members of a column are assumed to be similar values

« All members of a row are assumed to be related to one another

* Example: spreadsheet

Filev| Edit Sort Formulas

CoRNI 3 @ Formatv| B 7 U F- 1~ Ty B B Z Algn~v | Insertv | Delete v

A B c D E F G -
Sport League Team Home color ~ Away color Wins Losses Ties
Soccer NYSC Cheetahs White Red 0 5

Soccer NYSC Tigers Red White 2 3 1
Softball SSL Isotopes Green Yellow 1 0 1

a2 W N -

» Data organized into a tree-like structure

* Represents relationships like parent/child

Hierarchical Model

System_id System Parent_system part
10 electrical 10 ABS relay
20 drive-train 10 flasher
30 brakes 10 body control module
20 transmission
20 head gasket
9
+ Attempt to apply object-oriented programming principles, such
as encapsulation and polymorphism, to database organization
* Reached its peak of popularity in the 1990s
» Successfully applied to genome annotation database AceDB
Tree display of: cxTi10301
Name [cxTi10301 Class [Variation
TR e
.
et
[Variation_type e _Insertion
 — e e ST A
remark nodnions yod so arscrad
T e o 1.
e ST oo

webmaster@waw. wormbase.

org
Send comments or questions to WormBase

Copyright Statement
Privacy Statement

Relational Model

* A mathematical model, originally proposed by E.
F. Codd in 1970, defined in terms of predicate
logic and set theory

* Relational databases implement a model that is an
approximation to Codd’s mathematical model

11

Relational Model

* A relational database contains multiple tables, each similar
to the one in the "flat" database model

* Relationships between tables are not defined explicitly;
instead, keys are used to match up rows of data in
different tables

gene gene_process
gene_id gene_id
symbol process
species

DataBase Management Systems

* A complex set of software programs that
controls the organization, storage and
retrieval of data in a database

* In principal, this term is not interchangeable
with the database itself.

PostgreSQL

ORACLE' %

SYBASE [}'/ y éQL Server

Common Relational DBMSs

— Free/open source

. M)’SQL others
* PostgreSQL et -
— Commercial - ’
Adabas
+ Oracle S ccess/SaL Senen
D82
* Sybase
¢ Microsoft SQL Server Source: JoinVision E-Services GmbH, July 2006
15
Person S —— Application
Command Line Programmatic
Interface Interface (eg DBI)

DATABASE MANAGEMENT SYSTEM

Relational database basics

SQL

Tables and Schemas

Data Description Language
Adding data

Queries

Structured Query Language

* Structured English Query Language ("SEQUEL") was designed to
manipulate and retrieve data stored in IBM’s original relation database
“System R”.

* The acronym SEQUEL was later condensed to SQL due to trademark
issues.

* SQL was adopted as a standard by ANSI (American National
Standards Institute) in 1986.

* According to ANSI, the official pronunciation for SQL is /es kju: €l/ (but it
also common to pronounce it sequel).

* Although SQL is a defined standard, there are many flavors, some
proprietary

What can you do with SQL?

« Data retrieval
SELECT

» Data manipulation
INSERT, UPDATE, MERGE, TRUNCATE, DELETE

« Data definition
CREATE, DROP

« Data transaction
START TRANSACTION, COMMIT, ROLLBACK

« Data Control
GRANT, REVOKE

Tables and queries

» Data stored in tables
— Each row is a tuple (ordered list)

» A collection of table definitions is called a
schema

» Data are entered and retrieved using SQL
statements

20

10

A table

4 columns

Table: ‘favorite_color’

2 rows (tuples)

first_name

last_name

color

100

Tom

Jones

blue

101

John

Smith

red

21

SQL Data Description Language

CREATE TABLE favorite_color (

id INTEGER,

first_ name VARCHAR(255),
last_ name VARCHAR(255),
color VARCHAR(255)

22

1

Some SQL Domains

* INTEGER

« CHAR

* VARCHAR

* FLOAT

» DOUBLE PRECISION
 TEXT

+ DATE

Some constraints:

* UNIQUE
« NOT NULL

23

Adding data using SQL INSERTs

CREATE TABLE favorite_color (
id INTEGER,
first name VARCHAR(255),
last name VARCHAR(255),
color VARCHAR(255)

);

INSERT INTO favorite_color VALUES
(100, ‘Tom’, ‘Jones’, ‘blue’);
INSERT INTO favorite_color VALUES
(101, ‘John’, ‘Smith’, ‘red’);

24

12

Retrieving data

» Data can be retrieved using SQL queries

+ SQL can used interactively, or programmatically (eg
via DBI)

« SQL is based (loosely) on relational algebra
— a set of operations for manipulating relations
— main operations:

« PROJECT

« RESTRICT

* JOIN

25
Projection
id symbol species process
Q13478 ILL8R_Human Homo sapiens Immune response
P33704 CD4_CANFA Canis familiaris Immune response
P05542 CD4_SHEEP Ovis aries T cell
differentiation

SELECT symbol FROM gene;

26

Restriction

id symbol species process
Q13478 IL18R_Human Homo sapiens Immune response
P33704 CD4_CANFA Canis familiaris Immune response
P05542 CD4_SHEEP Ovis aries T cell
differentiation
SELECT *
FROM gene

WHERE species=‘Ovis aries’

27
Combining operators: restrict
+project
id symbol species process
Q13478 ILL8R_Human Homo sapiens Immune response
P33704 CD4_CANFA Canis familiaris Immune response
P05542 CD4_SHEEP Ovis aries T cell
differentiation
SELECT symbol, species
FROM gene
WHERE process=‘Immune response’
28

14

Closure

* The result of a relational query is always a

relation

* This allows queries to be composed

— the result of a query can be used in another

query
29
id symbol species process
Q13478 ILL8R_Human Homo sapiens Immune response
P33704 CD4_CANFA Canis familiaris Immune response
P05542 CD4_SHEEP Ovis aries T cell
differentiation

SELECT process
FROM gene
WHERE id=‘Q13478’

30

15

MySQL command line interface: interactive

[smckay@brie3 DBI_lecture]$ mysqgl -usmckay -pcourse genes

mysql> desc favorite_color;

+ + + + +
| Field | Type | Null | Key | Default | Extra

+ + + R + + +
| id | int(11) | YES | | NULL |

| first_name | varchar(255) | YES | | NuLL |

| last _name | varchar(255) | YES | | nNULL |

| color | varchar(255) | YES | | NULL |

+ + + + + + +
4 rows in set (0.00 sec)

mysql> select * from favorite_color;

+ + + + +
| id | first_name | last_name | color

+ + + + +
| 100 | Tom | Jones | blue

| 101 | John | Smith | red

+ + + + +
2 rows in set (0.00 sec)

5T

MySQL command line interface:
passing SQL via STDIN

DROP TABLE favorite_color;
CREATE TABLE favorite_color (

id INTEGER,

first_name VARCHAR(255),
last_name VARCHAR(255),
color VARCHAR(255)

)i

INSERT INTO favorite color VALUES (100, 'Tom','Jones', 'blue');
INSERT INTO favorite color VALUES (101, 'John','Smith','red');
SELECT * FROM favorite color;

[smckay@brie3 DBI_lecture]$ mysql -usmckay -pcourse genes <input.txt

id first_name last_name color
100 Tom Jones blue
101 John Smith red

16

Normalization

process of restructuring the logical data

model of a database to eliminate
redundancy

also to help organize data efficiently, and

reduce the potential for anomalies during
data operations

33

Normalization
Consider the data:
id symbol species process
Q13478 ILL8R_Human Homo sapiens Immune response
P33704 CD4_CANFA Canis familiaris Immune response
P05542 CD4_SHEEP Ovis aries “T cell

differentiation”,

“positive
regulation of
interleukin-2
biosynthesis”

A gene can belong to multiple processes. How do we model,,

this?

17

What is wrong with this
approach?

id symbol species process
Q13478 IL18R_Human Homo sapiens Immune response
P33704 CD4_CANFA Canis familiaris Immune response
P05542 CD4_SHEEP Ovis aries “T cell

“positive

differentiation”,

regulation of
interleukin-2
biosynthesis”

violates atomicity

35

. . L]
Next try: duplicating rows

id symbol species process

Q13478 ILL8R_Human Homo sapiens Immune response

P33704 CD4_CANFA Canis familiaris Immune response

P05542 CD4_SHEEP Ovis aries T cell
differentiation

P05542 CD4_SHEEP Ovis aries positive
regulation of
interleukin-2
biosynthesis

problem: redundancy

36

Normalization

* Tables with redundant data are said to be
not in normal form

* We normadlize the schema by representing
different kinds of data in different tables

37

Normalized schema

gene_id |symbol |species

Q13478 IL18R_Human | Homo sapiens
table: gene_process

P33704 CD4_CANFA Canis familiaris

— P05542 CD4_SHEEP Ovis aries gene—ld Process
Q13478 Immune response
table: gene P33704 Immune response

P05542 T cell

differentiation

P05542 positive

regulation of
interleukin-2
biosynthesis

28

Schema

gene gene_process
gene_id (PK)| ————<| gene _id (FK)
symbol process
species

39

Primary keys and foreign keys

A primary key for a table is one or more
columns which are guaranteed to be unique
for every row in that table

A foreign key for a table is one or more
columns that refer to a primary key in
some other table

40

20

Choosing primary keys

Must be unique

— gene symbol may be a bad choice
Primary key should be immutable

— should not change during lifetime of db
‘Natural’ vs ‘surrogate’

— natural keys come from existing columns
* Potentially useful for relating to external databases

— surrogate keys are artificial and have no meaning

Are database accessions ‘natural’?
41

Now that we have a normalized database, how
do we query across multiple tables?

* Data can be retrieved from >| table using
the JOIN operator

* The JOIN operator is actually the
composition of two operators
— product

— restrict

4

21

Joining two tables

- - gene_id |process
gene_ld symbol SPECIGS Q13478 Immune response
Q13478 ILL8R_Human | Homo sapiens JOIN P33704 Immune response
P33704 CD4_CANFA Canis familiaris PO5542 T cell differentiation
P05542 CD4_SHEEP Ovis aries PO5542 positive regulation

of interleukin-2

biosynthesis
gene. gene. gene.species gene_process. | gene_process.
gene_id | symbol gene_id process

Q13478 IL18R_Human Homo sapiens Q13478 Immune response

P33704 CD4_CANFA Canis familiaris P33704 Immune response

P05542 CD4_SHEEP Ovis aries P05542 T cell differentiation

P05542 CD4_SHEEP Ovis aries P05542 positive regulation

of interleukin-2
biosynthesis

Join syntax

: . gene_id |process
gene_id | symbol |species =
- Q13478 Immune response
Q13478 IL18R_Human | Homo sapiens
P33704 Immune response
P33704 CD4_CANFA Canis familiaris PO5542 T cell differentiation
P05542 CD4_SHEEP Ovis aries — -
P05542 positive regulation
of interleukin-2
biosynthesis
SELECT *
FROM
gene, gene_process
WHERE

gene.gene_id = gene_process.gene_id
44

Cartesian product of gene, gene_process

gene
gene_id symbol species g.gene_id | g.symbol g.species | gp.gene_id | gp.process
Q13478 IL18R_Human Homo Q13478 | IL18R_Human | Homo Q13478 Immune
sapiens sapiens response
P33704 CD4_CANFA Canis P33704 | CD4_CANFA | Canis Q13478 Immune
familiaris familiaris response
P05542 CD4_SHEEP Ovis aries PO5542 | CD4_SHEEP Ovis aries | Q13478 Immune
response
Q13478 IL18R_Human Homo P33704 Immune
gene_process sapiens response
- P33704 CD4_CANFA Canis P33704 Immune
gene_id process familiaris response
Q13478 Immune response PO5542 CD4_SHEEP Ovis aries | P33704 Immune
P33704 Immune response response
PO5542 T cell Q13478 IL18R_Human Hon_wo P05542 'crl_;:fell o
differentiation sapiens ifferentiation
P05542 positive regulation P33704 CD4_CANFA ?an!ls_ . P05542 Z':fe” tiati
of interleukin_2 amiliaris ifferentiation
biosynthesis P05542 CD4_SHEEP Ovis aries | P05542 T cell
differentiation
Q13478 IL18R_Human Homo P05542 positive
sapiens regulation of...
SELECT * i 9
P33704 CD4_CANFA Canis P05542 positive
FROM familiaris regulation of ...
gene, gene_process PO5542 CD4_SHEEP Ovis aries | P05542 positive
regulation of...
45
gene
gene_id symbol species g.gene_id | g.symbol g.species | gp.gene_id | gp.process
Q13478 IL18R_Human Homo Q13478 | IL18R_Human | Homo Q13478 Immune
sapiens sapiens response
P33704 CD4_CANFA Canis P33704 | CD4_CANFA | Canis Q13478 Immune
familiaris familiaris response
PO5542 CD4_SHEEP Ovls arles P05542 | CD4_SHEEP Ovis aries | Q13478 Immune
response
Q13478 ILI8R_Human Homo P33704 Immune
gene_process sapiens response
N P33704 CD4_CANFA Canis P33704 Immune
gene_id process familiaris response
Q13478 Immune response PO5542 CD4_SHEEP Ovis aries | P33704 Immune
P33704 Immune response response
PO5542 T cell Q13478 ILI8R_Human Homo P05542 'g_;:fell -
differentiation sapiens ifferentiation
PO5542 positive regulation P33704 CD4_CANFA ?an!i . P05542 Z'?fe” .
of interleukin-2 amiliaris ifferentiation
biosynthesis P05542 CD4_SHEEP Ovis aries | P05542 T cell
differentiation
Q13478 ILI8R_Human Homo P05542 positive
. sapiens regulation of...
SELECT P33704 CD4_CANFA Canis P05542 positive
FROM familiaris regulation of...
gene AS g, gene_process AS gp PO5542 | CD4_SHEEP Ovis aries | P05542 positive

WHERE

regulation of ...

gene.gene_id = gene_process.gene_id

46

23

Further normalizations

table: gene
gene_id [symbol |species species_common_name
Q13478 IL18R_Human Homo sapiens Human
P33704 CD4_CANFA Canis familiaris Dog
P05542 CD4_SHEEP Ovis aries Sheep

* not fully normalized
* non-primary key columns are dependent on each other

47

Further normalizations

gene_id [symbol |species_id
Q13478 IL18R_Human | 9606
P33704 CD4_CANFA 9615

P05542

CD4_SHEEP 9940

table: gene

table: species

species_id | common_name | scientific_name
9606 human Homo sapiens

9615 dog Canis familiaris

9940 sheep Ovis aries

48

24

More

gene_id |process
Q13478 Immune response
P33704 Immune response
P05542 T cell differentiation
P05542 positive regulation

of interleukin-2
biosynthesis

gene_process

normalizations

needs ‘keyword’ table
- controlled vocabularies
- ontologies

49
More normalization
gene_id |term_id
Q13478 6955
P33704 6955
P05542 30217
P05542 45086 term
term_id | name
gene_process 6955 Immune response
30217 T cell differentiation
45086 positive regulation
of interleukin-2
biosynthesis
50

25

Denormalization

* The process of attempting to optimize the
performance of a database by adding redundant
data

* Usually proceeds from a normalized database

* Sometimes required to improve performance for

large batch/data-mining queries (eg Ensembl ->
BioMart)

51

Should a database schema
always be normalized?

* It depends...

— updates vs queries

—type of queries

— philosophical disposition
* Know when to stop normalizing

— normalized = more tables, more joins
» Data ‘warehouses’

—e.g. BioMart

52

26

Examples

» Bulk data downloads
— performance is a factor
— Query optimized, denormalized database

» Large genomic data repository
— Data integrity, storage efficiency
— Normalized database

« OLAP (On Line Analytical Processing)

— Data summaries and calculated values that are not in the
parent database

— Denormalized database with pre-computed fields

53

Summary

Relational databases are backed by theory
— powerful
— fast (usually)
— but some things are hard or difficult to express

Further reading on Normalization Theory

http://en.wikipedia.org/wiki/Database_normalization

54

27

Further Reading on normalization theory

http://fen.wikipedia.org/wiki/Database_normalization

Dealing with very dense data

* Microarrays

* Next-gen Sequencing

160k 70k 160k
FlyBase Genes
spen

§
¥

]

iption Tiling Arrays (8-24 hrs)
i

T 1T —
S]I
1SR | SR S ——

of oD, measured by a tlng

agcfacac

3
g
g

56

28

* Wiggle
— Large amounts of scored data with genomic
coordinates
— Too many table rows for a relational database
— Solution is a hybrid database/serialized data approach

WIG is a format specification introduced by the UCSC
Genome Browser and also adopted by GBrowse

1) The WIG file is converted to a query-optimized binary file
2) A pointer to the binary file is stored in the database
3) An external adapter queries the binary file

http://genome.ucsc.edu/goldenPath/help/wiggle .html
http://gmod.org/wiki/GBrowse/Uploading Wiggle Tracks

57

* SAM/BAM (Sequence Alignment/Map)
— NGS data generates huge numbers of aligned reads

— The SAM specification allows efficient storage of
read alignments against reference sequences

— BAM is a highly efficient, compressed binary version
of SAM

— The SAMTools package provides utilities for
handling the alignment data.

— Third party implementers are starting to support
SAM/BAM, for example Bio:DB:SAM/GBrowse

http://samtools.sourceforge.net/

58

29

Q * Choose a design that fits your data
and working environment

e
_ ¢ There are some tasks for which
- o & relational databases are not
— appropriate
L 4
~
-
.

59

* There are plenty of database schemas and tools
out there

— know which one to use and when
— extend vs write your own

60

30

Problem Set

A quick primer on SQLite
- SQLite is a simple, stand alone, file based RDBMS

- The sqlite3 client is installed by default on many unix-like operating systems,
including Mac OS X

- sqlite3 accepts two kinds of commands: meta-commands (preceded by a
dot) and SQL statements.

Some useful meta-commands:

.schema tablename

.quit

.help (shows all of the available meta-commands)

Creating and loading a database:

$ sqlite3 my_database_name < my_SQL _file.sql
61

31

Querying databases with DBI

Sheldon McKay

Outline:

Sample data and database
SQL review and example queries

DBI
architecture
opening a connection
error handling
a basic DBI script
basic queries
fetch methods
a more advanced DBI script

The data

Borrelia burgdorferi gene information downloaded from TIGR*

[smckay@brie3 dbi]$ head -20 annotations.txt |cut -f1-7

TIGR Locus
SWISS-PROT/TrEMBL Accession

BB0001
BB0002
BB0003
BB0004
BB0005
BB0006
BB0007
BB0008
BB0009
BB0010
BB0011
BB0012
BB0013
BB0014
BB0015
BB0016
BB0017
BB0018
BB0019

hypothetical protein

"beta-N-acetylhexosaminidase, putative"

hypothetical protein
phosphoglucomutase

tryptophanyl-tRNA synthetase

conserved hypothetical
hypothetical protein
conserved hypothetical
hypothetical protein

"holo-acyl-carrier protein synthase, putative"

hypothetical protein

pseudouridylate synthase I

hypothetical protein
primosomal protein N
uridine kinase udk
glpE protein glpE
conserved hypothetical
conserved hypothetical
hypothetical protein

TIGR Common Name

End

051039 AAC66397.1

051043 AAC66395.1

051049 AAC66414.1

TIGR Gene Symbol TIGR 5' End TIGR 3'
GenBank ID
105 677 051035 AAC66406.1
1796 768 054536 AAC66400.1
3148 1784 051036 AAC66405.1
femD 3395 5188 051037 AAC66399.1
trsA 6312 5251 051038 AAC66398.1
integral membrane protein 7433 6309
8315 7458 051040 AAC66404.1
protein 8412 9197 051041 AAC66396.1
9202 10206 051042 AAC66403.1
10203 10577
10581 11420 051044 AAC66402.1
hisT 11421 12161 P70830 AAC66394.1
12154 12753 051046 AAC66401.1
priA 12746 14728 Q45032 AAC66393.1
15348 14725 059190 AAC66392.1
15722 15345 051048 AAC66391.1
integral membrane protein 15845 16804
protein 17817 16807 P70870 AAC66413.1
18304 17792 051051 AAC66416.1

* Now J. Craig Venter Institute

The database schema

Schema
annotation gene
aid int 1 gid int
annotation_state warchar(23) aid int
anhotation_desc varchar(120) —| did int
name varchar(15)
— symhol varchar(15)
description ref varchar(15)
did int T start int
description wvarchar(200) end int
strand enum
genbank_id wvarchar(15)
swiss_acc varchar(15)

Created by SOL::Translator 0.07

The ‘gene’ table

sglite> .schema gene
CREATE TABLE gene (

gid INTEGER NOT NULL primary key,

aid INTEGER,

did INTEGER,

name TEXT NOT NULL,

symbol TEXT,
table ref TEXT NOT NULL,

start INTEGER NOT NULL,

end INTEGER NOT NULL,

strand TEXT,

genbank_id TEXT,

swiss_acc TEXT

)i
name symbol start end swiss_acc genbank id ref
data BB0004 phosphoglucomutase femD 3395 5188 051037 ARC66399.1 chromosome
The ‘gene’ table

sqlite> SELECT * FROM gene LIMIT 10;
gid aid did name symbol ref start end strand genbank id swiss_acc
1 3 1 BB0001 chromosome 105 677 + AAC66406.1 051035
2 1 2 BB0002 chromosome 768 1796 - AAC66400.1 054536
3 3 1 BB0003 chromosome 1784 3148 - AAC66405.1 051036
4 1 3 BB0004 femD chromosome 3395 5188 ARAC66399.1 051037
5 1 4 BB0005 trsA chromosome 5251 6312 - AAC66398.1 051038
6 2 5 BB0006 chromosome 6309 7433 - AAC66397.1 051039
7 3 1 BB0007 chromosome 7458 8315 - AAC66404.1 051040
8 2 6 BB0008 chromosome 8412 9197 + AAC66396.1 051041
9 3 1 BB0009 chromosome 9202 10206 + AAC66403.1 051042
10 1 7 BB0010 chromosome 10203 10577 + AAC66395.1 051043

data

The ‘description’ table

BB0004 phosphoglucomutase femD 3395 5188 051037 AAC66399.1 B31
sglite> .schema description
CREATE TABLE description (
did INTEGER NOT NULL primary key,
table description TEXT
)i
sqlite> SELECT * FROM description LIMIT 10;
did description
1 hypothetical protein
2 beta-N-acetylhexosaminidase, putative
3 phosphoglucomutase
4 tryptophanyl-tRNA synthetase
5 conserved hypothetical integral membrane protein
6 conserved hypothetical protein
7 holo-acyl-carrier protein synthase, putative
8 pseudouridylate synthase I
9 primosomal protein N
10 uridine kinase
The ‘annotation’ table
sqlite> .schema annotation

aid

)i

CREATE TABLE annotation (

annotation_state TEXT NOT NULL,
annotation_desc TEXT

INTEGER NOT NULL primary key,

sqglite> SELECT * FROM annotation;
aid annotation_state annotation_desc

1 curated
2 conserved_hypothetical
3 predicted

human curation; based on experimental evidence
conserved putative ORF; unknown function
based on ab initio gene prediction algorithm

The database schema

Schema
annotation gene
aid int gid int
annotation_state warchar(23) aid int
anhotation_desc varchar(120) did int
name varchar(15)
— symhol varchar(15)
description ref varchar(15)
did int start int
description wvarchar(200) end int
strand enum
genbank_id wvarchar(15)
swiss_acc varchar(15)

Created by SOL::Translator 0.07

SQL and exploration of the database

Simple queries

Count the genes

View some data

sqlite> SELECT count(*) FROM gene;
count (*)

1740

sqlite> SELECT name,symbol,genbank_id FROM gene LIMIT 10;
name symbol genbank_id
BB0001 AAC66406.1
BB0002 AAC66400.1
BB0003 AAC66405.1
BB0004 femD AAC66399.1
BB0005 trsA AAC66398.1
BB0006 AAC66397.1
BB0007 AAC66404.1
BB0008 AAC66396.1
BB0009 AAC66403.1
BB0010 AAC66395.1

Filtering with conditional clauses

Comparison operators:

Tests equality between columns and/or literal values

Tests for inequality (some databases use !=, =, or ~=)

<>
S <. L<=>= Greater than, less than, etc. (same as Perl)
2 b Y
IN Tests equality of a column within a specified set of
values
LIKE Allows limited wildcard matching of strings (some

databases use MATCHES or CONTAINS)

Logical operators:

AND Returns the logical AND -- true if both sides evaluate
as true
OR Returns the logical OR -- true if either the left or right

side evaluates as true

NOT

Negates the logical value of the expression that follows
it

Filtering with conditional clauses

sqglite> SELECT name,symbol,genbank id FROM gene WHERE symbol IS NOT NULL LIMIT 10;
name symbol genbank_id

BB0004 femD AAC66399.1

BB0005 trsA AAC66398.1

BB0012 hisT AAC66394.1 On|y genes with a symbo|
BB0014 priA AAC66393.1

BB0015 udk AAC66392.1

BB0016 glpE AAC66391.1

BB0020 pfpB AAC66412.1

BB0022 ruvB AAC66410.1

BB0023 ruvA AAC66409.1

BB0026 folD AAC66407.1

sqlite> SELECT name,start,end FROM gene WHERE start > 5000 AND end < 5601;

name start end

BBAO8 5250 5585

BBEOS5 5377 5529 . -

BBF11 5435 5542 Only genes in a coordinate range
BBI12 5128 5346

BBKO06 5126 5236

sglite> SELECT did,description FROM description
...> WHERE description LIKE 'S$protease%’;

did description

53 periplasmic serine protease DO

65 zinc protease, putative

141 ATP-dependent protease LA

184 carboxyl-terminal protease

190 ATP-dependent Clp protease, subunit A

319 ATP-dependent Clp protease proteolytic component

320 ATP-dependent Clp protease, subunit X

390 sialoglycoprotease

420 ATP-dependent Clp protease, subunit C

Descriptions containing the string “protease”

Joining two tables

sqlite> SELECT name,symbol,description FROM gene,description
...> WHERE gene.did = description.did LIMIT 5;

name symbol description

BB0001 hypothetical protein

BB0002 beta-N-acetylhexosaminidase, putative

BB0003 hypothetical protein

BB0004 femD phosphoglucomutase

BB0005 trsA tryptophanyl-tRNA synthetase

More complex joins

sqglite> SELECT name,annotation_state,description FROM gene,annotation,description
...> WHERE gene.did = description.did AND gene.aid = annotation.aid
...> AND annotation_state <> 'predicted' LIMIT 5;

name annotation_state description

BB0002 curated beta-N-acetylhexosaminidase, putative

BB0004 curated phosphoglucomutase

BB0005 curated tryptophanyl-tRNA synthetase

BB0006 conserved_hypothetical conserved hypothetical integral membrane protein
BB0008 conserved_hypothetical conserved hypothetical protein

Q: what happens if there is no description (the WHERE
clause is not satisfied)?

Ordering with “ORDER BY”

sqlite> SELECT name,symbol,start,end FROM gene
...> where ref LIKE 'chromosome%' AND start > 1000 AND end < 10000
..> ORDER BY start DESC;

name symbol start end

BB0008 8412 9197

BB0007 7458 8315

BB0006 6309 7433

BB0005 trsA 5251 6312

BB0004 femD 3395 5188

BB0003 1784 3148

All genes on the main chromosome between
positions 1001 and 10000 in descending order by

‘start’

What are the 10 longest genes in the B.
burgdorferi genome?

sqlite> SELECT name,symbol, (end-start) as length FROM gene

...> ORDER by length DESC LIMIT 10;
name symbol length
BBF32 8271
BB0512 6500
BB0420 4484
BB0794 4397
BB0388 rpoC 4133
BBHO09 3836
BBE02 3833
BB0633 recB 3509
BB0579 dnaE 3485
BB0389 rpoB 3467

« ‘length’ is not in the database. It can be calculated and the result aliased as ‘length’

(end-start) as length

* The “ORDER BY” operation is performed on the alias value of (end-start)

ORDER by length DESC

grouping and sorting

Distribution of “annotation states”

sqglite> SELECT annotation_state,count(*) AS number FROM gene,annotation

...> WHERE gene.aid = annotation.aid
...> GROUP by gene.aid;

annotation_state number
curated 669
conserved_hypothetical 398
predicted 673

Top 5 descriptions

sqlite> SELECT description,count(*) AS number FROM gene,description
...> WHERE gene.did = description.did
...> GROUP BY gene.did
...> ORDER BY number DESC LIMIT 5;

description number
hypothetical protein 637
conserved hypothetical protein 327
conserved hypothetical protein, pseudogene 34
plasmid partition protein, putative 21
conserved hypothetical integral membrane protein 18

DBI Architecture

Driver

DBMS

DBD:mysql

MySQL

script DBI DBD::Oracle

Oracle

etc.

etc.

10

How it works

DBI provides a high-level interface to a
DBMS via a specific driver

The details and heavy lifting are
handled by the drivers

If you know OOP and SQL, you know
how to use DBI

How it works

There are two basic types of handle, a
database handle and a statement handle

The database handle manages the
connection and most non-query
statements

The statement handle manages queries

11

Selected DBI class methods

(from http:/http://search.cpan.org/~timb/DBI/DBl.pm)

connect

$dbh = DBI->connect($data_source, $username, $password)
or die $DBI::errstr;

$dbh = DBI->connect($data_source, $username, $password, \%tattr)
or die $DBI::errstr;

Establishes a database connection, or session, to the requested saata_source. Returns a database handle object if

the connection succeeds. Use sabh->disconnect to terminate the connection.

available_drivers

@ary = DBI->available_drivers;
@ary = DBI->available_drivers($quiet);

Retumns a list of all available drivers by searching for psp: : * modules through the directories in exnc. By default, a
warning is given if some drivers are hidden by others of the same name in earlier directories. Passing a true value

for squiet will inhibit the warning.

data_sources

@ary = DBI->data_sources($driver);
@ary = DBI->data_sources($driver, \tattr);

Returns a list of data sources (databases) available via the named driver. If sariver is empty or undet, then the value

of the ps1_pr1ver environment variable is used.

drivers and data sources

#1/usr/bin/perl -w
use strict;
use DBI;

my @drivers = DBI->available_drivers;
print "\n--- Available DBI drivers and data sources ---\n\n";

for my $driver (@drivers) {
my @sources = eval { DBI->data_sources($driver) };

was there an error?
if ($@) |

print "Something is wrong with the $driver driver\n\n";

elsif (@sources) {
print "Driver $driver:\n\tSources:

, Jjoin("\n\t\t ",@sources),

}
else {

print "No data sources visible for $driver\n\n";
}

“\n\n";

12

smckay@bushl:dbi > ./drivers_and_ sources.pl
--- Available DBI drivers and data sources ---

Driver DBM:
Sources: DBI:DBM:f dir=.

Driver ExampleP:
Sources: dbi:ExampleP:dir=.

Driver File:
Sources: DBI:File:f dir=.

Something is wrong with the Proxy driver
No data sources visible for Sponge

Driver mysql:

Sources: DBI:mysgl:RunSilent
DBI:mysql:boo
DBI:mysql:boooo
DBI:mysql:genes
DBI:mysql:mysql
DBI:mysqgl:test
DBI:mysql:toximoron

Connecting to the database

#1/usr/bin/perl -w

use strict;

use DBI;

my $db = 'genes';

my $dbh = DBI->connect("dbi:SQLite:$db");
print "We have a connection to $db\n";

sleep 1;

might as well get into the habit now
$dbh->disconnect;

print "We have disconnected\n";

smckay@bushl:dbi > ./connect.pl
We have a connection to genes
We have disconnected

13

Object Methods

prepare

$sth = Sdbh->prepare($statement) or die $dbh->errstr;
$sth = $dbh->prepare($statement, \tattr) or die $dbh->errstr;

Prepares a statement for later execution by the database engine and returns a reference to a statement handle
object.

execute

$rv = $sth->execute or die $sth->errstr;
$rv = $sth->execute(@bind_values) or die $sth->errstr;

Perform whatever processing is necessary to execute the prepared statement. An undes is returned if an error
occurs. A successful execute always returns true regardless of the number of rows affected, even if it's zero (see
below). Itis always important to check the return status of execute (and most other DBI methods) for errors if you're
not using "RaiseError”.

fetchrow_array

@ary = $sth->fetchrow_array;

An alternative to fetchrow_arrayres. Fetches the next row of data and returns it as a list containing the field values.
Null fields are returned as undes values in the list.

do
Srows = $dbh->do($statement) or die $dbh->errstr;
$rows = $dbh->do($statement, \%attr) or die $dbh->errstr;
$rows = $dbh->do($statement, \%attr, @bind values) or die ...
Prepare and execute a single statement. Returns the number of rows affected or undes on error. A
return value of -1 means the number of rows is not known, not applicable, or not available.
finish

$rc = $sth->finish;

Indicate that no more data will be fetched from this statement handle before it is either executed again or destroyed.

The £inish method is rarely needed, and frequently overused, but can sometimes be helpful in a few very specific
situations to allow the server to free up resources (such as sort buffers).

disconnect

$rc = $dbh->disconnect or warn $dbh->errstr;

Disconnects the database from the database handle. disconnect is typically only used before exiting the program.
The handle is of little use after disconnecting.

14

A basic DBI script

#!/usr/bin/perl -w
use strict;
use DBI;

my $db = 'genes';
my $dbh = DBI->connect("dbi:SQLite:$db");

my $sth = $dbh->prepare(<<END);

SELECT name,symbol,description FROM gene,description
WHERE gene.did = description.did

AND symbol IS NOT NULL

LIMIT 10

END

i

$sth->execute;
while (my @array = $sth->fetchrow_array) {
print join("\t",R@array), "\n";

}

$sth->finish;
undef $sth; # not usually necessary
$dbh->disconnect;

smckay@bushl:dbi > ./fetchrow_array.pl

BB0004 femD phosphoglucomutase

BB0005 trsA tryptophanyl-tRNA synthetase

BB0012 hisT pseudouridylate synthase I

BB0014 priA primosomal protein N

BB0015 udk uridine kinase

BB0016 glpE glpE protein

BB0020 pfpB pyrophosphate--fructose 6-phosphate l-phosphotransferase, beta subunit
BB0022 ruvB Holliday junction DNA helicase

BB0023 ruvA Holliday junction DNA helicase

BB0026 folD methylenetetrahydrofolate dehydrogenase

15

Error handling

Errors can be handled by DBI automatically

Error handling can be turned on/off with the
attributes RaiseError and PrintError

eg
$dbh->{RaiseError} = 1
$dbh->{PrintError}

1
1

Error messages can be accessed by:

eg

print $DBI::errstr
or die $dbh->errstr
or warn $sth->errstr

Testing your SQL query

Are you getting what you expect?
dump_results

$rows = §$sth->dump_results($maxlen, $lsep, $fsep, $fh);

Fetches all the rows from ssth, calls ps1: :neat_1ist for each row, and prints the results to st (defaults to sToour)
separated by s1sep (default "\n"). s£sep defaults to *, " and smax1en defaults to 35.

$sth->execute;

$sth->dump_results(80); # max field length of 80 chars
[smckay@brie3 dbi]$./dump.pl | head

'BB0004', 'femD', 'phosphoglucomutase'’

'BB0005', 'trsA', 'tryptophanyl-tRNA synthetase'

'BB0012', 'hisT', 'pseudouridylate synthase I'

'BB0014', 'priA', 'primosomal protein N'

'BB0015', 'udk', 'uridine kinase'

'BB0016', 'glpE', 'glpE protein'

'BB0020', 'pfpB', 'pyrophosphate--fructose 6-phosphate l-phosphotransferase, beta subunit'
'BB0022', 'ruvB', 'Holliday junction DNA helicase'
'BB0023', 'ruvA', 'Holliday junction DNA helicase'
'BB0026', 'folD', 'methylenetetrahydrofolate dehydrogenase'

16

Fetching Rows

fetchrow_arrayref

$ary_ref = $sth->fetchrow_arrayref;
$ary_ref = $sth->fetch; # alias

Fetches the next row of data and returns a reference to an array holding the field values. Null fields are returned as
undef values in the array. This is the fastest way to fetch data, particularly if used with $sth->bind_columns.

my $arl = $sth->fetchrow arrayref;
print "The data structure:\n",Dumper($arl),"\n";

process the results

print join("\t",@$arl), "\n";

while (my $ar = $sth->fetchrow_arrayref) {
print join("\t",@$ar), "\n";

} Faster than
[smckay@brie3 dbi]$./fetchrow_arrayref.pl fetCh row_a rray

The data structure:
$VARL = [

'BB0004"',
'femD',
'phosphoglucomutase’

BB0004 femD phosphoglucomutase
BB0005 trsA tryptophanyl-tRNA synthetase
BB0012 hisT pseudouridylate synthase I

BB0014 priA primosomal protein N
BB0015 wudk uridine kinase
etc.

fetchrow_hashref

$hash_ref = $sth->fetchrow_hashref;
$hash ref = §$sth->fetchrow_hashref($name);

An alternative to fetchrow_arrayret. Fetches the next row of data and returns it as a reference to a hash containing
field name and field value pairs. Null fields are returned as undet values in the hash.

$sth->execute;

my $hrl = $sth->fetchrow_hashref; # just first row

print "The data structure for the first row:\n",
(Dumper ($hrl)),"\n";

smckay@bushl:dbi > ./fetchrow_hashref.pl
The data structure for the first row:
$VARL = {
'symbol' => 'femD',
'name' => 'BB0004',
'description' => 'phosphoglucomutase'

}i

17

Bulk Fetching

fetchall arrayref

$tbl ary ref = $sth->fetchall arrayref;
$tbl_ary ref = $sth->fetchall arrayref($slice);
$tbl_ary ref = $sth->fetchall arrayref($slice, $max_rows);

The fetchall_arrayref method can be used to fetch all the data to be returned from a prepared and executed
statement handle. It returns a reference to an array that contains one reference per row.

$sth->execute; smckay@bushl:dbi > ./fetchall_arrayref.pl
my $table = $sth->fetchall_arrayref; The data structure:
print "The data structure:\n", $VARL = [
(Dumper [@{S$table}[0..2]]), [
"\n"; 'BB0004 ",
'femD',

'phosphoglucomutase’

'BB0005 ',
'trsA',
'tryptophanyl-tRNA synthetase'

'BB0012',
'hisT',
'pseudouridylate synthase I'

fetchall hashref

$hash_ref = §$sth->fetchall hashref($key field);

The fetchall_hashref method can be used to fetch all the data to be returned from a prepared and executed
statement handle. It returns a reference to a hash containing a key for each distinct value of the $key_field column
that was fetched For each key the corresponding value is a reference to a hash containing all the selected columns
and their values, as returned by fetchrow_hashref().

$sth->execute;
my $result = $sth->fetchall_hashref('name');
print Dumper $result;

$VARL = {
'BB0012' => {
'symbol' => 'hisT',
'name' => 'BB0012',
'description' => 'pseudouridylate synthase I'
T
'BB0005' => {
'symbol' => 'trsA',
'name' => 'BB0005',
'description' => 'tryptophanyl-tRNA synthetase'
T
'BB0004' => {
'symbol' => 'femD',
'name' => 'BB0004',
'description' => 'phosphoglucomutase'
}
Yi

18

selectall_arrayref

Sary_ref = $dbh->selectall arrayref($statement);
Sary_ref = Sdbh->selectall arrayref($statement, \tattr);
Sary_ref = Sdbh->selectall arrayref(S$statement, \%attr, @bind values);

This utility method combines "prepare", "execute" and "fetchall_arrayref” into a single call. It returns a reference to an array containing
a reference to an array for each row of data fetched.

my $g = 'SELECT name, symbol FROM gene WHERE symbol IS NOT NULL LIMIT 3';
my $result = $dbh->selectall_arrayref($q);
print Dumper S$result;

$VARL = [

"BB0004 "',
'femD'

'BB0005"',
'trsA’

'BB0012",
"hisT'

selectall hashref

$hash_ref = $dbh->selectall hashref($statement, $key_field);
Shash_ref = $dbh->selectall hashref(S$statement, Skey field, \%attr);
$hash_ref = $dbh->selectall hashref($statement, $key field, \%attr, @bind values);

This utility method combines "prepare”, "execute” and "fetchall_hashref" into a single call. It returns a reference to a
hash containing one entry, at most, for each row, as returned by fetchall_hashref().

my $q = 'SELECT name, symbol FROM gene WHERE symbol IS NOT NULL LIMIT 3';
my $result = $dbh->selectall hashref($q, 'name');
print Dumper $result;
smckay@bushl:dbi > ./selectall_hashref.pl
$VARL = {
'BB0012' => {
'symbol' => 'hisT',
'name' => 'BB0012'
I
'BB0005' => {
'symbol' => 'trsA',
'name' => 'BB0005'
I
'BB0004"' => {
'symbol' => 'femD',
'name' => 'BB0004'
}
bi

19

Improving efficiency

a more advanced DBI script -- binding and placeholders

my $sth = $dbh->prepare(<<END);

SELECT name,symbol,d.description,ref,start,end,strand
FROM gene g,description d

WHERE g.did = d.did

AND d.description LIKE ?

AND start >= ? AND end <=7

AND ref LIKE ?

END

my @queries = (
[gw/%ATPase% 1 300000 chromosome%/],
[gw/%kinase% 1 300000 chromosome%/]

)i

for my $q (@queries) {
$sth->execute(€8q);
report($q,$sth->fetchall_arrayref);

sub report {
my $q = shift;
my $ref = shift;
my @terms = map {qq(\"$_\")} @$q;
print "Search terms: ",join(', ',@terms), "\n";
print join("\t",gw/name symbol description
ref start end strand/), "\n";
for my $array (@$ref) {
print join("\t",map {$_ || ''} @$array), "\n";
}

print

—-—=\n\n";

$./example_scripts/binding_and_placeholders.pl

Search terms: "$ATPase%", "1", "300000", "chromosome%"

name symbol description ref start end strand

BB0090 V-type ATPase, subunit K, putative chromosome Borrelia burgdorferi B31 86926 87360
BB0091 V-type ATPase, subunit I, putative chromosome Borrelia burgdorferi B31 87377 89203
BB0092 atpD V-type ATPase, subunit D chromosome Borrelia burgdorferi B31 89200 89814 -
BB0093 atpB V-type ATPase, subunit B chromosome Borrelia burgdorferi B31 89811 91115 -
BB0094 atpA V-type ATPase, subunit A chromosome Borrelia burgdorferi B31 91137 92792 -
BB0096 V-type ATPase, subunit E, putative chromosome Borrelia burgdorferi B31 93433 94035
Search terms: "%kinase%", "1", "300000", "chromosome%"

name symbol description ref start end strand

BB0015 udk uridine kinase chromosome Borrelia burgdorferi B31 14725 15348 -

BB0056 pgk phosphoglycerate kinase chromosome Borrelia burgdorferi B31 51253 52434 -

BB0128 cmk cytidylate kinase chromosome Borrelia burgdorferi B31 124149 124814 -

BB0239 dck deoxyguanosine/deoxyadenosine kinase(I) subunit 2 chromosome Borrelia burgdorferi B31

244777 245394 -
BB0241 glpK glycerol kinase chromosome Borrelia burgdorferi B31 246597 248102 +

HTML

10.18.2010

HTML

® Hyperlext Markup Language
® Not a programming language

® Stored in text files (just like Perl)

A basic page

<html>

<head>
<title>My web page title</title>
</head>

<body>

Your HTML content here

</body>
</html>

A kosher page

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rq/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>An XHTML 1.0 Strict standard template</title>
</head>
<body>

<p>.. Your HTML content here ..</p>

</body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

VWhy use web
standards/’

® Accessibility
® Jo robots
® Jo people
® Stability

<Tags />

® Most tags open and close

® Tags must be nested properly

.
R|ght Strong and emphasis Wrong Strong and emphasis

® Some tags stand alone

 <hr />

® Some tags take attributes

The Onion

® Elements consist of start and end tags flanking content

XHTML tags

<l--> B'O CTYPE> |<& <abbr> <acronym> <address> <area /> <base /> <bdo>
<big> <blockquote> | <body>
 <button> <caption> <cite> <code> <col /> <colgroup>
<dd> <dfn> <div> <dI> <dt> <fieldset> <form> <frame />
<frameset> <head> <h1>-<h6> |<hr/> <html> <i> <iframe> <input /> <ins>
<kbd> <label> <legend> <link /> <map> <meta /> <noframes> | <noscript> <object>
 <optgroup> <option> <p> <param /> <pre> <g> <samp> <script> <select>
<small> <style> <sub> <sup> <table> <tbody> <td> <textarea>
<tfoot> <th> <thead> <title> <tr> <tt> <var>

http://www.w3schools.com/tags/

http://www.w3schools.com/tags/default.asp
http://www.w3schools.com/tags/default.asp

Text tags

Heading tag

<h1>This is a top level heading</hl>

<h6>This is the bottom level heading</hé6>

Paragraph tag

<p>This is definitely a paragraph</p>

Line break

This is just two lines

With a hard break

Emphasis and Strong

That'’'s exactly what I mean - I am sick of
this slide

Comment Tag

<!——= This 1is a comment. You won't see this on the web-->

Tables

<table border="1">
<tr>
<th>Column 1 heading</th>
<th>Column 2 heading</th>
<th>Column 3 heading</th>
</tr>
<tr>
<td>Row 2, cell 1</td>
<td colspan="2">Row 2, cell 2, also spanning Row 2, cell 3</td>
</tr>
<tr>
<td rowspan="2">Row 3, cell 1, also spanning Row 4, cell 1</td>
<td>Row 3, cell 2</td>
<td>Row 3, cell 3</td>
</tr>
<tr>
<td>Row 4, cell 2</td>
<td>Row 4, cell 3</td>

</tr>
</table>
outp ut:
Column 1 heading Column 2 heading | Column 3 heading

Row 2,cell 1 Row 2, cell 2, also spanning Row 2, cell 3
Row 3, cell 2 Row 3, cell 3

Row 3, cell 1, also spanning Row 4, cell 1
Row 4, cell 2 Row 4, cell 3

http.//htmldog.com/guides/htmlintermediate/tables/

http://htmldog.com/guides/htmlintermediate/tables/
http://htmldog.com/guides/htmlintermediate/tables/

Lists

First things first</1li>

Who you know</1li> output:

 1. First things first

Not</1li> o Who you know

2. Not

 o What you know
What you know</1i> o What you can do with it
What you can do with it</1li>

Links

® Relative

Go down a directory
Go up a directory

® Absolute

Go to the root
Go to the NY Times

® Anchors

Go to the end
<hl id="theEnd">This is the end</hl>

http://nytimes.com
http://nytimes.com

Images

Forms

<form name="input" action="html form submit.pl" method="post">

e POST vs GET

Text fields

<form name="input" action="handleMyForm.pl" method="get">
First name:
<input type="text" name="firstname" />

Last name:
<input type="text" name="lastname" />
<input type="submit" wvalue="Submit" />
</form>

output:

First name:
Last name: (Submit)

Radio buttons

<form name="input" action="handleMyForm.pl" method="get">
<input type="radio" name="sex" value="male"/> Male

<input type="radio" name="sex" value="female"/> Female

<input type="submit" wvalue="Submit" />
</form>

output:

() Male
() Female

/ Submit \

<body>
<div id="wrap">

<div id="header"><hl>Simple 2 column CSS layout, final layout</hl></div>

<div id="nav">

<a href=
<a href=
<a href=

<a href=
<a href=

</div>
<div id="main">

"#">0ption 1l</1i>
"#">0ption 2</11i>
"#">0ption 3</11i>

"#">0ption 4</1i>
"#">0ption 5</1i>

<hZ>Column 1l</h2>

<p>456 Berea Street Home</p>

<p>Simple 2 column CSS layoutq
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Mauris vel magna. Mauris risus
<p>Nulla a lacus. Nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
<p>Aenean tempor. Mauris tortor quam, elementum eu, convallis a, semper quis, purus. Cras at

<h3>Consectetuer

<p>Nulla dictum. Praesent turpis libero, pretium in, pretium ac, malesuada sed, ligula. Sed

<p>Maecenas eu velit nec magna venenatis consequat. In neque. Vivamus pellentesque, lacus ey

</div>
<div id="sidebar">

adipiscing elit</h3>

<h2>Column 2</h2>

<p>Lorem ipsum dolor sit

<a href=

<a href=
<a href=
<a href=
<a href=
<a href=
<a href=

<a href=
<a href=
<a href=
<a href=
<a href=
<a href=

<a href=
<a href=

</div>
<div id="footer">
<p>Footer</p>
</div>

</div>
</body>

"#'>Link l</1i>

"#">Link 2</1i>
#"'>Link 3</1i>
>Link 4</1i>
#">Link 5</1i>
"#">Link 6</1i>
"#">Link 7</1i>

"#">Link 8</1i>
"#">Link 9</1i>
"#">Link 10</0a></11>
"#'>Link 1l</11>
"#'>Link 12</11i>
"#">Link 13</11i>
"#'>Link l4</11i>
"#">Link 15</1i>

amet, consectetuer adipiscing elit. Mauris vel magna.</p>

<style type="text/css">

body,html {
margin:0;
padding:0;
color:#000;
background:#a7a@9a;

}

#wrap {
width:750px;
margin:® auto;
background:#99c;

}

#header {
padding:5px 1@px;
background:#ddd;

}

hl {
margin:0;

}

#nav {
padding:5px 10px;
background:#c99;

}

#nav ul {
margin:0;
padding:0;
list-style:none;

}

#nav 11 {
display:inline;
margin:0;
padding:0;

}

#main {
float:left;
width:480px;
padding:10px;
background:#9c¢9;

}

hZ {
margin:® @ lem;

}

#sidebar {
float:right;
width:230px;
padding:10px;
background:#99c;

}

#footer {
clear:both;
padding:5px 1@px;
background:#cc9;

}

#footer p {
margin:0;

}

* html #footer {
height:1px;

}

</style>

xHTML + CSS =Web

Simple 2 column CSS layout, final layout

Option 1 Option 2 Option 3 Option 4 Option 5
Column 1

456 Berea Street Home

Simple 2 column CSS layout

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Mauris vel
magna. Mauris risus nunc, tristique varius, gravida in, lacinia vel, elit.
Nam ornare, felis non faucibus molestie, nulla augue adipiscing mauris, a
nonummy diam ligula ut risus. Praesent varius. Cum sociis natoque
penatibus et magnis dis parturient montes, nascetur ridiculus mus.

Nulla a lacus. Nulla facilisi. Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Fusce pulvinar lobortis purus. Cum sociis natoque
penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec
semper ipsum et urna. Ut consequat neque vitae felis. Suspendisse
dapibus, magna quis pulvinar laoreet, dolor neque lacinia arcu, et luctus
mi erat vestibulum sem. Mauris faucibus iaculis lacus. Aliquam nec ante
in quam sollicitudin congue. Quisque congue egestas elit. Quisque viverra.
Donec feugiat elementum est. Etiam vel lorem.

Aenean tempor. Mauris tortor quam, elementum eu, convallis a, semper
quis, purus. Cras at tortor in purus tincidunt tristique. In hac habitasse
platea dictumst. Ut eu lectus eu metus molestie iaculis. In ornare. Donec at
enim vel erat tempor congue. Nullam varius. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Nulla feugiat hendrerit risus. Integer enim
velit, gravida id, sollicitudin at, consequat sit amet, leo. Fusce imperdiet
condimentum velit. Phasellus nonummy interdum est. Pellentesque quam.

Consectetuer adipiscing elit

Nulla dictum. Praesent turpis libero, pretium in, pretium ac, malesuada
sed, ligula. Sed a urna eu ipsum luctus faucibus. Curabitur fringilla.
Suspendisse sit amet quam. Sed vel pede id libero luctus fermentum.
Vestibulum volutpat tempor lectus. Vivamus convallis tempus ante.
Nullam adipiscing dui blandit ipsum. Nullam convallis lacus ut quam.
Mauris semper elit at ante. Vivamus tristique. Pellentesque pharetra ante at
pede. In ultrices arcu vitae purus. In rutrum, erat at mollis consequat, leo
massa consequat libero, ac vestibulum libero tellus sed risus. Lorem ipsum
dolor sit amet, consectetuer adipiscing elit.

Maecenas eu velit nec magna venenatis consequat. In neque. Vivamus
pellentesque, lacus eu aliquet semper, lorem metus rhoncus metus, a
ornare orci ante a diam. Nunc sem nisl, aliquet quis, elementum nec,
imperdiet in, wisi. Proin in lorem. Etiam molestie diam eget ante. Morbi
quis tortor id lacus mollis venenatis. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Aliquam vel orci sit amet tellus mollis
eleifend. Donec urna diam, viverra eget, ultricies gravida, ultrices eu, erat.
Proin vel arcu. Sed diam. Cras hendrerit arcu sed augue. Sed justo felis,
luctus a, accumsan in, tincidunt facilisis, libero. Phasellus eu eros.

Footer

Column 2

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Mauris
vel magna.

e Link 1
Link 2

:

:

;

:

:

:

=
3
=
=

5
2
=

I
2
o
o

5
2
o
=3

I
2
—
|~

:

I
2
.
Gn

Cascading Style Sheets

® Help separate content from
appearance

® One style sheet can be applied to
hundreds of web pages

® Change styles in just one location

How CSS works

® Statements consist of
® Selectors
® Declarations

® Properties:Values

selector - body {4— opening curly brace

e

property civo- .
name -» font-size: 1em; T

R text-align: justify -«

)

font-family: Verdana, "Minion Web", sans-serif;

value

closing curly brace

(units)

http://westciv.com/wiki/CSS_Guide: How_do_style_sheets_work

http://westciv.com/wiki/CSS_Guide:_How_do_style_sheets_work
http://westciv.com/wiki/CSS_Guide:_How_do_style_sheets_work

CSS:Where do | put it?

® Embedded in the <head> of each page

<head><style type="text/css"> </style></head>

® Linked in the <head>
Advantages: templating, speed

<link rel="stylesheet" type="text/css"
href="/styles/style.css" />

® |nline (avoid this)

<p style="color: red">text</p>

http://www.westciv.com/style/style.css
http://www.westciv.com/style/style.css

CSS Selectors

® HTML selectors - raw tags in the style
sheet)

® (lass selectors

® use .className in style sheet

® use class="className" in HTML
® |D selectors

® use #idName in style sheet

® use id="idName" in HTML

HTML Selector
Example

Go to CNN.com
In the Firefox Web Developer Plugin change:

.cnn_contentarea { width:990px;text-align:left; }

to

.cnn_contentarea { width:990px;text-align:right;
color:fuchsia; letter-spacing:.l5em}

ID Selector Example

Go to CNN.com
In the Firefox Web Developer Plugin change:

#cnn maintllftf { float:right;width:250px;margin:0px;display:inline;margin:0 0 0 5px; }

to

#cnn maintllftf { float:right;width:250px;margin:0px;display:inline;margin:0 0 0 5px; }

Class selector example

sigNotSig.html
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Class selectors example</title>
<meta http-equiv="content-type"
content="text/html;charset=utf-8" />
<meta http-equiv="Content-Style-Type" content="text/css" />

<link rel="stylesheet" type="text/css" href="styles/style.css" />
</head>
<body>
<p class="sig">Your result is significant</p>
<p class="notSig">Your result is not significant</p>
</body>
</html>

styles/style.css output

p.sig { Your result is significant
color: green;
} Your result is not significant
p.notSig {
color: red;
}

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

Divs and Spans

® Divs

® Use <div id="myDiv"> </div> to define block
elements. Useful for both formatting and
positioning.

® The id is unique. It refers to one element
® Spans

® Use when you want to apply a class to some text
inline

® This is my sequence
ACTGATCTAGCT

BlueprintCSS

® CSS framework
® orid
® “sensible typography”

® stylesheet for printing

Blueprint Tests: grid.css

Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Lorem ipsum dolor sit amet, consectetur
adipisicing elit. adipisicing elit.
Lorem ipsum dolor sit amet, consectetur

adipisicing elit. adipisicing elit.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

1 2 3
1 2 3 4
1 2 3 4 5 6 7 8 9 10 1 12
1 2 3

2

Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Lorem ipsum dolor sit amet, consectetur

Lorem ipsum dolor sit amet, consectetur

Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Lorem ipsum dolor sit amet, consectetur
adipisicing elit.

Lorem ipsum dolor sit amet, consectetur
adipisicing elit.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

24

23

Do Not Reinvent the
Wheel

G()')8[C "free css templates” Search | Advanced Search
Web (¥ Show options... Results 1 - 10 of about 37,800,000 for “free css templates”. (0.31 seconds)

Results 1 - 10 of about 317,000 for “two column css". (0.40 seconds)

® http://www.freecsstemplates.org

http://www.freecsstemplates.org/
http://www.freecsstemplates.org/

VVWhere does my
website go?

® On Mac OS X

® Personal web: ~/Sites
® Main web: /Library/VVebserver/Documents
® Linux:/var/www/html or /var/apache2/htdocs

® XP Home: C:\Program Files\ApacheGroup
\Apache\htdocs

® Could be elsewhere. Don’t give up!

Naming your html files

® html .htm

® Why index.html is special

Where is my site!

® |n this class:

® http://infoserver.cshl.edu/~username

® On your own machine

® http://localhost/ or http://127.0.0.]

http://courses.cshl.edu/~username
http://courses.cshl.edu/~username
http://localhost
http://localhost

Apache

Vendor Product Web Sites Hosted Percent

Apache Apache 96,531,033 52.05%

o /etC/aPaChQZ/htth.CO nf Microsoft | 1IS 61,023,474 32.90%
Google GWS 9,864,303 5.32%

. nginx nginx 3,462,551 1.87%

® The apache configuration i e sssee rom
Oversee Oversee 1,847,039 1.00%

Others - 9,756,650 5.26%

® /usr/sbin/apachectl w |- liesaresss [000o
® Apache HTTP server control interface
® /var/logs/apache2/error_log

® Apache error log

Resource: HTML

® HTML Dog)
http://htmldog.com <HT5} Dog
® W3C tags

http://www.w3schools.com/tags WS(V

WORLD WIDE WEB

http://htmldog.com
http://htmldog.com
http://htmldog.com
http://htmldog.com
http://www.w3schools.com/tags/default.asp
http://www.w3schools.com/tags/default.asp

* All elements

div <div>

div * All elements within <div>
div span within <div>

div, span <div> and

div > span with parent <div>
div + span preceded by <div>

.class Elements of class "class”

div.class <div> of class "class"
#itemid Element with id "itemid"
div#itemid <div> with id "itemid"

a[attr] <a> with attribute "attr"

afattr="x"] <a> when "attr” is "x"

a[class~="x'] <a> when class is a list
containing 'x’'

a[lang|="en'] <a> when lang begins "en”

Pseudo-Selectors and Pseudo-Classes

sfirst-child First child element

sfirst-line First line of element

:first-letter First letter of element

:hover Element with mouse over

:active Active element

:focus Element with focus

link Unvisited links

:visited Visited links

:lang(var) Element with language "var"

:before Before element

:after After element

Sizes and Colours

0 0 requires no unit

Relative Sizes

em 1em egual to font size of
parent (same as 100%)

ex Height of lower case "x"

% Percentage

Absolute Sizes

px Pixels

cm Centimeters

mm Millimeters

in Inches

pt ipt = 1/72in

pc ipc = 12pt

Colours

#789abc RGB Hex Notation

#acf Equates to "#aaccff"

rgb(0,25,50) Value of each of red, green,
and blue. 0 to 255, may be
swapped for percentages.

Shorthand properties are marked x
Properties that inherit are marked +

Resources: CSS

Visible Area Margin

Height Border Width Padding

display clear
position z-index

top direction +
right unicode-bidi
bottom overflow
left clip

float visibility

width min-height
min-width max-height
max-width vertical-align

height

Color / Background

color + background-repeat

background x background-image
background-color background-position
background-attachment

text-indent + word-spacing +
text-align + text-transform +
text-decoration white-space +
text-shadow line-height +

letter-spacing +

font + x font-weight +
font-family + font-stretch +
font-style + font-size +

font-variant + font-size-adjust +

Available free from
www.AddedBytes.com

margin x
margin-top
margin-right
margin-bottom
margin-left
padding x
padding-top
padding-right
padding-bottom
padding-left
border x
border-top x
border-bottom x
border-right x
border-left x

caption-side +
table-layout
border-collapse +

size
marks

page-break-before

page-break-after

cursor +
outline x
outline-width

volume +
speak +
pause x
pause-before
pause-after
cue x
cue-before
cue-after
play-during
azimuth +

content

quotes +
counter-reset
counter-increment
list-style + x

border-color x
border-top-color
border-right-color
border-bottom-color
border-left-color
border-style x
border-top-style
border-right-style
border-bottom-style
border-left-style
border-width x
border-top-width
border-right-width

border-bottom-width

border-left-width

border-spacing +
empty-cells +
speak-header +

page-break-inside +

page +
orphans +
widows +

outline-style
outline-color

elevation
speech-rate
voice-family

pitch

pitch-range

stress

richness
speak-punctuation
speak-numeral

list-style-type +
list-style-image +
list-style-position +
marker-offset

Cheat sheet:

http://www.addedbytes.com/download/css-cheat-sheet-v2/pdf/

CSS tutorial

http://westciv.com/wiki/Main_Page

wo column style sheet and tutoria

http://www.456bereastreet.com/lab/

developing with_web_standards/csslayout/2-col/

http://www.addedbytes.com/download/css-cheat-sheet-v2/pdf/
http://www.addedbytes.com/download/css-cheat-sheet-v2/pdf/
http://westciv.com/wiki/Main_Page
http://westciv.com/wiki/Main_Page
http://westciv.com/wiki/Main_Page
http://westciv.com/wiki/Main_Page
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/

Tools of the Trade

® Web Developer Plugin
for Firefox

® (CSS editors
® MacRabbit CSSEdit
® SimpleCSS

wed Developer -

> body

[Austaparta . o [@l

style master = .

@ | ¢ installing siop.

O] Gmait-mbox - @ | ¢ indexof 05T @[] icoogle @] Apple.

Style Information

@ ARTICLES + TOPICS + ABOUT -+ CONTACT - CONTRIBUTE -+ FEED

Discovering Magic

GLENN JONES

DANA CHISNELL

Search ALA

Topics

® TopStyle (Windows)

p/) CcSS
®00 style.css © Buy Now to Unlock! ()
1 —= e
I E - G G [
@Siv o G Q [15)=>, ‘%—‘ -
Style Group Comment New Selector Search Export Preview Milestones Validate Editors
style.css |
Styles b ¥ o /a Fonts & Color
{b
ont Color #FF9900
size: [10 point =
_ UL |
ul Line Height +)
i Style: [B None |
Decoration: None
Variant: SMALL CAPS Normal
mal § Font Family:
#content :
#nav 16
17 ;
18 + A~
19
20 » I Text
5 » o i Background
footer = » o2 Dimensions
Jlogo 23 » - Positioning & Page Flow
» i Borders
-menu » X Bullets & Advanced
left
mid t
.navitem ¥
iimg
{ backg te c
{ b ext-dec
i

Web Programming with CGl.pm

Sheldon McKay

Executing CGl scripts

Use your personal web space
/Users/yourusername/Sites/cgi-bin

1) Create your script (end with ‘.pl’)

2) $ chmod 755 myscript.pl

10/17/10

A CGI Script that Creates Plain Text

#1/usr/bin/perl
file: plaintext.pl

print "Content-type: text/plain\n\n";

print "When that Aprill with his shoures soote\n";

print "The droghte of March hath perced to the roote,\n";
print "And bathed every veyne in swich licour\n";

print "Of which vertu engendered is the flour...\n";

http://mckay.cshl.edu/cgi-bin/course/plaintext.pl

A CGlI Script that Creates HTML

#!/usr/bin/perl

file:

print

print
print

print
print
print
print

print
print
print

chaucer.pl

"Content-type: text/html\n\n";

"<html><head><title>Chaucer</title></head><body>\n";

"<hl>Chaucer Sez</hl>\n";

"When that Aprill with his
"The droghte of March hath
"And bathed every veyne in
"0f which vertu engendered

shoures soote
\n";

perced to the roote,
\n";
swich licour
\n";

is the flour...<p>\n";

"<cite>-Geoffrey Chaucer</cite>\n";

"<hr>\n";
"</body></html>\n";

http://mckay.cshl.edu/cgi-bin/course/chaucer.pl

10/17/10

A CGI Script that Does Something Useful

A CGil script can do anything a Perl script can do, such as opening files and processing them.
Just print your results to STDOUT.

#!/usr/bin/perl -w
file: process_cosmids.pl
use strict;

my @GENES = gw/act-1 dpy-5 unc-13 let-653 skn-1 C02D5.1/;
my SURL = 'http://www.wormbase.org/db/gene/gene?name=";
print "Content-type: text/html\n\n";

print "<html><head><title>Genes</title></head><body>\n";
print "<hl>Genes</hl>\n";

print "\n";

for my $gene (@GENES) {
print gqgq($gene\n);

}

print
print

"\n";
"</body></html>\n";

http://mckay.cshl.edu/cgi-bin/course/process genes.pl

Creating Fill-Out Forms

HTML includes about a half-dozen elements for creating fill-out form
elements. A form must begin with <FORM> and end with </FORM>:

Code:

<form action="http://stein.cshl.org/cgi-bin/test-cgi.pl" method="POST">
Choose a Motif:
<input type="text" name="motif" value="TATTAT">

<input type="submit" name="search" value="Search!">

</form>

Result:

Choose a Motif: [TATTAT

Search!

10/17/10

Creating Fill-Out Forms |l

The <FORM> Tag

Attributes:

action (required)
CGil script to submit contents of form to.

method (required)
Submission method. Depends on CGl script. One of:
« POST
« GET

encoding

Required by certain scripts that accept file uploads. One of:

« application/x-www-form-urlencoded
« multipart/form-data

Creating Fill-Out Forms lI

<INPUT> Elements

Used for text fields, buttons, checkboxes, radiobuttons. Attributes:

pe
Type of the field. Options:
* submit
« radio
» checkbox
o text
» password
« hidden
« file

name
Name of the field.

value
Starting value of the field. Also used as label for buttons.

size
Length of text fields.

checked
Whether checkbox/radio button is checked.

10/17/10

Creating Fill-Out Forms IV

Examples:

<input type="text" name="motifl" value="TATTAT">
<input type="checkbox" name="motif2" value="TATTAT">

<input type="radio" name="motif3" value="TATTAT" checked>
<input type="radio" name="motif3" value="GGGGGG">

<input type="hidden" name="settings" value="PRIVACY MODE ON">

<input type="submit" name="search" value="SEARCH!">

TATTAT

O®

SEARCH!

Creating Fill-Out Forms V

<SELECT> Element

Used to create selection lists.
Attributes:

name
Name the field.

size
Number of options to show simultaneously.

multiple
Allow multiple options to be shown simultaneously.

<OPTION> Element

Contained within a >SELECT> element. Defines an option:
>option>I am an option</option>
Attributes:

selected
Whether option is selected by default.

value
Give the option a value different from the one displayed.

10/17/10

Creating Fill-Out Forms VI

<select name="motifl">
<option>GATTTA A</option>

<option selected>GGGTTTTC</option>

<option>TTTTTAAA AA</option>
<option>TATATATAT </option>

<option value="Tricky!">GGCCGGTTA</option>

</select>

<select name="motif2" size=6>
<option>GATTTA A</option>

<option selected>GGGTTTTC</option>

<option>TTTTTAAAAA</option>

<option>TATATATAT </option>

<option>GGCCGGTTA</option>
</select>

<select name="motif3" size=6 multiple>

<option>GATTTA A</option>

<option selected>GGGTTTTC</option>

<option>TTTTTAAAAA</option>

<option>TATATATAT </option>

<option>GGCCGGTTA</option>
</select>

GATTTAA
GGGTTTTC
AAAAA
TATATATAT
GGCCGCTTA

GATTTAA
GGGTTTTC
TTTTTAAAAA
TATATATAT
GGCCGGTTA

<input type="submit" name="search" value="SEARCH!">

SEARCH!

Creating Fill-Out Forms VII

<TEXTAREA> Elements
Used to create big text elements.
Attributes:

name
name of field

rows
rows of text

cols
columns of text

wrap
type of word wrapping

<textarea name="sequence" rows=10 cols=30>

</textarea>

<input type="submit" name="search" value="SEARCH!">

[NNNNNNNNNNNNNNNN
[NNNNNNNNNNNNNNNNNNNNNNNSNNNNNNNN
NNNNNNNNNNNNNNNN

SEARCH!

10/17/10

What is CGl.pm?

NOoO OB OWN -

. File uploads

. Standard module in Perl distribution (>= 5.004)
. Emits correct HTTP headers

. HTML shortcuts

. Parses CGl parameters

. "Sticky" form fields

. Creates & processes cookies

Make HTML Beautiful

CGl.pm defines functions that emit HTML. The page is easier to read and write than raw HTML*

<h1l>
Eat Your Vegetables
</hl>

peas</1li>
broccoli</1li>
cabbage</1li>

peppers

red</1li>
yellow</1li>
green</1li>

</1li>

<hr>

* if you speak Perl!

#1/usr/bin/perl
Script: vegetablesl.pl

use CGI ':standard';

print header,
start_html('Vegetables'),
hl('Eat Your Vegetables'),
ol(
li('peas'),
1li('broccoli'),
1li('cabbage'),
1i('peppers',

ul(
li('red"),
li('yellow'),
li('green')
)
)
)I
hr,
end_html;

http://mckay.cshl.edu/cqgi-bin/course/vegetables.pl

10/17/10

Make HTML Concise

Tag Functions are Distributive
print li('hi',/’how','are','you")

hi how are you
@items=('hi',/how','are','you'); print li\@items)

hi
how
are

you
print li(['hi','how','are','you'])

hi

how
are
you

Add HTML Attributes Using Hash References

Jeopts=(-type=>'square'); @items=('hi',how','are’,'you'); print li(\%opts \@items)

<LI TYPE="square">hi
<LI TYPE="square">how
<LI TYPE="square">are

<LI TYPE="square">you
print li({-type=>'square'},['hi', how','are','you'])

<LI TYPE="square">hi
<LI TYPE="square">how
<LI TYPE="square">are

<LI TYPE="square">you

10/17/10

http://mckay.cshl.edu/cgi-bin/course/vegetables2.pl

Using CGl.pm for the Genes Script

http://mckay.cshl.edu/cgi-bin/course/process _genes2.pl

10/17/10

Setting & Retrieving CGl Parameters

You can set and retrieve CGI parameters easily. In these examples, the CGl field string is:

banana=yellow&squash=green&tomato=red&tomato=green

Retrieve a Single-Valued Field Named "Tomato":

Call param() with the name of the field and assign it to a scalar.

my $banana_color = param('banana');
yields "yellow"

This works for both GET and POST types, including multipart/form-data.

Retrieve a Multi-Valued Field Named " Tomatoes":

Call param() with the name of the field and assign it to an array:

my @tomatoes = param('tomato’);
yields ('red', green")

Finding out What Parameters are Available

Call param() without any arguments. Will return the names of each of the parameters:

my @fields = param;
yields (‘banana’,'squash’,'tomato")

Setting Single- and Multivalued Fields:

param(-name=>'tomato', -value=>'red');
param(-name=>'tomatoes’,-value=>['red','green’,'blue']);

Parameters set in this way will be used as default values for fill-out form fields and hidden
fields.

10/17/10

10

#!/usr/bin/perl
file: final_exam.pl 1
-exm A Simple Form
use CGI ":standard';
print header;
print start_html('Your Final Exam'),
h1("Your Final Exam'),
start_form,
"What's your name? " textfield(-name=>'first_name'), .
p. Your Final Exam
"What's the combination?”,
P
checkbox_g[oup(-namc => 'words', ‘What's your name? Sheldon
-values => [‘ecnie',meenie’,minie’, moe'],
-defaults => ['eenie’,minie'), What's the combination?
P
"What's your favorite color? ", # eenie) meenie @ minie) moe
popup_menu(-name =>‘color’,
. -values => [red',green',blue', chartreuse']), What's your favorite color? (red %)
e (Sebmit query)
hr;
. Your name is: Sheldon
if (param()) {
print R
*Your name is: " param(first_name’), The keywords are: eenie, minie
Ps . .
“The keywords are: " join(", " param('words")), Your favorite color is: red
"Your favorite color is: " ,param('color),
hr;
}
print end_html;

Form Generating Functions |

Run peridoc CGl for details:

start_form
Start the form (returns the <form> tag with default attributes).

end_form
End the form by returning the </form> tag.

textfield(-name=>$name,-value=>$starting_value)
Create a text field.

password_field(-name=>%$name,-value=>$starting_value)
Create a password field.

textarea(-name=>%$name,-value=>$starting_value,-rows=>%rows,-cols=>$cols)
Create a multiline text input area.

checkbox(-name=>%name,-value=>$value,-checked=>1)
Create a single checkbox.

checkbox_group(-name=>$name,-value=>\@values,-default=>\@on)
Create a group of checkboxes sharing the same name. @values gives the list of
checkbox values, and @on gives the list of those that are initially on.

10/17/10

1

Form Generating Functions Il

radio_group(-name=>$name,-value=>\@values,-default=>%on)

Create a group of radio buttons sharing the same name. @values gives the list of radio

values, and $on indicates which one is on to start with.

popup_menu(-name=>$name,-value=>\@values,-default=>%$on)

Create a popup menu. @values gives the list of items, and $on indicates which one is

initially selected.

scrolling_list(-name=>%$name,-value=>\@values,-default=>%on)

Create a scrolling list. @values gives the list of items, and $on indicates which one (if

any) is initially selected.

submit(-name=>$name,-value=>%value)

Creates a submit button. $value optionally sets the button label.

#!/usr/bin/perl
file: reversec.pl

use CGI ":standard';

print header;

print start_html('Reverse Complementation'),
h1('Reverse Complementator’),
start_form,
"Enter your sequence here:" br,
textarea(-name=>'sequence' ,-rows=>5 -cols=>60),
submit('Reverse Complement'),
end_form,
hr;

if (param) {
my $sequence = param('sequence');

my $reversec = do_reverse(Ssequence);
Sreversec =~ s/(.{60})/$1\n/g; # do word wrap

print h2('Reverse complement');
print pre(Sreversec);

print end_html;

sub do_reverse {
my $seq = shift;
Sseq =~ sNs/lg; # strip whitespace
$seq =~ tr/gatcGATC/ctagCTAG/; # complement
$seq = reverse Sseq; # and reverse
return $seq;

A reverse complementation script

Reverse Complementator

Enter your sequence here:

AMAAAMAGATTGTGCTTCTCATCTCTCTC

Reverse Complement

Reverse complement

GAGAGAGATGAGAAGCACAATCTTTTTTT

10/17/10

12

File Uploading

HTML: <INPUT TYPE="FILE"> CGl.pm: filefield()

Annoying complication:
You have to start the form with start_multipart_form() rather than start_form().

Let’'s modify reversec.pl to support file uploads:

« First part (script too big for one page), print the form

#!/usr/bin/per]
file: sequpload.pl

use CGI ":standard';

print header;
print start_html('Reverse Complementation'),
h1('Reverse Complementator’),
start_multipart_form,
"Enter your sequence here:" br,
textarea(-name=>'sequence',-rows=>5 -cols=>60) br,
'Or upload a sequence here: ' filefield(-name=>'uploaded_sequence'),
submit('Reverse Complement'),
end_form,
hr;

sequpload.pl continued...

if (param) { If param() returns true, that means that we

have some user input
my $sequence;

look for the uploaded sequence first...
if (my $upload = param(‘uploaded_sequence’)) {
print h2("Reverse complement of $upload");

while (my $line = <Supload>) {
chomp Sline;
next unless $line =~ /A[gatcnGATCN]/; Reverse Complementator

Ssequence .= $line;
Enter your sequence here:

} else { # ... not found, so read it from the text field
print h2('Reverse complement');
$sequence = param('sequence');

}

Or upload a seq here: smc .txt (Browse...)
(Reverse Complement)

Sreversec = do_reverse(Ssequence);
Sreversec =~ s/(.{60})/$1\n/g; # do word wrap Reverse complement of myseq.txt
print pre(Sreversec);

GAGAGAGATGAGAAGCACAATCTTTTTTT

print end_html;

sub do_reverse { http://mckay.cshl.edu/cgi-bin/course/sequpload.pl
my $seq = shift;
Sseq =~ si\s//g; # strip whitespace
S$seq =~ tr/gatcGATC/ctagCTAG/; # complement
S$seq = reverse Sseq; # and reverse
return $seq;

10/17/10

13

Adding Cascading Stylesheets

#1/usr/bin/perl -w
Script: veggies_with_style.pl
use CGI ':standard';

my $css = <<END;
<style type="text/css">

i el Bl s Eat Your Vegetables

li.red { color: red }
ol {
background-color: gainsboro;
padding: 5px; 1. broccoli
margin-left: 200px;
width: 150px; 2' peas
¥ 3. cabbage
ul { background-color: black }
</style> 4. peppers
END
print header, o ye]_l()w

start_html(-title => 'Vegetables',
-head => $css);
print
hl('Eat Your Vegetables'),

ol(
1li(['broccoli', 'peas', 'cabbage']),
1li('peppers',
ul(
li({-class => 'red'}, 'red'),
li({-class => 'yellow'}, 'yellow'),
li({-class => 'green'}, 'green')

end_html;

http://mckay.cshl.edu/cgi-bin/course/veggies with_style.pl

External stylesheet

#!/usr/bin/perl -w
Script: veggies_with_style.pl
use CGI ':standard';

my $css = '/css/veggies.css';
print header,

start_html(-title => 'Vegetables',
-style => $css);

print
hl('Eat Your Vegetables'),
ol(
1i(['broccoli', 'peas', 'cabbage']),
1i('peppers',
ul(
li({-class => 'red'}, 'red'),
li({-class => 'yellow'}, 'yellow'),
li({-class => 'green'}, 'green’')
)
)r
)r
hr,
end_html;

http://mckay.cshl.edu/cgi-bin/course/veggies with style2.pl

10/17/10

14

CGl Exercises
Problem #1

Write a CGl script that prompts the user for his or her name and age. When the
user presses the submit button, convert the age into "dog years" (divide by 7) and
print the result.

Problem #2

Accept a DNA sequence and break it into codons.

Extra credit: Translate the codons into protein.

10/17/10

15

Overview and Applications of
Next-Generation Sequencing
Technologies

Stéphane Deschamps

Analytical & Genomic Technologies

DuPont Agricultural Biotechnology

Outline

1. Next-Generation Sequencing Platforms

2. Applications of Next-Generation Sequencing Technologies
1. Overview
2. Variant detection with Illumina platform

3. Third-Generation Sequencing technologies: what’'s next?

Sanger sequencing

o vt e s U5
S e Db 77

Conttuted by . Senger Oeser, 1077

Fluorescence detection in automated

DNA ing with chai inhibitors DNA sequence analysis
P ———
F. SANGER, S. NIGKLEN, AND A. R, COULSON Lloyd M. Smith, Jane Z. Sanders, Robert J. Kaiser, Peter Hughes, Chris Dodd,
et Rt oo M Bl Caed C2 507 Ead Charles R. Connell’, Cheryl Heiner’, Stephen B. H. Kent & Leroy E. Hood
D o B, s gt o e oo, o 15 650
i Mo o o T
ST i e s
i b i o DN ke s s We have deceloped a method for the partial automation of DNA sequence analyss. Fluorescence detection of the DNA

£ ma..“-a.......,m..,,..l

B
R A F e

i b e mann
polmerses 3. I ordr st el pter f b
P which a stniv equanes o o e 1 5 oty

The “pls and s’ ethod

hat wch thatcrly panial incoporation ofthe ermitor

g b g of Dt #6174 0 10

fotes i oy Rt bk e
egiorof e DA e ol o

e iy e i 2 ey e

e chniguc, netber bl

o sty ervats shot 3000

wlogses Tha -

Guence o st e v toglher andsometes confine.
oy Gt are sy W . Bare () Mol Bl pres)

i e
o commercally euabie. 8 Rt becn prepared by
MicCarhy e al () We sty Tollowed e

DEAE Sephaer. o of e

GACT i 0CTE

el o DNA quencing Tt e advaage e the e o ot 2 P e for AATE and i oo
Paraes

S0 st ot 1 b PP
BINA, b roqres a stand Sepration o ouivaiont e

1990 Onford Universey Press

Jragments s accomplished by means of a fluorophore coalently atiached to the oligomucleoride primer used in enzymaric

ce analysis. A diffrent coloured fluorophore is used for each of the reactions specifc or the bases A, C, G

uorescent hands of DNA are detected near the bortom of the tube, and the sequence information is acquired dircely by
computer

e sl s of DNA b an iy mporar

s deminethe v fenhs ot DNA Mgners g
10 bases of DNA

e ey
ey abour atenive, iy pensive snd
s ofradiosotopes. P hese essons, ndbecause
many genes remain to be sequenced (there are 310 bases
nome alone), we have underiaken tho develapment

4 and non-sotopic method of DNA sequence

Strategy

Nucleic Acids Research, Vol 18, No. 15 4417

High speed DNA sequencing by capillary electrophoresis

John ALuckey, Howard Drossman, Anthony J.Kostichka, David A Mead, Jonathan D'Cunha,
mith*

Tracy B.Norris and Li
Department of Cne

M.
emistry, University of Wisconsin, Madison, W1 53706, USA

Received May 17, 1990; Revised and Acoepted June 15, 1990

ABSTRACT

A major challenge of the Human Genome Initiative is

the devel o ‘accurate, and effcient
technology. & major imiation of curent

time
perform the el siectrophoretc separations s of DNA

EXPERIMENTAL PROCEDURES
Instrument Design

The capilary electrophoresis apparatus employed s
it peionsy By oo o e b

4500-450¢ Nuclese dcvis Research, 1997 151 25, N 22

© 1967 Oxford Tersiy Press

New dye-labeled terminators for improved DNA
sequencing patterns

B. B. Rosenblum®, L. G. Lee, S. L. Spurgeon, S. H. Khan, S. M. Menchen, C. R. Heiner
and S. M. Chen

PE Appied Biosystems, 650 Lincoin Centre Dive, Foster G, CA 64404, USA

el Augus 14,1957 R v Acossed Dcner 3, 1967

ABSTRACT heterozygores can be based on peak heights 35 well 35 the
presence of o bases 32 positon (.10). The myor dsadvan.
tazeofte dye primer method s e sequisespent for G separate

extession seactions and four dyeabeled primers for cach

We have used two new dye sets for automated
dye-abeled terminator DNA sequencing. One sst

DN/
of simulancous measurements of fluorescence 3t four

emonsirate here that It 1s poseible 10 Increase the
sequenco analysis by over an order of

bea from an argon on laser operatd in muldline mode is

by performing t and
eachon-in utes i a.iu..y ool An insirument
Which utilizes. thess hioh rations 10

jecive, spatialy 1

itha microscope b llred t0 remove scateed

: b
o T o ok o o eebray et IS oy bk e e

I areene e coie o et " s s of e lt et sencny
Secaptor dyes and the 5. or 6.carboxy lsomars of £ I sucenly gl cxcnechon o uied
- oth dye 4 ecessary, allowing the us fes iyt ation sites.

et utize 3 new linker betwsen the dye and the S o T SRR s
e an oo vt o oven pock hh o e e DA s

o e teng o Sy i el 2o e e
e e modarn. yen

Asadvanage of dye-libeled terminators fs hat wilh every

unsubstituted thodamine terminators produced elec- et the waten of termmaton wih dve-Iaheled termn.

Successive improvements now allows 96 800-900 base reads to be sequenced in less than 2h

Sanger sequencing

Sanger sequencing has been, and still is, very useful...

s\: Cl '_ence“"-.

genome

[d
Thérat genome

.but it remains slow and expensive

Sequencing Platform Comparisons

ABI 454 FLX [llumina
3730x| Titanium HiSeq 2000
Read Length 700-800bps 500bps >100bps
Number of
R eads/Run 96 1MM 2. 000MM
Max Yield/Run ~T70Kbps 0.5Gbps 200Gbps
Cost/1Gbp $3.5MM $15,000 $125
Run time/Instrument
t0 1Gbp 8 years 1 day 1 hour

Next-Generation Sequencing

Second-generation platforms:

*454/Roche
*HiSeq/lllumina

*SOLiD/Life Technologies
*Heliscope/Helicos BioSciences

Third-generation platforms:

*lon Torrent

*SMS/Life Technologies

*Pacific Biosciences

*Intelligent Bio-Systems

+ZS Genetics

*LightSpeed Genomics

*NABsys

*Oxford Nanopore Technologies

Next-Generation Sequencing

PRIMARY PRODUCERS

Estimated market share for high-speed

SOURCE: COWEN & CO.

sequencing technologies.
Life Technologles Hellcos
(ABI SOLID HeliScope: 1%
sequencer): 7% llumina
454 Life Sclences (Genome Analyzer
(Genome and HiSeq): 66%

Sequencer): 26%

Nature, 467, September 2010

454 FLX Titanium

First next-generation sequencing platform launched
(October 2005)

Titanium chemistry for the 454 FLX launched in
September 2008
Sequencing By Synthesis

— Pyrosequencing

— Chemiluminescent signal

Long read technology (~500 nucleotides)

Generates up to 0.5Gbps per run

454 FLX Titanium

» DNA Library Construction

— Ligation of A & B adaptors

— No cloning

Emulsion PCR

— DNA capture beads

— Clonal amplification in “microreactors”

* Pyrosequencing

— Deposition of enriched beads into picotiter plate

Bead deposition into plates

Deposition of enriched beads into 4

PicoTiter plate e ® e%y ¢

Well diameter = 29uM allowing for a _%i

single bead (20uM diameter) per well

Chambers are filled with enzyme
beads, DNA beads and packing

beads.

www.roche-applied-science.com

Pyrosequencing

Polymerase add nucleotide

(sequential flow of dNTPs)

PPi is released

Sulfurylase creates ATP
from PPi

Luciferase hydrolyzes ATP
and use luciferin to make
light

o4 Signal image

Sulfurylase

ATP

Luciferase
DNA capture bead \/ﬂ/—/

containing m'llllons of Light + oxy luciferin
copies of a single
clonal fragment

www.roche-applied-science.com

Image and signal processing

Key se(}uence = TCAG for identifying wells and calibration

Flow of individual bases (TCAG) is 200 times.

Raw data is series of
images (one image per
base per cycle).

Data are extracted,
quantified and

inmn
QO>—

normalized.
Read data are converted

I

TTCTGCGAA

L) ,. MH | . \."\ LI \ I

into “flowgrams”. i

www roche-applied-science.com

Signal strength

454

SEQUENGING

Post-processing

1. Output = flowgrams, basecalls, Phred-equivalent scores

2. Basecall & Flowgrams can be used in the following applications:
1. De novo assembler — consensus sequences assembled into contigs
with quality scores and ACE file (works best with genomic DNA).
2. Reference mapper — contigs mapped to reference sequence + list of
high-confidence mutations
3. Amplicon variant analyzer — identification of sequence variants in

amplicon libraries

lllumina HiSeq 2000

» Single molecule array (“flow cell”) with tens of
millions of amplified clusters

« Sequencing By Synthesis
— Removable fluorescence
— Reversible terminators

» Short read technology (>150 nucleotides)

» Generates >200Gbps per run

lllumina HiSeq 2000

Sample Prep cBot HiSeq 2000

0 WlL_{

Prepare DNA

Cluster Synthesis Sequencing

fragments
+
Ligate
adapters
Analysis Pipeline
Cluster Generation

l poppmncoinees, | gt nmse 31 s amptccn

ligate adapters to both ends of the
fragments

Add unlabeled
randomly to the inside surface of the nucleotides and

flow cell channels. enzyme to initiate

sclid-ghasc ridge
Adapter amplification.

DNA fragment

or RNA %" ﬁﬁ ﬁ
i

7 ﬁ ®

/N Dense lawn
of primers

Py

¢ & LR

- anneal

Cluster Generation

= = = - N A
Fragments become Denature the double stranded (@ g: g;gl;:g: gzmphﬁu f,:t:,‘::”
— double stranded molecules clusters of double stranded DNA are
generated in each channel of
the flow cell

Attached

Attached Free
erminus ter

- extension

DNA Clusters
» ~1,000 copies of DNA in each cluster
* 1-2 microns in diameter

Reversible Terminator Chemistry

Incorporation
Imaging

Cleavage

b v Q 7
HN cleavage , HN
site fluor 5\)\
(o) N DNA o N
PPP o —> o o
3’ 3’
block Polymerization of 1 base OH free 3’ end
Detection
Deblock; fluor removal @

Next cycle jllumina

Sequencing by Synthesis (SBS)

Cycle 1: Add sequencing reagents
First base incorporated

Remove unincorporated bases

> Detect signal

Deblock (removal of fluorescent dye
and protecting group)

Cycle 2 - n: Add sequencing reagents and repeat

Sequencing by Synthesis (SBS)

2 ¢ * .
. 2 .
®. . “ . .
° N .
. . - ~ .

TTTTTTTGT ...

The identity of each base of a cluster is read off
from sequential images

) illumina

Data Analysis Workflow - lllumina

magesi) —| lllumina Analysis Pipeline l—
Sequence
__J| Image L, Base — Analysis
RTA Analysis calling CASSAVA
I I alignment (ELAND),
1 1 filtering (chastity)
«Cluster Intensities +Corrected Cluster Intensities
«Cluster Noise » cross-talk correction
1 image per dye » phasing correction
4 dyes/cycle *Cluster Sequence

202 cycles

120 tiles/lane

8 lanes/flowcell
775,680 images

per 2x101 bases run

*Cluster Probabilities (Scores)

Alignments,
Assemblies, Normalization,
Annotations &
Post-processing Evaluations

Other platforms

Sequencing Sequencing Run Read Reads per Throughput
Platform Chemistry Time Length Run per
(bp) (million) Run (Gbp)
Roche 454 FLX | Pyrosequencing 10h 400-500 ~1 0.4-0.5
lllumina HiSeq Sequencing by | 8 days 100 >2,000 200
Synthesis
ABI SOLiD 4 Sequencing by 12-16 50 >1,400 80-100
Ligation days (mappable)
Helicos Sequencing by | 8 days 25-55 600-1,000 21-35
HeliScope Synthesis
Polonator Sequencing by 80h 28 300-400 10
Ligation

Data Quality

Error rates by cycle for file s_4_0111_rescore.txt
20 T T T T

15 - .

10 | -

Percent

0 50 100 150 200 250

Phred score 20 = 1% error rate

Quality vs. Read Length? Trimming?

~Phred 20

Single short read uniqueness

Number of Reads

lllumina 35 base reads aligned to A. thaliana genome

10000000
1000000
— 1 location
100000 —— 2 locations
3 locations
10000 4 locations
—— 5 locations
—— 6 locations
1000 ~ | |— 7 locations
—— 8 locations
100 —— 9 locations
-~ — — — 10 locations
/7
1 +———+++ 44— ‘

Dol oD PAd AN PR AFPAV AN PP XE
Read length (bps)

~4MM reads

Applications of
Next-Generation Sequencing

Gene Expression Profiling

— Tag count & Alignments

— Digital Gene Expression Tag Profiling

Short cDNA fragments mapping to 3’ ends of transcripts

SAGE-like approach (1 short tag/transcript)

20 base tag output (RE site + 16 bases) aligned to a reference genome
Identify, quantify and annotate expressed genes

— Transcriptome Profiling (RNA-Seq)

cDNA fragments generated via random priming

100 base output aligned to a reference genome
Assemble entire transcript sequence

Identify, quantify and annotate expressed genes
Identify SNPs, alleles and alternative splice variants

Tag Profiling — Sample Prep (lllumina)

RSN RRESE ST EREEEE SRR Total RNA (5ug)
| mRNAisolation
“AAAAA
l 1st and 2" Strand cDNA Synthesis
: Ao

1 Restriction Enzyme Digestion (Dpnll or Nlalll)
AAAAA
OATS E M
1 GEX Adaptor 1 Ligation

Mmel
l CATG ,—l AAAAA
GTAC TTTTT_bio

1 Mmel digestion
Mmel

CATG NN
C meel]
| GEXAdaptor 2 Ligation
CATG NN
| RS NV
l PCR Amplification
PCR Primer 1 ——» RCR Primer 2 Cluster
— :
2 Generation
sequencing primer

Transcriptome Profiling — RNA-Seq (lllumina)

Tissue
! Total RNA isolation (10ug)
! mRNA isolation
B HAAAAA
1 Fragmentation (random)
36cE005E00000ee 36cE005E00000ee IIIIIIIIIINIAAAAA nnnnnininn
1 1st and 2 Strand cDNA Synthesis (N primer)

- I I My =

\ l / Adaptor Ligations
I I [

l PCR Amplification

PCR Primer 1 ——» FCR Primer 2 Cluster

Generation

sequencing primer 1 sequencing primer 2

Novel Transcript Discovery

- Small RNA Identification and Profiling

. Small RNA size is suitable to discovery with next-generation sequencing

- Deep assessment of alternative splicing isoforms

. Deep coverage allows discovery of rare isoforms

)| Brain RNA b Al
| | l

Muscle RNA - Aund

= — F

u

i

B
< B rrecwTa mrrEEEeao
6 ec———n { e
1 kb

Mortazavi et al. (2008), Nat. Methods

De novo Sequencing

— Whole Genome & Transcriptome Sequencing
+ Small genomes that are not too complex (microbial)
« The longer the reads, the better — 454 chemistry most suitable
* Recent improvements of lllumina platform - ~500Kbps contigs
» Paired-End sequencing

— Targeted Sequencing
* Indexed PCR products
— Raindance Technologies
— Padlock probes
* Indexed BAC clones
» Sequence Capture (Solid phase, Liquid phase)
— Agilent, Febit & Nimblegen

* Reduced-Representation (Methyl-sensitive Enzymes)

Gene Regulation

- ChlIP-Seq (immunoprecipitate sequencing)
. Capture regions of the genome bound by proteins (transcription factors,
histones)
. Requires complex algorithm to determine differential levels of coverage
throughout the genome

- Methyl-Seq (methylation status) — Bisulfite Sequencing
. Technically complex
. Requires alignment of distinct modified DNA strands to reference sequence

Hémir:: AL | | | | | I i | | | | I 20k0
ChiP-chip LMA-_LJLMI.MLL_ALMM.LM _M_L.J_umd..hhl_.u._ll- ‘Luh,lm

H3K27me3 i
ChIP-Seq .A_MM.‘JALM. rmms astnbilh, o LLL._-“-L L_..L‘. it sk dab &
ChiP-chip HLLAMA.L‘AAL““L‘M h&humm&“.“m.u .n.l-L‘.u.M
[APEINRINENG 7

4A

0!

900

\¢

% %’@E%
) ol

<.

A < s QQ 2 7
, s%gf ST R %ﬁ?‘o
X

N.ﬁ“oﬁa

Mikkelsen et al. (2007), Nature

Methyl-Seq

RBS_MAIZE Ribulose bisphosphate carboxylase small chain (pco504677)

ACAAGGAGCTGCAGGAGGCCATCAAATCCTACCCGGACGCCTTCCACCGCGTCATCGGCTTCGACAACATCAAGCAGACGCAG
TGCGTCAGCTTCATCGCCTACAAGCCCCCGGGCAGCGACTAGACCGCGCCCGCCGGCCGCCCCCCGCCGGCTAGCTAGCTAGC
TAGCTCCTGCGTGAGCTAGTAGCTAGTGCCATGCGTCGTCTCTGTCGTTCGGTTTTGCTTCGGGTCACCGTGTACCCTTTGCTTG
CTTGGTTTCTTCTTTCCTTTTTTCCTTTTTTTTITCTTCTTTTCCCCGGCCATGGTTCCTTTGCTTTCCAGCAGTTCTCTGCTGGATGT
GATGTATCCATTGTTGCAAGCATGCATGGCCTTGCATTGGCTACCTCTATACCTGCTACAAAACTACTGCAACGCCTATATATAC
TTGGGGTGAGGAACATGTGAATGCAAGCTCCGGCTATCATATACATGTAATATGGATACAAACTATATATATAAATCCGCCGA
GGCGCCGACAATACTATACGACGACACCGTGTTAAGTTAATATATAACTGGTGCTTTTTATTCAAAAGTCGACG

ATAAGGAGTTGTAGGAGGTTATTAAATTTTATTTGGATGTTTTTTATTGTGTTATTGGTTTTGATAATATTAAGTAGATGTAGTG Seq uence 1 (fro m Sen Se)
TGTTAG ATTGTTTATAAGTTTTTGGGTAGTGATTAGATTGTGTTTGTTGGTTGTTTTTTGTTGGTTAGTTAGTTAGTTAGTT

TTTGTGTGAGTTAGTAGTTAGTGTTATGTGTTG GTTGTTTGGTTTTGTTTTGGGTTATTGTGTATTTTTTIGTTTGTTTGGT C+G content = 22%

TITTTT TTT TTT T TTTGGTTATGG GT AGTAGT GTTGGATGTGATGTATT . _ o,
TATTGTTGTAAGTATGTATGG GTATTGGTTATTTTTATATTTGTTATAAAATTATTGTAATGTTTATATATATTTGGGGTGA Ide ntlty to REfe rence = 71%
GGAATATGTGAATGTAAGTTTTGGTTATTATATATATGTAATATGGATATAAATTATATATATAAATTTGTTGAGGTGTTGATA /

ATATTATATGATGATATTGTGTTAAGTTAATATATAATTGGTGTTTTTTATTTAAAAGTTGATG
Sense/antisense Identity ~ 30%

ACAAAAAACTACAAAAAACCATCAAATCCTACCCAAACACCTTCCACCACATCATCAACTTCAACAACATCAAACAAACACA
ATACATCAACTTCATCACCTACAAACCCCCARACAACAACTAAACCACACCCACCAACCACCCCCCACCAACTARCTAACTAR S €UNCe 2 (From Antisense)
CTAACTCCTACATAAACTAATAACTAATACCATACATCATCTCTATCATTCAATTTTACTTCAAATCACCATATACCCTTTACTT C4+G content = 29%
ACTTAATTTCTTCTTTCCTTTTTTCCTTTTTTTTTCTTCTTTTCCCCAACCATAATTCCTTTACTTTCCAACAATTCTCTACTAAATA
TAATATATCCATTATTACAAACATACATAACCTTACATTAACTACCTCTATACCTACTACAAAACTACTACAACACCTATATAT ldentity to Reference = 79%
ACTTAAAATAAAAAACATATAAATACAAACTCCAACTATCATATACATATAATATAAATACAAACTATATATATAAATCCACC
AAAACACCAACAATACTATACAACAACACCATATTAAATTAATATATAACTAATACTTTTTATTCAAAAATCAACA (slide courtesy of V. Llaca)

Variant & Structural Variation

— Whole Genome Resequencing
+ Small genomes that are not too complex (repeats, duplications...)
* The longer the reads, the better

— Targeted Resequencing
» Complex genomes (crops)
— Reduced representation libraries (methyl-sensitive enzymes)
— Transcriptome
» Sequence Capture (Solid Phase, Liquid Phase)
» Agilent, Febit & Nimblegen

— CNVs (Copy Number Variants) & Indels

+ Paired-end sequencing and alignment to reference sequence

Challenges in variant discovery

Base quality & filtering (scoring threshold)

Sequencing errors vs. SNPs
1. To differentiate true polymorphisms from sequencing errors

2. Coverage of a given SNP region and redundancy of reads (coverage vs. number of samples)

Availability of a reference sequence (genome)
To separate unique vs. duplicated sequences
Duplication in one line but not another (CNVs)
Unmappable data (Indels)

pobh =

Polymorphism rate in one line vs. another = need to set conditions for alignment
Paired-end sequencing can help unique read placement
Complex genomes = need to reduce complexity prior to sequencing

1. High repeat content (ex: ~80% in maize, ~70% in soy, 90% in sunflower...)

2. Gene duplications and genome plasticity (polyploidy, partial or whole genome duplications...)

Methylation in plants

1. DNA methylation in plants occurs at 5-methyl cytosine within CpG dinucleotides and
CpNpG trinucleotides

2. Transposons and other repeats comprise the largest fraction of methylated DNA. Studies in
Arabidopsis have shown that CG sites in the 3’ end of the transcribed regions of more than
one third of all genes also are methylated (Zhang, Science, 320, 489, 2008).

3. Methylation is critically important in silencing transposons and regulating plant development
(methylation in promoters appears to reduce transcription)

| Pstl sites

| transposon | |—| | transposlon | |—*—

l Pstl digestion

= e S

J Recover digested fraction (gel, column)

=)

Library Construction

&SE > Genomic DNA
v

Digestion with one methyl-sensitive restriction enzyme (RE) and
fracti¢nation
Ligation of biotinylated RE-specific adapters 1

Ligation of Dpnll-specific adapter

GATC
CTAG

Binding to streptavidin column and digestion with RE

eee——=—s CATC m——
CTAG

Ligation of RE-specific adapters 2

e OAC pu—
CTAG

PCR enrichment, gel purification, size selection (150-500bp fragments),
cluster synthesis and sequencing (36 cycles)

SNP detection flowchart

Filtering and
Condensing

Creating HQ unitag datasets (removing singlets)

Basecalling, cropping last 4 bases & initial base-quality filter (for individual tags)

Condensing & optional consensus base-quality filter (for unitags sequences)

4

Comparing

two genotypes Filtering, to accept clusters with only two members (A, B) with exactly one mismatch

Comparing HQ unitag datasets from genotype “A” and genotype “B” using Vmatch

Recovering matched HQ unitag sequences and SNP sites from Vmatch alignments

. .

Mapping to
genome

Mapping SNP-containing HQ unitags to reference sequence (genome),
using a k-mer table (k=length of trimmed tags), and find copy numbers and locations.

Capturing single-copy HQ unitags with up to a single-base mismatch to the
reference sequence at the exact location of the putative SNP site for one or both genotypes

Example: one flow cell in soybean (Williams82 vs. Pintado)

Run Metrics Williams82 Pintado
Number of total reads generated 37,666,279 | 38,000,474
(after initial basecalling)
Number of filtered total reads * 24,519,484 | 23,101,973
Number of unitags (generated 965,610 885,429
from filtered total reads)
Number of high quality (HQ) 255918 246,102
unitags ¥
Alignment of HQ unitags
against the reference sequence:
Zero mismatch § 208,923 197,015
One mismatch § 27,770 27,699
Two or more mismatches § 19,225 21,388
HQ unitags aligning uniquely to 152,185 144,559

the reference sequence with zero
mismatch

1 Filtered total reads defined as having a quality value for individual base greater than or equal to 15

10

1

Frequency

0,000

0,000

=3
=3
S

o
S

100

1,000

Depth

10,000 100,000

+HQ unitag reads defined as having a quality value for each base greater than or equal to 15, and with an individual read
count greater than or equal to 2.

§ Best match to reference sequence of HQ unitag reads aligning uniquely or multiple times to the reference sequence

Results & Validation

Experim ents Putative SNPs Confirmed * Not Confirmed* Validation rate

Q Score threshold: 15
Soy: Williams82 vs. Pintado 1,682 163 5 97.0%
Rice: Kasalath vs. Taichung65 2,618 162 6 96 4%

Q Score threshold: 25
Soy: Williams82 vs. Pintado 702 168 2 98.8%
Rice: Kasalath vs. Taichung65 2,148 174 1 99.4%

*SNPs confirmed/not confirmed via Sanger sequencing of PCR products for both genotypes

Distribution of HQ unitags & SNPs related to annotated gene density (soybean)

e soo000no 20000000 Tocnnnoo . Toconooo 2000000 20000000 000000
“““““ FRRINI TINANATE IS TRRTAI INAUATININ AUAANATSN INTRATAIS ANSVANSN TAATAT AANARIIN SRR ANS N TRARAT AUATAANE SRS IR o

Gmo1 e —— 1 S e | e s e B o e sy p—— So——1
s s] 1 1
T —
Gnoz e e e —
e e e ettt e e 1 4 . 1
e e e e 1 S 1 . [e o
Gmo3. oo e e o s N

Gt]
e 1 R 11 B S 1 S e s 1

Gmos. O A T O T W S U Y o o
oo T 1y T 71 T g
T T A1 e T R S Sy e P T ST M

e e e ————————— |
Gmog e o 1 R |1 1] T 1 St £ S M
O e —] B—— | 11| B RR1 1 1811118 8 S By A SO M| S 1§ S RIS 10 1| R
e T i]

e —— e ————————————
Gmo7. T T S A e S T A R ! T
| 11 S 1 1 N /8 S| R 8 S B § D B B E——
b e e e e T T i e i

e ——
GmoB T T T T T T T T ———
e e e
e s e 7 1 1 S e ——

e ——————————————
oy Er———meeeeeereee————eeee e eeee
e 1 e S 1 13
e, e L L B ey

501 1 e | Bt 1 1 A0 Y R e o
e e m— 11 o — | 8 o e S 1 111 11 e
e et e i £y e

e e ——————————————

Gm18. 1)| T 000 0 O ol)1 R e . | S B
e 11 e e— 1 818 18] 118§ S 8 10 1 s e 1 S S 3 S i 8
e DO PRI TR

e e ————————————————— e =
Gm19 S A AN 12l O 3 A 1 | | e e | S |
e e e e B e

10 0 0 a0 50 60 n &0 a0 100

”;LGene Density (excluding TEs) in 500Kb window

: jCoverage by HQ unitags in 70Kb window
.SNP Density in 70Kb window

Distribution of HQ unitags & SNPs related to distance to
annotated genes (excluding TEs) in soybean

50.0
O Pintado
® |mWiliams82
40.0 . -
ap” a) O s
Intron, CDS and
30.0 - - UTR coordinates
.) L) :
'{'&'L&‘& Dl S determined from
Bed YV GFF annotation
20.0 + o files
10.0 4
0.0 T T T
intron CDsS within_bk intergenic

Bioinformatic tools

Alignment and Polymorphism Detection
1. SOAP - Short Oligonucleotide Alignment Program
» Ruigiang Li, Beijing Genomics Institute
+ http://soap.genomics.org.cn
2. MAQ - Mapping and Assembly with Quality
* Heng Li, Sanger Centre
» http://maq.sourceforge.net/mag-man.shtmil
3. Bowtie - An ultrafast memory-efficient short read aligner
+ Ben Langmead and Cole Trapnell, University of Maryland

» http://bowtie-bio.sourceforge.net/

Bioinformatic tools

Genomic Assembly
1. Velvet — De novo assembly of short reads
» Daniel Zerbino and Ewan Birney, EMBL-EBI
* http://www.ebi.ac.uk/~zerbino/velvet/
2. SSAKE — Assembly of short reads
* Rene Warren, et al, British Columbia Cancer Agency
» http://bioinformatics.oxfordjournals.org/cgi/content/full/23/4/500
3. Euler — Genomic Assembly
» Pavel Pevzner and Mark Chaisson, University of California, San Diego

* http://nbcr.sdsc.edu/euler/

www.illumina.com

Bioinformatic tools - lllumina

Application Function Flow

Bustard I
Overview _I -

I Eland
Eland Align _sorted.txt
Summary.htm

1. Obtain Bustard reads and align

against Genome with Eland CASAVA o NOOCO%C
Analyze
2. Aggregate and SNP call data with Transfor e based. I
CASAVA STl Windows
. . . mport Data Import
3. GenomeStudio™ wizard import of fmpert
data File backed Binary
memory Sequences/
*.SNP files
. . . - __ X
4. Examine coverage and quality in GenomeStudio | acies
stacked alignment graphs for a
: ables
selected region/chromosome e
[_Allele Table |
5. Export table of SNPs and — ; —
consensus sequence [Vs |

Bioinformatic tools - lllumina

me Viewer (IGV) - Sequencing -

EIE
Fle Edt Wen Dsm Awbss b

| Actve Genome: Humen:8.4d 36.1

el]]

@8) | vew - | Fnd - | Gene Labels: Geresmecd = B Gene Amwotaions - £,
Seacbed Mhcpment Flots | f e W 4 e[l [Eomme-neses | b wowr | R R 2] ZemTo -
Samele Name] =]

L L A 1)

[Sequmrces - Fc_phiape el

som

b Readz

& St Fhok Heiht ek

Fict Heichtin Pk =00

[r—— 21051 220 721051 750 121 52,20 121052610 121059320 2
Cstogenst Srs
Secpencsis) EBo sequence dats file Joumd for this chrcoosoe.
Fovvard Stand | [l Bhe |
Reversesband |60 =] GerelD | 1 | o lekend | |
Awoston Sekecl aBene Do =]
KrownGere D 3‘
MNoDaa
S RefSeq Summa
ties: B S umens) Compleleness. -J-
™ Immedate Hode: ~|

Ready.

Third-Generation Sequencing
technologies: what’s next?

Next-Generation Sequencing

Second-generation platforms: Third-generation platforms:

*454/Roche lon Torrent
*HiSeq/lllumina *SMS/Life Technologies
*SOLID/Life Technologies *Pacific Biosciences

*Heliscope/Helicos BioSciences °Intelligent Bio-Systems
+ZS Genetics
*LightSpeed Genomics
*NABsys
*Oxford Nanopore Technologies

Next-Generation Sequencing

Known issues related to second-generation sequencing platforms:

1) Amplification bias
1) Non-uniform amplification of DNA that leads to over-representation of certain
sequences and under-representation of others

2) Crosstalk
1) Overlap between signals for different nucleotides in a sequencing reaction
(emission spectrum of two fluorophores may overlap)

3) Dephasing
1) Sequence reads from ensemble of molecules representing a single input
sequences gradually diverge in length in “wash-and-scan” techniques

4) De novo assembly
1) Limited assembly of large genomes (repeats)

Next-Generation Sequencing

The answer: single-molecule sequencing!

1) Single molecules of DNA observed as they are synthesized by single DNA polymerase
(Pacific Biosciences, Life Technologies...)
1) Problem: missing bases (spectral overlap)

2) Single molecules of DNA threaded through a nanopore or positioned at proximity of a
nanopore (Oxford Nanopore, NABsys...)
1) Problem: speed of detection & parallelization

3) Single molecules of DNA imaged using electronic microscopy techniques (ZS
Genetics, Halcyon...)
1) Problem: upfront costs and highly trained personnel

4) Single molecules of DNA ligated to DNA probes using microfluidic techniques (GnuBio)
1) Problem: ?

lon Torrent

ion sensor:
1. Detect pH
change

incorporates Hydrogen ion caused by

into DNA . is released released of H
H* /4
2. Generated

charge
turned into a
voltage

http://www.iontorrent.com/the-simplest-sequencing-chemistry/

$50K instrument (<50Ibs)

1.4MM sub-microscopic wells

100-200 bps / reaction

No imaging required: limited need for data
storage & management

PN~

Pacific Biosciences

*+ SMRT™ Technology

» Single DNA polymerase attached at bottom surface of
nanometer-scale hole (“ZMW?”), incorporates in real-time
fashion fluorescently labeled nucleotides to elongated
strand of DNA

» Elongated strand can be several thousands of nucleotides l

in length

www.pacificbiosciences.com

Pacific Biosciences

1. Small size of the hole favors rapid in-and-out diffusion of nucleotides and dye following
their cleavage. Meanwhile, incorporated nucleotide is held within the detection volume
for 10’s of milliseconds, order of magnitude longer than the time it takes for nucleotides

to diffuse in and out of the hole, therefore decreasing background noise

2. Fluorescent dye is attached to the phosphate chain, rather than the base, and is

cleaved when the nucleotide is incorporated to the DNA strand.

=> Decreased background noise and use of phospholinked nucleotides circumvents the need
for successive cycles of incorporation, washing, scanning and removal of the label,

therefore optimizing processivity of the enzyme and allowing longer read lengths

Pacific Biosciences

1. Current specs:

2 x 80,000 ZMWs per SMRT cell (~30% of ZMWs generate data)

Polymerase incorporates 1-3 nucleotides per second

~1,000-1,250bps average read lengths => ~30Mbps/15 minutes (up to 96 SMRT cell/48 hours)
Strobe sequencing: 4x250bps, 2x500bps...

o > Db =

99.99% consensus accuracy

2. Projected specs (2011-2012):
1. 4 x 80,000 ZMWs per SMRT cell (~90% of ZMWs generate data)

2. Polymerase incorporates 10-15 nucleotides per second (~10-20Kbps reads)

3. V2 machine (2014):

No camera: each ZMW assigned its own detector (“optode”)

Several millions optodes per SMRT cells

Polymerase incorporate up to 50 nucleotides per second (~50-100Kbps reads)
>100Mbps/second

Ao h =

Oxford Nanopore

Protein nanopore Exonuclease

. Long read lengths
(1000's)

. High read accuracy

. Current technical Alpha-hemolysin
issues:
1) Attachment of the Cyclodextrine
exonuclease to the pore (encapsulate
2) Parallelization nucleotide)

(1,000’s of pores per

http://www.technologyreview.com/biomedicine/22220/

chips)

NABsys

Sequencing-by-Hybridization + Nanopores (Electrical detection)

\!\ \!\ By T~
\!\ \!\ T~ B
1. 384 pools of oligo probes

2. Detect signal (ds DNA) TR TR TR T TR T
3. Infer map & sequence o o o o

ZS Genetics

Visualization of Labeled DNA by Transmission Electronic Microscopy

http://www.zsgenetics.com/application/GenSeqg/index.html

DNA fragments labeled (iodine, bromine) during PCR amplification (labeled nucleotides)

Size and intensity differences between each labeled bases during detection in the TEM image

GnuBio

Microfluidic Manipulation of Sequencing Reactions in Picoliter Droplets

http://www.technologyreview.com/biomedicine/25481/

Optical barcodes change of color after hybridization

“30X Human Genome Sequencing for $30 on a 50K machine”

Questions?

Appendix

DNA Library Construction

DNA fragmentation via nebulization

Size-selection

Ligation of adapters A & B

Selection of A/B fragments via biotin selection
Denaturation to select single-stranded A/B fragments
No cloning!

(B/B)

Endrepaw
+
Denaturatlon
(A/B)

(A/A)

A/B ss DNA

Emulsion PCR

Emulsion PCR

Add DNA to capture beads (needs titration)
Add PCR reagents to DNA and capture beads
Transfer sample to oil tube or cup
Emulsify DNA capture beads in PCR reagents
to form water-in-oil “microreactors”

— Emulsion with Qiagen TissueLyser (high-

speed shaker)

Clonal amplification in microreactors

— Careful not to break the emulsion!

— ~10MM copies per capture bead
Break emulsion and enrich for DNA positive
beads

— Use biotinylated oligo to capture enriched

beads then denature

Before PCR

After PCR

454

SEQUENCING
www.roche-applied-science.com

Scientific Computing http://infoserver.cshl.edu/LectureNotes/ScientificComputing/alg...

Algorithms in Bioinformatics

Jim Tisdall

Programming for Biology

Lecture Notes

The Problem

Time and Space and Algorithms
Using Less Time

Using Less Space

Profiling
Parallel Processing

ook~

Suggested Reading

Mastering Algorithms with Perl
by Orwant, Hietaniemi, and Macdonald
(An excellent algorithms text with implementations in Perl)

Introduction to Algorithms
by Cormen et al.
(This is the standard modern text)

Writing Efficient Code
by Jon Bentley
(Hard to find. Great book.)

Introduction to Automata Theory, Languages, and Computation
by Hopcroft and Ullman
(The standard, mathematical textbook for theoretical computer science.)

Computers and Intractability: A Guide to the Theory of NP-Completeness
by Gary and Johnson
(Very well written.)

Network Programming with Perl
by Lincoln Stein
(Client-server network programming.)

An Introduction to Parallel Algorithms
by Joseph Jaja
(For the next generation of computers.)

Programming for Biology

Jim Tisdall, James.Tisdall -- at -- DuPont.com
Last modified: Wed Oct 14 16:14:01 EDT 2009

1of1 10/18/10 1:47 PM

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

Time and Space and Algorithms

A program's use of time and space depends on the algorithms and associated data
structures used to solve a problem.

Typically there are many algorithms (ways to solve a problem in a computer.) Some ways
use less time and/or less space than other ways. Finding the good ways is the study of the
design and analysis of algorithms.

An algorithm is the design or idea of a computation. It can be expressed in terms of a
specific computer program, or more informally as in pseudocode.

A data structure is the form of the computation as it proceeds. A great deal of biological
data is organized into two-dimensional tables in relational databases. Relational
database tables are the standard workhorse for storing data in biology, and are useful in a
surprising number of situations.

It's important to know, however, that often the best algorithm will use some other data
structure such as a doubly-linked list or a tree, for example. Such data structures might
better represent graph structures, gene networks, evolutionary relationships, and so on. And,
such data structures may be used in sometimes surprising ways to speed up a computation.

The space of an algorithm is just the amount of computer memory it uses.

The time of an algorithm is usually given as a function on the size of the input. So if the input

is of size n, the algorithm might take time n°. So, for instance, if you gave such an algorithm
a hundred genes, it would take about 10000 units of time to run; if you gave it ten thousand
genes, it would take 100000000 units of time to run.

Time is roughly estimated according to the number of basic operations performed by your
program as it runs. Basic operations are adding, concatenating two strings, printing, etc. The
overall structure of the program is what is important, not an actual prediction of exactly how
many seconds the program will take.

System building and knowing what can be computed

We are primarily interested in building software to achieve easily computed, but useful,
results. We will not delve into the study of algorithms in any depth in this course. But it can
easily happen that you may want to compute something that is hard to compute in a week,
or a year, or even at all. This is a practical problem, and it's important to know what you can
do about it.

The idea is that there are limits to what can be computed. These limits take two main
forms: intractability and undecidability.

The main point:

MANY PROBLEMS CANNOT BE COMPUTED
but it's possible to get " pretty good" answers for many of them

1of4 10/18/10 1:57 PM

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

How algorithms are measured

Algorithms are typically classified by how fast they perform on inputs of varying sizes, by
giving their speed as a function of the size of the input. The size of the input is usually called
n.

Say for example that an algorithm gets an input of size n, and then just to write the answer it

must write an output in space of size 2", (The amount of space that an algorithm uses is one
way to establish a lower bound for how much time the algorithm takes to complete.) Then we
say the algorithm's time complexity is "order of 2 to the n", written in a shorthand called big
Oh notation as

o(2").
This way of measuring an algorithm is called time complexity.

Examples:
0(2") computations: intractable (e.g. exponential) is bad

O(n2) computations: tractable (e.g. polynomial) is good
O(5n) computations: tractable (e.g. linear) is great
O(log(n)) computations: tractable (e.g. logarithmic) is amazing

If the size of the input n is 3, then all methods take a short amount of time -- 8 and 9 and 15
and about 1, respectively.

But if the size of the input n =100, then log(n) is about 6, 5n is 500, and n?is 10,000 which

is still not bad. However, 2" is bigger than the number of atoms in the universe. (And is the
universe really finite? Oh well ... who's counting?)

Intractability

Intractability means that a problem cannot be computed in a reasonable amount of time.
Many biological problems are intractable.

Example: in phylogeny we learn that there are many possible trees that can be built, and that
the number of possible trees grows exponentially as you increase the number of taxa and as
you increase the evolutionary time under discussion.

To find the best solution in an exponentially-growing space, such as the space of all possible
evolutionary trees, often requires examining each possibility, and so may take an
exponentially-growing time. Problems that have this property (very loosely defined here) are
called

NP

(for non-deterministic polynomial time), and certain canonical such problems are called
NP-complete.

NP-complete problems are all essentially interchangeable; that is, they all come down to
essentially the same problem. The prototypical NP-complete problem is the

20of4 10/18/10 1:57 PM

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

TRAVELING SALESMAN PROBLEM:
given a set of cities and the distances between them, what is the shortest route a traveling
salesman can take to visit each one?

By the time you get to about 30 cities, the number of possible routes cannot be computed in
your lifetime; by the time you reach about 60 cities, there are more possible routes than
there are atoms in the universe. And we don't know a better way to find the best route than
to look at each one.

An aside: no one has proved that NP-complete problems must require looking at each
individual possibility. If you could find a polynomial-time algorithm for any NP-complete
problem, you would be the most famous computer scientist/mathematician around, and
would surely win a Nobel prize. Few people believe it will be done, but it's been an open
problem for many years, and no one yet can prove that it can't be done. This is called the P
=? NP problem.

The practical implications:

If you have a lot of data for your problem, and the problem is in NP, then you have no
practical solution to find the best, optimal answer except on very small data sets.

But the good news is: there are approximation algorithms that will give you a very good
answer in a reasonable amount of time, even if it's not the optimal answer. Such
approximation algorithms underlie many of the practical approaches to such problems as
phylogeny, sequence assembly, and many other problems in bioinformatics.

Undecidable problems

Less likely to be a problem for the practical bioinformatics programmer, but something to be
aware of, is that there are problems for which no solution is possible.

These problems are called undecidable, and they were first demonstrated by Alan Turing
and others in the 1930s.

Here's the most famous undecidable problem: the

HALTING PROBLEM

Write a program that can scan any other program and decide if it will eventually halt, or if it
will go on forever without coming to a stop.

In other words, write a virus checker for nonhalting programs.

As an example of such a nonhalting "virus", here's a perl program that goes on forever (until
you stop it):

while(1) {}

That looks easy to recognize. But we can prove that no program can be written that would
catch all such non-halting programs.

3of4 10/18/10 1:57 PM

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

The fact that such an easily-described problem as the HALTING PROBLEM has no solution
is, when you think about it, a very deep and profound statement about the limits of human
knowledge. But, nevertheless, and of a certainty, we all play on.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

40of 4 10/18/10 1:57 PM

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

Using Less Time
The Art and Science of Algorithm Design

You can divide knowledge into two types: procedural knowledge and declarative knowledge.

Declarative knowledge is a collection of facts. (E.g., Watson's great textbook "The Molecular Biology of the
Gene")

Procedural knowledge is knowledge of how fo do things, and is the kind of knowledge captured by
computer algorithms. Procedural knowledge has been growing immensely since (programmable digital)
computers brought the ability to specify how to do something -- that is, to formulate an algorithm -- to the
very center of our economic, scientific, and cultural lives.

Algorithms are discovered by a combination of mathematics and art and science and luck and training and
talent. Much of what we do on computers relies on the accumulated procedural knowledge -- algorithms -- of
our culture.

A good algorithm is more important than a good computer

Finding a better algorithm can be much more important than getting a better, faster computer.

For the following examples | created a set of random DNA that I'll use as my "promoters". | include the code
here. (We'll return to this code later in the lecture).

#
Main program -- make promoters from random DNA
#

srand();

$dna = make random DNA(1000000);
open(DNA, ">genomic data") or diej;
print DNA $dna;

@promoters = make_random DNA set (10, 5000);
open (PROMOTERS, ">promoters") or die;
print PROMOTERS join("\n",@promoters),"\n";

exit 0;

#
Subroutines
#

Make a string of random DNA of specified length.
sub make random DNA {

my(S$Slength) = @ ;
my $dna;

for (my $i=0 ; $i < S$length ; ++$i) {

$dna .= randomnucleotide();

}

return $dna;

1of4 10/18/10 1:57 PM

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

}

Make a set of random DNA
sub make random DNA set {

my(Slength, $size of set) = @ ;
my $dna;
my @set;

Create set of random DNA
for (my $i = 0; $i < $size of set ; ++$i) {

$dna = make random DNA ($length);
push(@set, $dna);
}

return @set;

}

Select at random one of the four nucleotides
sub randomnucleotide {

my (@nucleotides) = ('A', 'C', 'G', 'T');

return randomelement (@nucleotides);

sub randomelement {

my(@array) = @ ;

return $array[rand @array];

Consider this fragment of perl code, written to find a set of short sequences in a genome ("findpromotersQ"):

Read the promoter data from a file
open (PROMOTERS, "promoters") or die "a horrible death: $!";
my @promoters = <PROMOTERS>;

Look for each occurence of each promoter in the genome
foreach my S$promoter (@promoters) {
chomp S$promoter;

Read the genome data from a file
open(GENOME, "genome data") or die "a horrible death: $!";
my S$genome = <GENOME>;

while($genome =~ /S$promoter/g) {
$-[0] prints the location of the find
#print "$promoter $-[0]\n"; exit;
$db{$promoter} = $-[0];

20of4 10/18/10 1:57 PM

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

Now this code is good perl. It is syntactically correct, and it will produce the correct output. It will run, and in
the end you will print out all the locations of the sequence.

Let's see how long it takes to run:

-bash-3.00$ date; perl findpromoters0O; date
Thu Oct 20 14:28:06 EDT 2005

Thu Oct 20 14:28:48 EDT 2005

-bash-3.00$

Okay, so 42 seconds isn't bad! But wait ... what if we had the entire human genome, and a million tags? I'll
let you do the math, or the experiment, but it takes too long.

So we try to make it faster. How? Well, we notice that for each tag, we're reading in the entire genome from
the disk. Let's rewrite the code so that it only reads the genome in once (findpromoters1):

Read the genome data from a file
open (GENOME, "genome data") or die "a horrible death: $!";
my Sgenome = <GENOME>;

Read the promoter data from a file
open (PROMOTERS, "promoters") or die "a horrible death: $!";
my @promoters = <PROMOTERS>;

Look for each occurence of each promoter in the genome
foreach my $promoter (@promoters) {
chomp S$promoter;
while($genome =~ /S$promoter/g) {
$-[0] prints the location of the find
#print "$Spromoter $-[0]\n"; exit;
Sdb{$Spromoter} = $-[0];

And the time for that is:

-bash-3.00$ date; perl findpromotersl; date
Thu Oct 20 14:30:46 EDT 2005

Thu Oct 20 14:31:05 EDT 2005

-bash-3.00$

>From 42 seconds to 19 seconds -- sweet!

But can we do better? Notice that for each promoter, we're scanning through the entire genome. So we're
scanning through the entire genome 5000 times.

Is there a way we can scan through the entire genome just once? Yes, and here is one solution:

Read the genome data from a file
open(GENOME, "genome data") or die "a horrible death: $!";
my Sgenome = <GENOME>;

Read the promoter data from a file

open (PROMOTERS, "promoters") or die "a horrible death: $!";
foreach $promoter (<PROMOTERS>) ({

3of4 10/18/10 1:57 PM

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

chomp S$promoter;
Spromoters{$promoter} = 1;

}

Look for each occurence of each promoter in the genome
my $genomelength = length(S$genome);
for($i = 0; $i < $genomelength - 10 + 1; ++$i) {

my $subsequence = substr($genome, $i, 10);

Now we just look in the hash to see if this subsequence is a promoter
if (Spromoters{$subsequence}) {

Sdb{$promoter} = $i;
}

and we run a timing on it to get ("findpromoters2"):

-bash-3.00$ date ; perl findpromoters2 ; date
Thu Oct 20 15:42:15 EDT 2005

Thu Oct 20 15:42:16 EDT 2005

-bash-3.00$

That's one second, maybe less.

And so we've achieved a 43-fold speedup in our program. What was taking, say, two days to compute, now
takes an hour. We couldn't have achieved that speedup going to a super expensive computer (well, maybe a
cluster, which we'll discuss later.)

And so we see that finding a better algorithm is the best way to get good performance.

What, exactly, did we do? We eliminated unnecessary work. We eliminated the repetitive reading in of the
genome data from the disk; and we eliminated multiple scanning through the genome data.

These are the kinds of things that you can often find in the first version of a working program. So don't
neglect the important step of editing your code after you get a working draft.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

40of 4 10/18/10 1:57 PM

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

Using Less Space

Here is the main problem of space in bioinformatics:
Very large strings will swamp the main memory on your computer.

(Main memory, or RAM, is where your computer holds a running program; it is much smaller than the memory
on your disks.)

When a program on your computer starts to use up too much main memory, its performance starts to
degrade. The program will first enlist a portion of disk space to hold the part of the running program that it can
no longer fit. This is called swapping.

But when a program starts swapping, which involves a lot of writing and reading to and from hard disk, it can
get increasingly slow. The program may even start thrashing, that is, repeatedly writing and reading large
amounts of data between main memory and hard disk. A program that is thrashing is going really slow, and it's
slowing down the whole computer and other programs, too.

Take this snippet of code that calls get_chromosome:

my S$chromosomel = getchromosome(l);

When getchromosome (1) returns the data from human chromosome 1 to be stored in schromosomel, the
program uses 100Mb of memory.

Operating on the chromosome may use additional memory. For instance, in perl, when you do a regular
expression search, you often want to save the successful match by using parentheses that set the special
variables $1, ss, and so on.

~ /AA(GAGTC*T)/;
$1;

Schromosome
my Spattern

But once you use these special variables, the inner workings of perl require the use of considerable additional
memory by your program. And you may make copies of all or part of the chromosome.

Your resulting code may be clear, straightforward to understand, and correct -- all good and proper things for
code to be -- but the amount of memory usage may still seriously slow down your program.

Motto: copying large strings is slow and takes up large amounts of memory
Editing for Space

Often, a program that barely runs at all and takes many hours of clogging up the computer, can be rewritten to
run more quickly by rewriting the algorithm so that it uses only a small fraction of the memory. It will fit into
less memory, and also run a lot faster.

Use references to save space

There's one easy way to cut down on the number of big strings in a program.

Normally (without using references) a subroutine makes copies of the values passed into it, and it makes
copies of the values returned from it.

References allow subroutines to avoid the string copying.

When we pass a reference to a string as an argument to a subroutine, we don't pass a copy of the string -- we

1of5 10/18/10 1:57 PM

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

pass a reference to the string, which takes almost no additional space.

And when the subroutine ends, whatever we've done with the string is immediately available to the calling
program, without having to use the return function, which would also copy the string.

In our example:

load chromosome(1, \$chromosomel);

This new subroutine has two arguments. The 1 indicates that we want the biggest human chromosome,
chromosome 1.

The second argument is a reference to a scalar variable. Inside the subroutine, the reference is most likely

used to initialize an argument schromref, Which is a reference to the genomic data. And then, in the
subroutine, the DNA data is put into the dereferenced string:

sub load_chromosome {
my (Schromnumber, $chromref) = @ ;

...(omitted)...

$Schromref = <CHROMOSOME1>

It is not necessary to return the whole chromosome from the subroutine, which would make a copy of it. The
value is passed by the reference out of the subroutine.

Using references is also a great way to pass a large amount of data into a subroutine without making copies
of it. In this case, however, the fact that the subroutine can change the contents of the referenced data is
something to watch out for.

The rule of thumb is: if you don't need two copies of the data, you can use references.

Managing Memory with Buffers

One of the most efficient ways to deal with very large strings is to deal with them a little at a time.

Here is an example of a program that searches an entire chromosome for a particular 12-base pattern, using
very little memory.

When searching for any regular expression in a chromosome, it's hard to see how you could avoid putting the
whole chromosome in a string. But very often there's a limit to the size of what you're searching for. In this
program, I'm looking for the 12-base pattern "ACGTACGTACGT."

I'm going to read the chromosome data into memory just a line or two at a time, search for the pattern, and
then reuse the memory to read in the next line or two of data.

The extra programming work involves:

First, keeping track of how much of the data has been read in, so | can report the locations in the
chromosome of successful searches.

Second, making sure | search across line breaks as well as within lines of data from the input file.
The following program reads in a FASTA file searches for my pattern in any amount of DNA--a whole

chromosome, a whole genome, a year's worth of Solexa data, even all known genetic data, while using only a
small amount of main memory.

20f5 10/18/10 1:57 PM

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

$ perl find fragment human.dna

For testing purposes | made a very short FASTA DNA file, human.dna, which contains:

>human dna: ACGTACGTACGT appears at positions 10, 40, and 98
AAAAAAAANMACGTACGTACGTCCGCGCGCGCGCGCGCGCACGTACGTACG
TGGGGGGGGGGGGGGGCCCCCCCCCCGGGGGGGGGGGGAAAAAANAAACG
TACGTACGTTTTTTTTTTTTTTTTTTTTTTTTTTT

Here's the code for the program find fragment:

#!/usr/bin/perl

use warnings;
use strict;

Sfragment: the pattern to search for

S$fraglen: the length of $fragment

Sbuffer: a buffer to hold the DNA from the input file
S$position: the position of the buffer in the total DNA

my ($fragment, $fraglen, S$buffer, S$position) = ('ACGTACGTACGT', 12, '', 0);

The first line of a FASTA file is a header and begins with '>'
my Sheader = <>;

Get the first line of DNA data, to start the ball rolling
Sbuffer = <>;
chomp S$buffer;

The remaining lines are DNA data ending with newlines
while(my S$newline = <>) {

Add the new line to the buffer
chomp $newline;
Sbuffer .= S$newline;

Search for the DNA fragment, which has a length of 12
(Report the character at string position 0 as being at position 1,
as usual in biology)
while($buffer =~ /$fragment/gi) {
print "Found $fragment at position ", $position + $-[0] + 1, "\n";

}

Reset the position counter (will be true after you reset the buffer, next)
$Sposition = $position + length($buffer) - $fraglen + 1;

Discard the data in the buffer, except for a portion at the end

so patterns that appear across line breaks are not missed
Sbuffer = substr($buffer, length($buffer) - $fraglen + 1, $fraglen - 1);

Here's the output of running the command
perl find fragment human.dna:

3of5 10/18/10 1:57 PM

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

Found ACGTACGTACGT at position 10
Found ACGTACGTACGT at position 40
Found ACGTACGTACGT at position 98

How the Code Works

| want to search for the fragment even if it is broken by new lines, so I'll have to look at least at two lines at a
time. | get the first line, and in the while loop that follows I'll start by adding more lines to the buffer.

Then the while loop starts reading in the next lines of the FASTA file. The newline character is removed with
chomp and the new line is added to the sbuffer.

Then comes the short while loop that does the regular expression pattern match of the sfragment in the
Sbuffer.

When the fragment is found the program simply prints out the fragment's position. The variable sposition
holds the position of the beginning of the buffer in the total DNA.

| also add 1, because biologists always say that the first base in a sequence of DNA is at position 1, whereas
Perl says that the first character in a string is at position 0. So | add 1 to the Perl position to get the biologist's
position.

The last two lines of code reset the buffer. First we eliminate the beginning (already searched) of the buffer,
and then we adjust the sposition counter accordingly. The buffer is shortened so that it just keeps the part at
the very end that might be part of a pattern match that spans the newlines.

The program manages to search the entire genome for the fragment, while keeping at most two lines' worth of
DNAin sputtfer, It performs very quickly, compared to a program that reads in a whole genome and blows out
the memory in the process.

When You Should Bother

Programs may be developed on one computer, but run on very different computers.

A space-inefficient program might well work fine on your computer, but not work well at all when you run it on
another computer with less main memory installed. Or, it might work fine on the fly genome, but start thrashing
when you try it on the human genome.

If you know you'll be dealing with large data sets, like genomes, take the amount of space your program uses
as an important constraint when designing and coding. Then you won't have to go back and redo the entire
program when a large amount of DNA gets thrown at the program.

Data Compression

In Perl, as in any programming system, the size of the data that the program uses is an absolute lower bound
on how fast the program can perform.

Each base is typically represented in a computer language as one ASCII character taking one 8-bit byte, so 3
gigabases equals 3 gigabytes. Of course, you could represent each of the four bases using only 2 bits, so
considerable compression is possible; but such space efficiency is not commonly employed. When it is, you
can pack 4 times as much data into a given space (for nucleotides, that is.)

A 00
Cc 01
G 10
T 11

40of5 10/18/10 1:57 PM

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

If you want an exercise, try using perl functions pack and vec to compress DNA sequence data to 4 bases per
byte.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

5of5 10/18/10 1:57 PM

Profiling

1of4

http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

Profiling
You saw earlier an easy way on Unix to see how long a program takes:

date; perl findpromotersl; date

This prints the time, then immediately runs the program, and then immediately prints the time
again.

Perl has several much more detailed ways to examine the performance of a program.

I'll just show you one of them, called pprof. DProf reports on various aspects of your program's
performance.

The most valuable report is probably the summary by subroutine.

By seeing which subroutines are taking the most time, you can narrow your re-editing of the
program to just those subroutines, and quickly make the improvements where they count the
most.

For demonstration, I'm going to use a program with a few subroutines; namely, the makerandom
program we used earlier to make random DNA genomic sequence and putative DNA binding
sites.

First you have to load the pevel::prof module in your program. You do this by adding the
-d:pProf command-line argument. Then when your program runs, the module makes counts of
many things in the program. Your program will take a bit longer to run, but you'll collect valuable
statistics on its performance.

So one can simply run the program as usual, adding the command-line argument. When it's
done, it will have created a file called tmon.out in my directory. | then run the dprofpp tmon.out
program to see the results of the profile of my program:

$ perl -d:DProf makerandom
$ dprofpp tmon.out
Total Elapsed Time = 5.464274 Seconds
User+System Time = 5.354274 Seconds
Exclusive Times
$Time ExclSec CumulS #Calls sec/call Csec/c Name
72.2 3.870 7.594 105000 0.0000 0.0000 main::randomnucleotide

69.5 3.725 3.725 105000 0.0000 0.0000 main::randomelement

33.7 1.807 9.402 5001 0.0004 0.0019 main::make random DNA
0.22 0.012 0.525 1 0.0125 0.5250 main::make random DNA set
$

If | wanted to speed this program up, I'd head straight for the randomelement and
randomnucleotide subroutines to see what | might be able to tweak in them, since my analysis
shows that they take almost all the time in the program.

10/18/10 1:57 PM

Profiling http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

pprof has many options, but this is how | almost always use it, as it's simple and tells me what |
need to know.

Some older perls might not have prrof installed, in which case you have to do something like
this: (you may need root permission):

$ perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.7601)
ReadLine support enabled

cpan> install Devel: :DProf
CPAN: Storable loaded ok
Going to read /root/.cpan/Metadata
Database was generated on Wed, 19 Oct 2005 22:01:03 GMT
Devel: :DProf is up to date.

cpan> quit
Lockfile removed.

$

In this case perl reported that the pevel: :pprof module was already installed with the latest
version; if not, it would have installed it.

You know, | wonder if | can speed up my makerandom program. Let's look at it. Hmmm. | did try a
few things out: let's see how the new program makerandom2 behaves:

$ perl -d:DProf makerandom2
$ dprofpp tmon.out
Total Elapsed Time
User+System Time
Exclusive Times
$Time ExclSec CumulS #Calls sec/call Csec/c Name
96.8 1.240 1.240 5001 0.0002 0.0002 main::make random DNA
0.78 0.010 0.050 1 0.0100 0.0500 main::make random DNA set

$

1.27999 Seconds
1.27999 Seconds

Cool! From over 5 seconds to a little over 1 second. A five-fold speedup!

How did | do it? Here's the new version:

srand();
my (@nucleotides) = ('A', 'C', 'G', 'T');
$dna = make random DNA(1000000);

open(DNA, ">genomic data") or die;
print DNA S$dna;

20of4 10/18/10 1:57 PM

Profiling http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

@promoters = make random DNA set (10, 5000);
open (PROMOTERS, ">promoters") or die;
print PROMOTERS join("\n",@promoters),"\n";

Make a string of random DNA of specified length.
sub make_random DNA {

my($length) = @ ;
my S$dna;

for (my $i=0 ; $i < $length ; ++$i) {
Sdna .= S$nucleotides[rand @nucleotides];

}

return $dna;

}

make random DNA set
sub make random DNA set {

my($length, $size of set) = @ ;
my S$dna;
my @set;

Create set of random DNA
for (my $i = 0; $i < $size of set ; ++$i) {

make a random DNA fragment
$dna = make random DNA (S$length);

add $dna fragment to @set
push(@set, $dna);

}

return @set;

First, | moved the line

my (@nucleotides) = ('A', 'C', 'G', 'T');
out of a subroutine and up to the top of the program. This way the array doesn't have to get
reinitialized each time the program is called.

But much more importantly, | eliminated two subroutine calls entirely, and put their functionality

directly into the lines of code that were calling them. First | axed randomelement by putting its
functionality directly into the calling subroutine randomnucleotide: from

3of4 10/18/10 1:57 PM

Profiling http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

sub randomnucleotide {
my (@nucleotides) = ('A', 'C', 'G', 'T');

return randomelement(@nucleotides);

sub randomelement {
my(@Qarray) = @ ;

return $array[rand Qarray];

to
my (@nucleotides) = ('A', 'C', 'G', 'T');
sub randomnucleotide {

return S$nucleotides[rand @nucleotides];

and finally | eliminated randomnucleotide by putting its code directly into the calling program:
from

Sdna

randomnucleotide();

to

Sdna Snucleotides[rand @nucleotides];

In short, | eliminated two subroutine calls that were each being called 105000 times, and that
made a significant speedup. Usually, you're more likely to try to improve a subroutine than to
eliminate it, but as you see eliminating a subroutine can on occasion have big payoffs.

The book by Bentley "Writing Efficient Code" discusses such "tricks" in entertaining and useful
detail.

So | hope you're convinced that pprof is worthwhile. There are other profiling methods available
in Perl too, and you might want to explore them.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

40of 4 10/18/10 1:57 PM

Parallel Processing http://infoserver.cshl.edu/LectureNotes/ScientificComputing/par...

There are different ways to think of parallel processing.

Parallel Algorithms

One kind of parallel processing actually uses the specific topology of the interconnections
between the CPUs to implement new kinds of algorithms. This kind of parallel processing is
fascinating and gives you very fast programs, but is way beyond the scope of this lecture or
this course. But | thought you'd like to know that it exists.

In this hard-core parallel algorithms work, you might work on special computers (e.g. "grids",
"butterfly networks") or even on purely theoretical models of parallel computation, and you
design algorithms to run on those types of parallel computers.

Parallel Processing on Networks and
Clusters

More common is this scenario: say you are doing 40 tasks, one after the other, and each one
takes an hour. It will take your working week to finish the tasks.

Now let's say you figure out a way to do all the tasks simultaneously, and each one still takes
an hour. You'll now finish the tasks, all of them, in one hour instead of one week.

One kind of parallel processing is just like this example. That's the kind of parallelism I'll talk
about here, in terms of networks and clusters and threads. You simply divide your program
up into parts that can be performed simultaneously, and then you run each part on its own
CPU. Not all problems can be divided up like this, but those that can (say running a million
blast searches) can get big speedups fairly easily.

Network Programming

One of the most successful forms of multi-processor computing has been network
programming.

Network programming involves connecting two or more computers by a communications line
and implementing a protocol that enables them to exchange information.

The development of computer networks began in earnest in the 1950s, and the various
networks were interconnected by the internet (from interconnected networks) beginning in
the late 1970s.

The protocols supported by the internet gradually expanded, until the protocols known as the
web (or "world wide web") became widely popular beginning around 1990.

It is quite possible to program several computers to interact, using the several programming
interfaces to the protocols that are available from such languages as perl.

1of2 10/18/10 1:58 PM

Parallel Processing http://infoserver.cshl.edu/LectureNotes/ScientificComputing/par...

20f2

Perl has supported these protocol interfaces since the beginning. | can speak from personal
experience that it's a lot of fun to build a useful network service in this way. (In 1992 | was
searching all of Genbank with regular expressions in about 35 seconds, by distributing the
job with a network service written entirely in perl.)

| recommend the book "Network Programming with Perl" by Lincoln Stein if you're interested
in these techniques.

Threads

Threads are different from, but related to, multiprocessing. Threads are multiple execution
paths built into one process, that share resources like global variables, signals, and such.
You can have a multithreading program that runs on a single processor; or, if you're running
on a multiprocessor (it's common to have from 2 to around 24 processors on a given
machine) the threads may be executed on different processors, giving you the advantage of
parallelism.

Threads are a capability that is built into an operating system (or not, as the case may be.) If
your operating system supports threads, and your programming language gives you access
to them, then you can use them in your program.

If you're interested in threads, you want to use the "threads" (not "Threads") module:

use threads;

I'm going to skip the examples of threads programs: see me if you're interested.

Clusters

Clusters are multiple CPUs joined in a simple network. They are typically used to take a
program that must compute the same way over many inputs, and run the program on all the
CPUs, dividing the input up between them.

If you have access to a (usually) Linux cluster where you work, take the time to find out how
to submit programs to it.

In a recent job | had, | had to do three computation-intensive calculations over several
genomes. Each one took a week or two to finish when running on a single computer. On the
Linux cluster, they all finished within a small number of hours, and using that precomputation
| was able to carry my search for novel genes to a successful conclusion.

This Linux cluster has about 450 CPUs, and is a fairly big one. But it's quite straightforward
-- you could do it yourself -- to buy 10 or 20 inexpensive Linux boxes and construct a Linux
cluster that can speed up your large-scale, repetitive computations by 10 or 20 times.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

10/18/10 1:58 PM

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

Using Less Space

Here is the main problem of space in bioinformatics:
Very large strings will swamp the main memory on your computer.

(Main memory, or RAM, is where your computer holds a running program; it is much smaller than the memory
on your disks.)

When a program on your computer starts to use up too much main memory, its performance starts to
degrade. The program will first enlist a portion of disk space to hold the part of the running program that it can
no longer fit. This is called swapping.

But when a program starts swapping, which involves a lot of writing and reading to and from hard disk, it can
get increasingly slow. The program may even start thrashing, that is, repeatedly writing and reading large
amounts of data between main memory and hard disk. A program that is thrashing is going really slow, and it's
slowing down the whole computer and other programs, too.

Take this snippet of code that calls get_chromosome:

my S$chromosomel = getchromosome(l);

When getchromosome (1) returns the data from human chromosome 1 to be stored in schromosomel, the
program uses 100Mb of memory.

Operating on the chromosome may use additional memory. For instance, in perl, when you do a regular
expression search, you often want to save the successful match by using parentheses that set the special
variables $1, ss, and so on.

~ /AA(GAGTC*T)/;
$1;

Schromosome
my Spattern

But once you use these special variables, the inner workings of perl require the use of considerable additional
memory by your program. And you may make copies of all or part of the chromosome.

Your resulting code may be clear, straightforward to understand, and correct -- all good and proper things for
code to be -- but the amount of memory usage may still seriously slow down your program.

Motto: copying large strings is slow and takes up large amounts of memory
Editing for Space

Often, a program that barely runs at all and takes many hours of clogging up the computer, can be rewritten to
run more quickly by rewriting the algorithm so that it uses only a small fraction of the memory. It will fit into
less memory, and also run a lot faster.

Use references to save space

There's one easy way to cut down on the number of big strings in a program.

Normally (without using references) a subroutine makes copies of the values passed into it, and it makes
copies of the values returned from it.

References allow subroutines to avoid the string copying.

When we pass a reference to a string as an argument to a subroutine, we don't pass a copy of the string -- we

1of5 10/18/10 1:57 PM

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

pass a reference to the string, which takes almost no additional space.

And when the subroutine ends, whatever we've done with the string is immediately available to the calling
program, without having to use the return function, which would also copy the string.

In our example:

load chromosome(1, \$chromosomel);

This new subroutine has two arguments. The 1 indicates that we want the biggest human chromosome,
chromosome 1.

The second argument is a reference to a scalar variable. Inside the subroutine, the reference is most likely

used to initialize an argument schromref, Which is a reference to the genomic data. And then, in the
subroutine, the DNA data is put into the dereferenced string:

sub load_chromosome {
my (Schromnumber, $chromref) = @ ;

...(omitted)...

$Schromref = <CHROMOSOME1>

It is not necessary to return the whole chromosome from the subroutine, which would make a copy of it. The
value is passed by the reference out of the subroutine.

Using references is also a great way to pass a large amount of data into a subroutine without making copies
of it. In this case, however, the fact that the subroutine can change the contents of the referenced data is
something to watch out for.

The rule of thumb is: if you don't need two copies of the data, you can use references.

Managing Memory with Buffers

One of the most efficient ways to deal with very large strings is to deal with them a little at a time.

Here is an example of a program that searches an entire chromosome for a particular 12-base pattern, using
very little memory.

When searching for any regular expression in a chromosome, it's hard to see how you could avoid putting the
whole chromosome in a string. But very often there's a limit to the size of what you're searching for. In this
program, I'm looking for the 12-base pattern "ACGTACGTACGT."

I'm going to read the chromosome data into memory just a line or two at a time, search for the pattern, and
then reuse the memory to read in the next line or two of data.

The extra programming work involves:

First, keeping track of how much of the data has been read in, so | can report the locations in the
chromosome of successful searches.

Second, making sure | search across line breaks as well as within lines of data from the input file.
The following program reads in a FASTA file searches for my pattern in any amount of DNA--a whole

chromosome, a whole genome, a year's worth of Solexa data, even all known genetic data, while using only a
small amount of main memory.

20f5 10/18/10 1:57 PM

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

$ perl find fragment human.dna

For testing purposes | made a very short FASTA DNA file, human.dna, which contains:

>human dna: ACGTACGTACGT appears at positions 10, 40, and 98
AAAAAAAANMACGTACGTACGTCCGCGCGCGCGCGCGCGCACGTACGTACG
TGGGGGGGGGGGGGGGCCCCCCCCCCGGGGGGGGGGGGAAAAAANAAACG
TACGTACGTTTTTTTTTTTTTTTTTTTTTTTTTTT

Here's the code for the program find fragment:

#!/usr/bin/perl

use warnings;
use strict;

Sfragment: the pattern to search for

S$fraglen: the length of $fragment

Sbuffer: a buffer to hold the DNA from the input file
S$position: the position of the buffer in the total DNA

my ($fragment, $fraglen, S$buffer, S$position) = ('ACGTACGTACGT', 12, '', 0);

The first line of a FASTA file is a header and begins with '>'
my Sheader = <>;

Get the first line of DNA data, to start the ball rolling
Sbuffer = <>;
chomp S$buffer;

The remaining lines are DNA data ending with newlines
while(my S$newline = <>) {

Add the new line to the buffer
chomp $newline;
Sbuffer .= S$newline;

Search for the DNA fragment, which has a length of 12
(Report the character at string position 0 as being at position 1,
as usual in biology)
while($buffer =~ /$fragment/gi) {
print "Found $fragment at position ", $position + $-[0] + 1, "\n";

}

Reset the position counter (will be true after you reset the buffer, next)
$Sposition = $position + length($buffer) - $fraglen + 1;

Discard the data in the buffer, except for a portion at the end

so patterns that appear across line breaks are not missed
Sbuffer = substr($buffer, length($buffer) - $fraglen + 1, $fraglen - 1);

Here's the output of running the command
perl find fragment human.dna:

3of5 10/18/10 1:57 PM

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

Found ACGTACGTACGT at position 10
Found ACGTACGTACGT at position 40
Found ACGTACGTACGT at position 98

How the Code Works

| want to search for the fragment even if it is broken by new lines, so I'll have to look at least at two lines at a
time. | get the first line, and in the while loop that follows I'll start by adding more lines to the buffer.

Then the while loop starts reading in the next lines of the FASTA file. The newline character is removed with
chomp and the new line is added to the sbuffer.

Then comes the short while loop that does the regular expression pattern match of the sfragment in the
Sbuffer.

When the fragment is found the program simply prints out the fragment's position. The variable sposition
holds the position of the beginning of the buffer in the total DNA.

| also add 1, because biologists always say that the first base in a sequence of DNA is at position 1, whereas
Perl says that the first character in a string is at position 0. So | add 1 to the Perl position to get the biologist's
position.

The last two lines of code reset the buffer. First we eliminate the beginning (already searched) of the buffer,
and then we adjust the sposition counter accordingly. The buffer is shortened so that it just keeps the part at
the very end that might be part of a pattern match that spans the newlines.

The program manages to search the entire genome for the fragment, while keeping at most two lines' worth of
DNAin sputtfer, It performs very quickly, compared to a program that reads in a whole genome and blows out
the memory in the process.

When You Should Bother

Programs may be developed on one computer, but run on very different computers.

A space-inefficient program might well work fine on your computer, but not work well at all when you run it on
another computer with less main memory installed. Or, it might work fine on the fly genome, but start thrashing
when you try it on the human genome.

If you know you'll be dealing with large data sets, like genomes, take the amount of space your program uses
as an important constraint when designing and coding. Then you won't have to go back and redo the entire
program when a large amount of DNA gets thrown at the program.

Data Compression

In Perl, as in any programming system, the size of the data that the program uses is an absolute lower bound
on how fast the program can perform.

Each base is typically represented in a computer language as one ASCII character taking one 8-bit byte, so 3
gigabases equals 3 gigabytes. Of course, you could represent each of the four bases using only 2 bits, so
considerable compression is possible; but such space efficiency is not commonly employed. When it is, you
can pack 4 times as much data into a given space (for nucleotides, that is.)

A 00
Cc 01
G 10
T 11

40of5 10/18/10 1:57 PM

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

If you want an exercise, try using perl functions pack and vec to compress DNA sequence data to 4 bases per
byte.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

5of5 10/18/10 1:57 PM

