
UNIX - Command-Line Survival Guide
Files, directories, commands, text editors

Lincoln Stein

Lecture Notes
What is the Command Line?
Logging In
The Desktop
The Shell
Home Sweet Home
Getting Around
Running Commands
Command Redirection
Pipes

Workshop Problem Set
Problem #1

Log into your machine. What is the full path to your home directory?a.
What is the path to the home directory of user lstein?b.
What is the path to the home directory of www?c.
Locate the directory /Users/Shared/unix1. How v many files does it contain? How many
directories?

d.

Problem #2

Without using a text editor examine the contents of the file cosmids1.txt.

How many lines does this file contain?a.
How many characters?b.
What is the first line of this file?c.
What are the last 3 lines?d.

The files cosmids1.txt, cosmids2.txt, cosmids3.txt, and cosmids4.txt each contain lists of predicted
genes from the C. elegans genome.

Using the grep program, find the file(s) that contains the gene ZK103.4.c.
Copy these four files into your home directory using one command only.d.
Rename cosmids1.txt to clones.txt.e.
Create a new subdirectory named delete_me. Move all the cosmids file into it.f.
Use the chmod command to make this new subdirectory and its contents read-only.g.
Now delete delete_me and all its contents using the recursive form of rm. What effect do the
read-only file permissions have on this?

h.

Problem #3

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

1 of 14 10/13/10 3:12 PM

Create a text file using the emacs, or acquamacs text editor. Enter your name and address and
save the file as address.txt.

What is the Command Line?
Underlying the pretty Mac OSX GUI is a powerful command-line operating system. The command
line gives you access to the internals of the OS, and is also a convenient way to write custom
software and scripts.

Many bioinformatics tools are written to run on the command line and have no graphical interface. In
many cases, a command line tool is more versatile than a graphical tool, because you can easily
combine command line tools into automated scripts that accomplish tasks without human
intervention.

In this course, we will be writing Perl scripts that are completely command-line based.

Logging into Your Workstation
Your workstation is an iMac. To log into it, provide the following information:

Your username: the initial of your first name, followed by your full last name. For
example, my username is srobb for sofia robb
Your password: changeme

Bringing up the Command Line
To bring up the command line, use the Finder to navigate to Applications->Utilities and double-click
on the Terminal application. This will bring up a window like the following:

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

2 of 14 10/13/10 3:12 PM

OSX Terminal

You will be using this application a lot, so I suggest that you drag the Terminal icon into the shortcuts
bar at the bottom of your screen.

OK. I've Logged in. What Now?
The terminal window is running a shell called "bash." The shell is a loop that:

Prints a prompt1.
Reads a line of input from the keyboard2.
Parses the line into one or more commands3.
Executes the commands (which usually print some output to the terminal)4.
Prints the prompt5.
Repeat...6.

There are many different shells with bizarre names like bash, sh, csh, tcsh, ksh, and zsh. The "sh"
part means shell. Each shell was designed for the purpose of confusing you and tripping you up. We
have set up your accounts to use bash. Stay with bash and you'll get used to it, eventually.

Command-Line Prompt

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

3 of 14 10/13/10 3:12 PM

Most of bioinformatics is done with command-line software, so you should take some time to learn
to use the shell effectively.

This is a command line prompt:

bush202>

This is another:

(~) 51%

This is another:

lstein@bush202 1:12PM>

What you get depends on how the system administrator has customized your login. You can
customize yourself when you know how.

The prompt tells you the shell is ready to accept a command. When a long-running command is
going, the prompt will not reappear until the system is ready to deal with your next request.

Issuing Commands
Type in a command and press the <Enter> key. If the command has output, it will appear on the
screen. Example:

(~) 53% ls -F
GNUstep/ cool_elegans.movies.txt man/
INBOX docs/ mtv/
INBOX~ etc/ nsmail/
Mail@ games/ pcod/
News/ get_this_book.txt projects/
axhome/ jcod/ public_html/
bin/ lib/ src/
build/ linux/ tmp/
ccod/
(~) 54%

The command here is ls -F, which produces a listing of files and directories in the current directory
(more on which later). After its output, the command prompt appears agin.

Some programs will take a long time to run. After you issue their command name, you won't recover
the shell prompt until they're done. You can either launch a new shell (from Terminal's File menu), or
run the command in the background using the ampersand:

(~) 54% long_running_application&
(~) 55%

The command will now run in the background until it is finished. If it has any output, the output will
be printed to the terminal window. You may wish to redirect the output as described later.

Command Line Editing
Most shells offer command line entering. Up until the comment you press <Enter>, you can go back

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

4 of 14 10/13/10 3:12 PM

over the command line and edit it using the keyboard. Here are the most useful keystrokes:

Backspace
Delete the previous character and back up one.

Left arrow, right arrow
Move the text insertion point (cursor) one character to the left or right.

control-A (^A)
Move the cursor to the beginning of the line. Mnemonic: A is first letter of alphabet

control-E (^E)
Move the cursor to the end of the line. Mnemonic: <E> for the End (^Z was already taken for
something else).

control-D (^D)
Delete the character currently under the cursor. D=Delete.

control-K (^K)
Delete the entire line from the cursor to the end. K=Kill. The line isn't actually deleted, but put
into a temporary holding place called the "kill buffer".

control-Y (^Y)
Paste the contents of the kill buffer onto the command line starting at the cursor. Y=Yank.

Up arrow, down arrow
Move up and down in the command history. This lets you reissue previous commands,
possibly after modifying them.

There are also some useful shell commands you can issue:

history
Show all the commands that you have issued recently, nicely numbered.

!<number>
Reissue an old command, based on its number (which you can get from history)

!!
Reissue the immediate previous command.

!<partial command string>
Reissue the previous command that began with the indicated letters. For example !l would
reissue the ls -F command from the earlier example.

bash offers automatic command completion and spelling correction. If you type part of a command
and then the tab key, it will prompt you with all the possible completions of the command. For
example:

(~) 51% fd<tab>
(~) 51% fd
fd2ps fdesign fdformat fdlist fdmount fdmountd fdrawcmd fdumount
(~) 51%

If you hit tab after typing a command, but before pressing <Enter>, bash will prompt you with a list
of file names. This is because many commands operate on files.

Wildcards
You can use wildcards when referring to files. "*" refers to zero or more characters. "?" refers to any
single character. For example, to list all files with the extension ".txt", run ls with the pattern "*.txt":

(~) 56% ls -F *.txt
final_exam_questions.txt genomics_problem.txt
genebridge.txt mapping_run.txt

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

5 of 14 10/13/10 3:12 PM

There are several more advanced types of wildcard patterns which you can read about in the tcsh
manual page. For example, you can refer to files beginning with the characters "f" or "g" and ending
with ".txt" this way:

(~) 57% ls -F [f-g]*.txt
final_exam_questions.txt genebridge.txt genomics_problem.txt

Home Sweet Home
When you first log in, you'll be placed in a part of the system that is your personal domain, called the
home directory. You are free to do with this area what you will: in particular you can create and
delete files and other directories. In general, you cannot create files elsewhere in the system.

Your home directory lives somewhere way down deep in the bowels of the system. On our iMacs, it
is a directory with the same name as your login name, located in /Users. The full directory path is
therefore /Users/username. Since this is a pain to write, the shell allows you to abbreviate it as
~username (where "username" is your user name), or simply as ~. The weird character (technically
called the "twiddle") is usually hidden at the upper left corner of your keyboard.

To see what is in your home directory, issue the command ls -F:

(~) % ls -F
INBOX Mail/ News/ nsmail/ public_html/

This shows one file "INBOX" and four directories ("Mail", "News") and so on. (The "-F" in the
command turns on fancy mode, which appends special characters to directory listings to tell you
more about what you're seeing. "/" means directory.)

In addition to the files and directories shown with ls -F, there may be one or more hidden files.
These are files and directories whose names start with a "." (technically called the "dot" character).
To see these hidden files, add an "a" to the options sent to the ls command:

(~) % ls -aF
./ .cshrc .login Mail/
../ .fetchhost .netscape/ News/
.Xauthority .fvwmrc .xinitrc* nsmail/
.Xdefaults .history .xsession@ public_html/
.bash_profile .less .xsession-errors
.bashrc .lessrc INBOX

Whoa! There's a lot of hidden stuff there. But don't go deleting dot files willy-nilly. Many of them are
esential configuration files for commands and other programs. For example, the .profile file contains
configuration information for the bash shell. You can peek into it and see all of bash's many options.
You can edit it (when you know what you're doing) in order to change things like the command
prompt and command search path.

Getting Around
You can move around from directory to directory using the cd command. Give the name of the
directory you want to move to, or give no name to move back to your home directory. Use the pwd

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

6 of 14 10/13/10 3:12 PM

command to see where you are (or rely on the prompt, if configured):

(~/docs/grad_course/i) 56% cd
(~) 57% cd /
(/) 58% ls -F
bin/ dosc/ gmon.out mnt/ sbin/
boot/ etc/ home@ net/ tmp/
cdrom/ fastboot lib/ proc/ usr/
dev/ floppy/ lost+found/ root/ var/
(/) 59% cd ~/docs/
(~/docs) 60% pwd
/usr/home/lstein/docs
(~/docs) 62% cd ../projects/
(~/projects) 63% ls
Ace-browser/ bass.patch
Ace-perl/ cgi/
Foo/ cgi3/
Interface/ computertalk/
Net-Interface-0.02/ crypt-cbc.patch
Net-Interface-0.02.tar.gz fixer/
Pts/ fixer.tcsh
Pts.bak/ introspect.pl*
PubMed/ introspection.pm
SNPdb/ rhmap/
Tie-DBI/ sbox/
ace/ sbox-1.00/
atir/ sbox-1.00.tgz
bass-1.30a/ zhmapper.tar.gz
bass-1.30a.tar.gz
(~/projects) 64%

Each directory contains two special hidden directories named "." and "..". "." refers always to the
directory in which it is located. ".." refers always to the parent of the directory. This lets you move
upward in the directory hierarchy like this:

(~/docs) 64% cd ..

and to do arbitrarily weird things like this:

(~/docs) 65% cd ../../docs

The latter command moves upward to levels, and then into a directory named "docs".

If you get lost, the pwd command prints out the full path to the current directory:

(~) 56% pwd
/Users/lstein

Essential Unix Commands
With the exception of a few commands that are built directly into the shell, all Unix commands are
standalone executable programs. When you type the name of a command, the shell will search

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

7 of 14 10/13/10 3:12 PM

through all the directories listed in the PATH environment variable for an executable of the same
name. If found, the shell will execute the command. Otherwise, it will give a "command not found"
error.

Most commands live in /bin, /usr/bin, or /usr/local/bin.

Getting Information About Commands
The man command will give a brief synopsis of the command:

(~) 76% man wc
Formatting page, please wait...
WC(1) WC(1)

NAME
 wc - print the number of bytes, words, and lines in files

SYNOPSIS
 wc [-clw] [--bytes] [--chars] [--lines] [--words] [--help]
 [--version] [file...]

DESCRIPTION
 This manual page documents the GNU version of wc. wc
 counts the number of bytes, whitespace-separated words,
...

Finding Out What Commands are There
The apropos command will search for commands matching a keyword or phrase:

(~) 100% apropos column
showtable (1) - Show data in nicely formatted columns
colrm (1) - remove columns from a file
column (1) - columnate lists
fix132x43 (1) - fix problems with certain (132 column) graphics
modes

Arguments and Command Switches
Many commands take arguments. Arguments are often (but not inevitably) the names of one or
more files to operate on. Most commands also take command-line "switches" or "options" which
fine-tune what the command does. Some commands recognize "short switches" that consist of a
single character, while others recognize "long switches" consisting of whole words.

The wc (word count) program is an example of a command that recognizes both long and short
options. You can pass it the -c, -w and/or -l options to count the characters, words and lines in a text
file, respectively. Or you can use the longer but more readable, --chars, --words or --lines options.
Both these examples count the number of characters and lines in the text file /var/log/messages:

(~) 102% wc -c -l /var/log/messages
 23 941 /var/log/messages
(~) 103% wc --chars --lines /var/log/messages

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

8 of 14 10/13/10 3:12 PM

 23 941 /var/log/messages

You can cluster short switches by concatenating them together, as shown in this example:

(~) 104% wc -cl /var/log/messages
 23 941 /var/log/messages

Many commands will give a brief usage summary when you call them with the -h or --help switch.

Spaces and Funny Characters

The shell uses whitespace (spaces, tabs and other nonprinting characters) to separate arguments.
If you want to embed whitespace in an argument, put single quotes around it. For example:

mail -s 'An important message' 'Lincoln Stein <lstein@cshl.org>'

This will send an e-mail to me. The -s switch takes an argument, which is the subject line for the
e-mail. Because the desired subject contains spaces, it has to have quotes around it. Likewise, my
e-mail address, which contains embedded spaces, must also be quoted in this way.

Certain special non-printing characters have escape codes associated with them:

Escape Code Description
\n new line character

\t tab character

\r carriage return character

\a bell character (ding! ding!)

\nnn the character whose ASCII code in octal is nnn

Useful Commands
Here are some commands that are used extremely frequently. Use man to learn more about them.
Some of these commands may be useful for solving the problem set ;-)

Manipulating Directories

ls
Directory listing. Most frequently used as ls -F (decorated listing) and ls -l (long listing).

mv
Rename or move a file or directory.

cp
Copy a file.

rm
Remove (delete) a file.

mkdir
Make a directory

rmdir
Remove a directory

ln
Create a symbolic or hard link.

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

9 of 14 10/13/10 3:12 PM

chmod
Change the permissions of a file or directory.

Manipulating Files

cat
Concatenate program. Can be used to concatenate multiple files together into a single file, or,
much more frequently, to send the contents of a file to the terminal for viewing.

more
Scroll through a file page by page. Very useful when viewing large files. Works even with files
that are too big to be opened by a text editor.

less
A version of more with more features.

head
View the head (top) of a file. You can control how many lines to view.

tail
View the tail (bottom) of a file. You can control how many lines to view. You can also use tail to
view a growing file.

wc
Count words, lines and/or characters in one or more files.

tr
Substitute one character for another. Also useful for deleting characters.

sort
Sort the lines in a file alphabetically or numerically.

uniq
Remove duplicated lines in a file.

cut
Remove sections from each line of a file or files.

fold
Wrap each input line to fit in a specified width.

grep
Filter a file for lines matching a specified pattern. Can also be reversed to print out lines that
don't match the specified pattern.

gzip (gunzip)
Compress (uncompress) a file.

tar
Archive or unarchive an entire directory into a single file.

emacs
Run the Emacs text editor (good for experts).

Networking

telnet
Log into a remote host machine.

ssh
A secure (encrypted) version of telnet.

ping
See if a remote host is up.

ftp
Transfer files using the File Transfer Protocol.

who
See who else is logged in.

lp
Send a file or set of files to a printer.

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

10 of 14 10/13/10 3:12 PM

Standard I/O and Command Redirection
Unix commands communicate via the command line interface. They can print information out to the
terminal for you to see, and accept input from the keyboard (that is, from you!)

Every Unix program starts out with three connections to the outside world. These connections are
called "streams" because they act like a stream of information (metaphorically speaking):

standard input
This is a communications stream initially attached to the keyboard. When the program reads
from standard input, it reads whatever text you type in.

standard output
This stream is initially attached to the command window. Anything the program prints to this
channel appears in your terminal window.

standard error
This stream is also initially attached to the command window. It is a separate channel intended
for printing error messages.

The word "initially" might lead you to think that standard input, output and error can somehow be
detached from their starting places and reattached somewhere else. And you'd be right. You can
attach one or more of these three streams to a file, a device, or even to another program. This
sounds esoteric, but it is actually very useful.

A Simple Example
The wc program counts lines, characters and words in data sent to its standard input. You can use it
interactively like this:

(~) 62% wc
Mary had a little lamb,
little lamb,
little lamb.

Mary had a little lamb,
whose fleece was white as snow.
^D
 6 20 107

In this example, I ran the wc program. It waited for me to type in a little poem. When I was done, I
typed the END-OF-FILE character, control-D (^D for short). wc then printed out three numbers
indicating the number of lines, words and characters in the input.

More often, you'll want to count the number of lines in a big file; say a file filled with DNA sequences.
You can do this by redirecting wc's standard input from a file. This uses the < metacharacter:

(~) 63% wc <big_file.fasta
 2943 2998 419272

If you wanted to record these counts for posterity, you could redirect standard output as well using
the > metacharacter:

(~) 64% wc <big_file.fasta >count.txt

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

11 of 14 10/13/10 3:12 PM

Now if you cat the file count.txt, you'll see that the data has been recorded. cat works by taking its
standard input and copying it to standard output. We redirect standard input from the count.txt file,
and leave standard output at its default, attached to the terminal:

(~) 65% cat <count.txt
 2943 2998 419272

Redirection Meta-Characters
Here's the complete list of redirection commands for bash:
<fi lename Redirect standard input to file

>fi lename Redirect standard output to file

1>fi lename Redirect just standard output to file (same as above)

2>fi lename Redirect just standard error to file

>fi lename 2>&1 Redirect both stdout and stderr to file

These can be combined. For example, this command redirects standard input from the file named
/etc/passwd, writes its results into the file search.out, and writes its error messages (if any) into a file
named search.err. What does it do? It searches the password file for a user named "root" and
returns all lines that refer to that user.

(~) 66% grep root </etc/passwd >search.out 2>search.err

Filters, Filenames and Standard Input
Many Unix commands act as filters, taking data from a file or standard input, transforming the data,
and writing the results to standard output. Most filters are designed so that if they are called with
one or more filenames on the command line, they will use those files as input. Otherwise they will
act on standard input. For example, these two commands are equivalent:

(~) 66% grep 'gatttgc' <big_file.fasta
(~) 67% grep 'gatttgc' big_file.fasta

Both commands use the grep command to search for the string "gatttgc" in the file big_file.fasta.
The first one searches standard input, which happens to be redirected from the file. The second
command is explicitly given the name of the file on the command line.

Sometimes you want a filter to act on a series of files, one of which happens to be standard input.
Many filters let you use "-" on the command line as an alias for standard input. Example:

(~) 68% grep 'gatttgc' big_file.fasta bigger_file.fasta -

This example searches for "gatttgc" in three places. First it looks in big_file.fasta, then in
bigger_file.fasta, and lastly in standard input (which, since it isn't redirected, will come from the
keyboard).

Standard I/O and Pipes

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

12 of 14 10/13/10 3:12 PM

The coolest thing about the Unix shell is its ability to chain commands together into pipelines. Here's
an example:

(~) 65% grep gatttgc big_file.fasta | wc -l
22

There are two commands here. grep searches a file or standard input for lines containing a
particular string. Lines which contain the string are printed to standard output. wc -l is the familiar
word count program, which counts words, lines and characters in a file or standard input. The -l
command-line option instructs wc to print out just the line count. The | character, which is known as
the "pipe" character, connects the two commands together so that the standard output of grep
becomes the standard input of wc.

What does this pipe do? It prints out the number of lines in which the string "gatttgc" appears in the
fi le big_file.fasta.

More Pipe Idioms
Pipes are very powerful. Here are some common command-line idioms.

Count the Number of Times a Pattern does NOT Appear in a File

The example at the top of this section showed you how to count the number of lines in which a
particular string pattern appears in a file. What if you want to count the number of lines in which a
pattern does not appear?

Simple. Reverse the test with the grep -v switch:

(~) 65% grep -v gatttgc big_file.fasta | wc -l
2921

Uniquify Lines in a File

If you have a long list of names in a text file, and you are concerned that there might be some
duplicates, this will weed out the duplicates:

(~) 66% sort long_file.txt | uniq > unique.out

This works by sorting all the lines alphabetically and piping the result to the uniq program, which
removes duplicate lines that occur together. The output is placed in a file named unique.out.

Concatenate Several Lists and Remove Duplicates

If you have several lists that might contain repeated entries among them, you can combine them
into a single unique list by cating them together, then uniquifying them as before:

(~) 67% cat file1 file2 file3 file4 | sort | uniq

Count Unique Lines in a File

If you just want to know how many unique lines there are in the file, add a wc to the end of the pipe:

(~) 68% sort long_file.txt | uniq | wc -l

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

13 of 14 10/13/10 3:12 PM

Page Through a Really Long Directory Listing

Pipe the output of ls to the more program, which shows a page at a time. If you have it, the less
program is even better:

(~) 69% ls -l | more

Monitor a Rapidly Growing File for a Pattern

Pipe the output of tail -f (which monitors a growing file and prints out the new lines) to grep. For
example, this will monitor the /var/log/syslog file for the appearance of e-mails addressed to
mzhang:

(~) 70% tail -f /var/log/syslog | grep mzhang

UNIX - Command-Line Survival Guide http://infoserver.local/LectureNotes/unix_Survival_Guide/unix...

14 of 14 10/13/10 3:12 PM

Perl Scripting 1
Expressions, Operators, Statements, Variables

Lincoln Stein

Suggested Reading
Chapters 1, 2 & 5 of Learning Perl.

Lecture Notes
What is Perl?1.
Some simple Perl scripts2.
Mechanics of creating a Perl script3.
Statements4.
Literals5.
Operators6.
Functions7.
Variables8.
Processing the Command Line9.

Problems
Create a script called "add" script to sum two arguments:

 % add 2 3
 5

1.

Modify this script so that it checks that both arguments are present:

 % add 2
 Please provide two numeric arguments.

2.

Create a script called "now" to print the current time of day:

 % now
 It is now Sun Jun 6 16:35:40 1999

3.

Create a script to produce the reverse complement of a sequence (hint, use the reverse and tr///
functions:

 % reversec GAGAGAGAGAGTTTTTTTTT
 AAAAAAAAACTCTCTCTCTC

4.

What is Perl?

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

1 of 19 10/13/10 3:12 PM

Perl is a Programming Language
Written by Larry Wall in late 80's to process mail on Unix systems and since extended by a huge cast of
characters. The name is said to stand for:

Pathologically Eclectic Rubbish Lister1.
Practical Extraction and Report Language2.

Perl Properties
Interpreted Language1.
"Object-Oriented"2.
Cross-platform3.
Forgiving4.
Great for text5.
Extensible, rich set of libraries6.
Popular for web pages7.
Extremely popular for bioinformatics8.

Other Languages Used in Bioinformatics
C, C++

Compiled languages, hence very fast.
Used for computation (BLAST, FASTA, Phred, Phrap, ClustalW)
Not very forgiving.

Java
Interpreted, fully object-oriented language.
Built into web browsers.
Supposed to be cross-platform, but not quite yet.

Python
Interpreted, fully object-oriented language.
Rich set of libraries.
Elegant syntax.
Smaller user community than Java or Perl.

Some Simple Scripts
Here are some simple scripts to illustrate the "look" of a Perl program.

Print a Message to the Terminal
Code:

 # file: message.pl
 print "When that Aprill with his shoures soote\n";
 print "The droghte of March ath perced to the roote,\n";
 print "And bathed every veyne in swich licour\n";
 print "Of which vertu engendered is the flour...\n";

Output:

(~) 50% perl message.pl
When that Aprill with his shoures soote
The droghte of March ath perced to the roote,
And bathed every veyne in swich licour

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

2 of 19 10/13/10 3:12 PM

Of which vertu engendered is the flour...

Do Some Math
Code:

 # file: math.pl
 print "2 + 2 =", 2+2, "\n";
 print "log(1e23)= ", log(1e23), "\n";
 print "2 * sin(3.1414)= ", 2 * sin(3.1414), "\n";

Output:

(~) 51% perl math.pl
2 + 2 =4
log(1e23)= 52.9594571388631
2 * sin(3.1414)= 0.000385307177203065

Run a System Command
Code:

 # file: system.pl
 system "ls";

Output:

(~/docs/grad_course/perl) 52% perl math.pl
index.html math.pl~ problem_set.html~ what_is_perl.html
index.html~ message.pl simple.html what_is_perl.html~
math.pl problem_set.html simple.html~

Return the Time of Day
Code:

 # file: time.pl
 $time = localtime;
 print "The time is now $time\n";

Output:

(~) 53% perl time.pl
The time is now Thu Sep 16 17:30:02 1999

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

3 of 19 10/13/10 3:12 PM

Mechanics of Writing Perl Scripts
Some hints to help you get going.

Creating the Script
A Perl script is just a text file. Use any text (programmer's) editor.

By convention, Perl script files end with the extension .pl.

The Emacs text editor has a Perl mode that will auto-format your Perl scripts and highlight keywords.
Perl mode will be activated automatically if you end the script name with .pl.

Running the Script
Option 1

Run the perl program from the command line, giving it the name of the script file to run.

 (~) 50% perl time.pl
 The time is now Thu Sep 16 18:09:28 1999

Option 2
Put the magic comment #!/usr/bin/perl at the top of the script.

#!/usr/bin/perl
file: time.pl
$time = localtime;
print "The time is now $time\n";

Make the script executable with chmod +x time.pl:

 (~) 51% chmod +x time.pl

Run the script as if it were a command:

 (~) 52% ./time.pl
 The time is now Thu Sep 16 18:12:13 1999

Note that you have to type "./time.pl" rather than "time.pl" because, by default, bash does not
search the current directory for commands to execute. To avoid this, you can add the current
directory (".") to your search PATH environment variable. To do this, create a file in your
home directory named .profile and enter the following line in it:

export PATH=$PATH:.

The next time you log in, your path will contain the current directory and you can type
"time.pl" directly.

Common Errors

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

4 of 19 10/13/10 3:12 PM

Every script goes through a few iterations before you get it right. Here are some common errors:

Syntax Errors

Code:

 #!/usr/bin/perl
 # file: time.pl
 time = localtime;
 print "The time is now $time\n";

Output:

(~) 53% time.pl
Can't modify time in scalar assignment at time.pl line 3, near "localtime;"
Execution of time.pl aborted due to compilation errors.

Runtime Errors

Code:

 #!/usr/bin/perl
 # file: math.pl

 $six_of_one = 6;
 $half_dozen = 12/2;
 $result = $six_of_one/($half_dozen - $six_of_one);
 print "The result is $result\n";

Output:

(~) 54% math.pl
Illegal division by zero at math.pl line 6.

Forgetting to Make the Script Executable

(~) 55% test.pl
test.pl: Permission denied.

Getting the Path to Perl Wrong on the #! line

Code:

 #!/usr/local/bin/pearl
 # file: time.pl
 $time = localtime;
 print "The time is now $time\n";

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

5 of 19 10/13/10 3:12 PM

(~) 55% time.pl
time.pl: Command not found.

Useful Perl Command-Line Options

You can call Perl with a few command-line options to help catch errors:

-c
Perform a syntax check, but don't run.

-w
Turn on verbose warnings.

-d
Turn on the Perl debugger.

Usually you will invoke these from the command-line, as in perl -cw time.pl (syntax check time.pl with
verbose warnings). You can also put them in the top line: #!/usr/bin/perl -w.

Perl Statements
A Perl script consists of a series of statements and comments. Each statement is a command that is
recognized by the Perl interpreter and executed. Statements are terminated by the semicolon character
(;). They are also usually separated by a newline character to enhance readability.

A comment begins with the # sign and can appear anywhere. Everything from the # to the end of the line
is ignored by the Perl interpreter. Commonly used for human-readable notes.

Some Statements

$sum = 2 + 2; # this is a statement

$f = <STDIN>; $g = $f++; # these are two statements

$g = $f
 /
 $sum; # this is one statement, spread across 3 lines

The Perl interpreter will start at the top of the script and execute all the statements, in order from top to
bottom, until it reaches the end of the script. This execution order can be modified by loops and control
structures.

Blocks
It is common to group statements into blocks using curly braces. You can execute the entire block
conditionally, or turn it into a subroutine that can be called from many different places.

Example blocks:
{ # block starts
 my $EcoRI = 'GAATTC';

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

6 of 19 10/13/10 3:12 PM

 my $sequence = <STDIN>;
 print "Sequence contains an EcoRI site" if $sequence=~/$EcoRI/;
} # block ends

my $sequence2 = <STDIN>;
if (length($sequence) < 100) { # another block starts
 print "Sequence is too small. Throw it back\n";
 exit 0;
} # and ends

foreach $sequence (@sequences) { # another block
 print "sequence length = ",length($sequence),"\n";
}

Literals
Literals are constant values that you embed directly in the program code. Perl supports both string
literals and numeric literals.

String Literals
String literals are enclosed by single quotes (') or double quotes ("):

'The quality of mercy is not strained.'; # a single-quoted string
"The quality of mercy is not strained."; # a double-quoted string

The difference between single and double-quoted strings is that variables and certain special escape
codes are interpolated into double quoted strings, but not in single-quoted ones. Here are some escape
codes:

\n New line

\t Tab

\r Carriage return

\f Form feed

\a Ring bell

\040 Octal character (octal 040 is the space character)

\0x2a Hexadecimal character (hex 2A is the "*" character)

\cA Control character (This is the ^A character)

\u Uppercase next character

\l Lowercase next character

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

7 of 19 10/13/10 3:12 PM

\U Uppercase everything until \E

\L Lowercase everything until \E

\Q Quote non-word characters until \E

\E End \U, \L or \Q operation

"Here goes\n\tnothing!";
 # evaluates to:
 # Here goes
 # nothing!

'Here goes\n\tnothing!';
 # evaluates to:
 # Here goes\n\tnothing!

"Here goes \unothing!";
 # evaluates to:
 # Here goes Nothing!

"Here \Ugoes nothing\E";
 # evaluates to:
 # Here GOES NOTHING!

"Alert! \a\a\a";
 # evaluates to:
 # Alert! (ding! ding! ding!)

Putting backslashes in strings is a problem because they get interpreted as escape sequences. To
inclue a literal backslash in a string, double it:

"My file is in C:\\Program Files\\Accessories\\wordpad.exe";

 # evaluates to: C:\Program Files\Accessories\wordpad.exe

Put a backslash in front of a quote character in order to make the quote character part of the string:

"She cried \"Oh dear! The parakeet has flown the coop!\"";

 # evaluates to: She cried "Oh dear! The parakeet has flown the coop!"

Numeric Literals
You can refer to numeric values using integers, floating point numbers, scientific notation, hexadecimal
notation, and octal. With some help from the Math::Complex module, you can refer to complex numbers
as well:

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

8 of 19 10/13/10 3:12 PM

123; # an integer

1.23; # a floating point number

-1.23; # a negative floating point number

1_000_000; # you can use _ to improve readability

1.23E45; # scientific notation

0x7b; # hexadecimal notation (decimal 123)

0173; # octal notation (decimal 123)

use Math::Complex; # bring in the Math::Complex module

12+3*i; # complex number 12 + 3i

Backtick Strings
You can also enclose a string in backtics (`). This has the unusual property of executing whatever is
inside the string as a Unix system command, and returning its output:

`ls -l`;
evaluates to a string containing the output of running the
ls -l command

Lists
The last type of literal that Perl recognizes is the list, which is multiple values strung together using the
comma operator (,) and enclosed by parentheses. Lists are closely related to arrays, which we talk
about later.

('one', 'two', 'three', 1, 2, 3, 4.2);
 # this is 7-member list contains a mixure of strings, integers
 # and floats

Operators
Perl has numerous operators (over 50 of them!) that perform operations on string and numberic values.
Some operators will be familiar from algebra (like "+", to add two numbers together), while others are
more esoteric (like the "." string concatenation operator).

Numeric & String Operators

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

9 of 19 10/13/10 3:12 PM

The "." operator acts on strings. The "!" operator acts on strings and numbers. The rest act on numbers.
Operator Description Example Result

. String concatenate 'Teddy' . 'Bear' TeddyBear

= Assignment $a = 'Teddy' $a variable contains 'Teddy'

+ Addition 3+2 5

- Subtraction 3-2 1

- Negation -2 -2

! Not !1 0

* Multiplication 3*2 6

/ Division 3/2 1.5

% Modulus 3%2 1

** Exponentiation 3**2 9

<FILEHANDLE> File input <STDIN> Read a line of input from standard input

>> Right bit shift 3>>2 0 (binary 11>>2=00)

<< Left bit shift 3<<2 12 (binary 11<<2=1100)

| Bitwise OR 3|2 3 (binary 11|10=11

& Bitwise AND 3&2 2 (binary 11&10=10

^ Bitwise XOR 3^2 1 (binary 11^10=01

Operator Precedence

When you have an expression that contains several operators, they are evaluated in an order
determined by their precedence. The precedence of the mathematical operators follows the rules of
arithmetic. Others follow a precedence that usually does what you think they should do. If uncertain, use
parentheses to force precedence:

2+3*4; # evaluates to 14, multiplication has precedence over addition
(2+3)*4; # evaluates to 20, parentheses force the precedence

Logical Operators
These operators compare strings or numbers, returning TRUE or FALSE:

Numeric Comparison String Comparison
3 == 2 equal to 'Teddy' eq 'Bear' equal to

3 != 2 not equal to 'Teddy' ne 'Bear' not equal to

3 < 2 less than 'Teddy' lt 'Bear' less than

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

10 of 19 10/13/10 3:12 PM

3 > 2 greater than 'Teddy' gt 'Bear' greater than

3 <= 2 less or equal 'Teddy' le 'Bear' less than or equal

3 >= 2 greater than or equal 'Teddy' ge 'Bear' greater than or equal

3 <=> 2 compare 'Teddy' cmp 'Bear' compare

 'Teddy' =~ /Bear/ pattern match

The <=> and cmp operators return:

-1 if the left side is less than the right side
0 if the left side equals the right side
+1 if the left side is greater than the right side

File Operators
Perl has special fi le operators that can be used to query the file system. These operators generally
return TRUE or FALSE.

Example:

print "Is a directory!\n" if -d '/usr/home';
print "File exists!\n" if -e '/usr/home/lstein/test.txt';
print "File is plain text!\n" if -T '/usr/home/lstein/test.txt';

There are many of these operators. Here are some of the most useful ones:

-e filename file exists

-r filename file is readable

-w filename file is writable

-x filename file is executable

-z filename file has zero size

-s filename file has nonzero size (returns size)

-d filename file is a directory

-T filename file is a text file

-B filename file is a binary file

-M filename age of file in days since script launched

-A filename same for access time

Functions

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

11 of 19 10/13/10 3:12 PM

In addition to its operators, Perl has many functions. Functions have a human-readable name, such as
print and take one or more arguments passed as a list. A function may return no value, a single value
(AKA "scalar"), or a list (AKA "array"). You can enclose the argument list in parentheses, or leave the
parentheses off.

A few examples:

 # The function is print. Its argument is a string.
 # The effect is to print the string to the terminal.
print "The rain in Spain falls mainly on the plain.\n";

 # Same thing, with parentheses.
print("The rain in Spain falls mainly on the plain.\n");

 # You can pass a list to print. It will print each argument.
 # This prints out "The rain in Spain falls 6 times in the plain."
print "The rain in Spain falls ",2*4-2," times in the plain.\n";

 # Same thing, but with parentheses.
print ("The rain in Spain falls ",2*4-2," times in the plain.\n");

 # The length function calculates the length of a string,
 # yielding 45.
length "The rain in Spain falls mainly on the plain.\n";

 # The split function splits a string based on a delimiter pattern
 # yielding the list ('The','rain in Spain','falls mainly','on the plain.')
split '/','The/rain in Spain/falls mainly/on the plain.';

Often Used Functions (alphabetic listing)
For specific information on a function, use perldoc -f function_name to get a concise summary.

abs absolute value

chdir change current directory

chmod change permissions of file/directory

chomp remove terminal newline from string variable

chop remove last character from string variable

chown change ownership of file/directory

close close a file handle

closedir close a directory handle

cos cosine

defined test whether variable is defined

delete delete a key from a hash

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

12 of 19 10/13/10 3:12 PM

die exit with an error message

each iterate through keys & values of a hash

eof test a filehandle for end of file

eval evaluate a string as a perl expression

exec quit Perl and execute a system command

exists test that a hash key exists

exit exit from the Perl script

glob expand a directory listing using shell wildcards

gmtime current time in GMT

grep filter an array for entries that meet a criterion

index find location of a substring inside a larger string

int throw away the fractional part of a floating point number

join join an array together into a string

keys return the keys of a hash

kill send a signal to one or more processes

last exit enclosing loop

lc convert string to lowercase

lcfirst lowercase first character of string

length find length of string

local temporarily replace the value of a global variable

localtime return time in local timezone

log natural logarithm

m// pattern match operation

map perform on operation on each member of array or list

mkdir make a new directory

my create a local variable

next jump to the top of enclosing loop

open open a file for reading or writing

opendir open a directory for listing

pack pack a list into a compact binary representation

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

13 of 19 10/13/10 3:12 PM

package create a new namespace for a module

pop pop the last item off the end of an array

print print to terminal or a file

printf formatted print to a terminal or file

push push a value onto the end of an array

q/STRING/ generalized single-quote operation

qq/STRING/ generalized double-quote operation

qx/STRING/ generalized backtick operation

qw/STRING/ turn a space-delimited string of words into a list

rand random number generator

read read binary data from a file

readdir read the contents of a directory

readline read a line from a text file

readlink determine the target of a symbolic link

redo restart a loop from the top

ref return the type of a variable reference

rename rename or move a file

require load functions defined in a library file

return return a value from a user-defined subroutine

reverse reverse a string or list

rewinddir rewind a directory handle to the beginning

rindex find a substring in a larger string, from right to left

rmdir remove a directory

s/// pattern substitution operation

scalar force an expression to be treated as a scalar

seek reposition a filehandle to an arbitrary point in a file

select make a filehandle the default for output

shift shift a value off the beginning of an array

sin sine

sleep put the script to sleep for a while

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

14 of 19 10/13/10 3:12 PM

sort sort an array or list by user-specified criteria

splice insert/delete array items

split split a string into pieces according to a pattern

sprintf formatted string creation

sqrt square root

stat get information about a file

sub define a subroutine

substr extract a substring from a string

symlink create a symbolic link

system execute an operating system command, then return to Perl

tell return the position of a filehandle within a file

tie associate a variable with a database

time return number of seconds since January 1, 1970

tr/// replace characters in a string

truncate truncate a file (make it smaller)

uc uppercase a string

ucfirst uppercase first character of a string

umask change file creation mask

undef undefine (remove) a variable

unlink delete a file

unpack the reverse of pack

untie the reverse of tie

unshift move a value onto the beginning of an array

use import variables and functions from a library module

values return the values of a hash variable

wantarray return true in an array context

warn print a warning to standard error

write formatted report generation

Creating Your Own Functions
You can define your own functions or redefine the built-in ones using the sub function. This is described

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

15 of 19 10/13/10 3:12 PM

in more detail in the lesson on creating subroutines, which you'll be seeing soon..

Variables
A variable is a symbolic placeholder for a value, a lot like the variables in algebra. Perl has several
built-in variable types:

Scalars: $variable_name
A single-valued variable, always preceded by a $ sign.

Arrays: @array_name
A multi-valued variable indexed by integer, preceded by an @ sign.

Hashes: %hash_name
A multi-valued variable indexed by string, preceded by a % sign.

Filehandle: FILEHANDLE_NAME
A file to read and/or write from. Filehandles have no special prefix, but are usually written in all
uppercase.

We discuss arrays, hashes and filehandles later.

Scalar Variables
Scalar variables have names beginning with $. The name must begin with a letter or underscore, and
can contain as many letters, numbers or underscores as you like. These are all valid scalars:

$foo
$The_Big_Bad_Wolf
$R2D2
$_____A23
$Once_Upon_a_Midnight_Dreary_While_I_Pondered_Weak_and_Weary

You assign values to a scalar variable using the = operator (not to be confused with ==, which is numeric
comparison). You read from scalar variables by using them wherever a value would go.

A scalar variable can contain strings, floating point numbers, integers, and more esoteric things. You
don't have to predeclare scalars. A scalar that once held a string can be reused to hold a number, and
vice-versa:

Code:

 $p = 'Potato'; # $p now holds the string "potato"
 $bushels = 3; # $bushels holds the value 3
 $potatoes_per_bushel = 80; # $potatoes_per_bushel contains 80;

 $total_potatoes = $bushels * $potatoes_per_bushel; # 240

 print "I have $total_potatoes $p\n";

Output:

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

16 of 19 10/13/10 3:12 PM

I have 240 Potato

Scalar Variable String Interpolation
The example above shows one of the interesting features of double-quoted strings. If you place a scalar
variable inside a double quoted string, it will be interpolated into the string. With a single-quoted string,
no interpolation occurs.

To prevent interpolation, place a backslash in front of the variable:

 print "I have \$total_potatoes \$p\n";

 # prints: I have $total_potatoes $p

Operations on Scalar Variables
You can use a scalar in any string or numeric expression like $hypotenuse = sqrt($x**2 + $y**2) or
$name = $first_name . ' ' . $last_name. There are also numerous shortcuts that combine an
operation with an assignment:

$a++
Increment $a by one

$a--
Decrement $a by one

$a += $b
Modify $a by adding $b to it.

$a -= $b
Modify $a by subtracting $b from it.

$a *= $b
Modify $a by multiplying $b to it.

$a /= $b
Modify $a by dividing it by $b.

$a .= $b
Modify the string in $a by appending $b to it.

Example Code:

 $potatoes_per_bushel = 80; # $potatoes_per_bushel contains 80;

 $p = 'one';
 $p .= ' '; # append a space
 $p .= 'potato'; # append "potato"

 $bushels = 3;
 $bushels *= $potatoes_per_bushel; # multiply

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

17 of 19 10/13/10 3:12 PM

 print "From $p come $bushels.\n";

Output:

From one potato come 240.

String Functions that Come in Handy for Dealing with
Sequences
Reverse the Contents of a String

 $name = 'My name is Lincoln';
 $reversed_name = reverse $name;
 print $reversed_name,"\n";
 # prints "nlocniL si eman yM"

Translating one set of letters into another set

 $name = 'My name is Lincoln';
 # swap a->g and c->t
 $name =~ tr/ac/gt/;
 print $name,"\n";
 # prints "My ngme is Lintoln"

Can you see how a combination of these two operators might be useful for computing the reverse
complement?

Processing Command Line Arguments
When a Perl script is run, its command-line arguments (if any) are stored in an automatic array called
@ARGV. You'll learn how to manipulate this array later. For now, just know that you can call the shift
function repeatedly from the main part of the script to retrieve the command line arguments one by one.

Printing the Command Line Argument
Code:

 #!/usr/bin/perl
 # file: echo.pl

 $argument = shift;
 print "The first argument was $argument.\n";

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

18 of 19 10/13/10 3:12 PM

Output:

(~) 50% chmod +x echo.pl
(~) 51% echo.pl tuna
The first argument was tuna.
(~) 52% echo.pl tuna fish
The first argument was tuna.
(~) 53% echo.pl 'tuna fish'
The first argument was tuna fish.
(~) 53% echo.pl
The first argument was.

Computing the Hypotenuse of a Right Triangle
Code:

 #!/usr/bin/perl
 # file: hypotense.pl

 $x = shift;
 $y = shift;
 $x>0 and $y>0 or die "Must provide two positive numbers";

 print "Hypotenuse=",sqrt($x**2+$y**2),"\n";

Output:

(~) 82% hypotenuse.pl
Must provide two positive numbers at hypotenuse.pl line 6.
(~) 83% hypotenuse.pl 1
Must provide two positive numbers at hypotenuse.pl line 6.
(~) 84% hypotenuse.pl 3 4
Hypotenuse=5
(~) 85% hypotenuse.pl 20 18
Hypotenuse=26.9072480941474
(~) 86% hypotenuse.pl -20 18
Must provide two positive numbers at hypotenuse.pl line 6.

Perl Scripting 1 http://infoserver.local/LectureNotes/perl1_Basics/perl1_Basics.html

19 of 19 10/13/10 3:12 PM

Perl Scripting II

Conditionals, Logical operators,
Loops, and File handles

Suzi Lewis

Genome Informatics

Control Structures
! Control structures allow you to tell Perl the order

in which you want the interpreter to execute
statements.
! You can create alternative branches in which different

sets of statements are executed depending on
circumstances

! You can create various types of repetitive loops.

Conditional Blocks
$i = 1;

$j = 2;

if ($i == $j) { # Curly braces define a “block”

 print "i equals j\n";

 $i += 1;

}

unless ($i == $j) {

 print "i does not equal j\n";

 $i += 2;

}

print "\$i is $i\n";

Single line Conditionals

! You can also use the operators if and unless at the end of
a single statement. This executes that one statement
conditionally.

print "i equals j\n" if $i == $j;

print "i is twice j\n" if $i == $j * 2;

print "i does not equal j\n" unless $i == $j;

If-Else Statements
! Use else blocks for either/or constructions.

if ($i == $j) {

 print "i equals j\n";

 $i += $j;

} else {

 print "i does not equal j\n";

 die "Operation aborted!";

}

! What does this print if $i=2 and $j=2?

If-Else Statements
! You can perform multiple tests in a series using elsif:

if ($i > 100) {

 print "i is too large\n";

} elsif ($i < 0) {

 print "i is too small\n";

} elsif ($i == 50) {

 print "i is too average\n";

} else {

 print "i is just right!\n";

}

! What does this print if $i=50? If $i=51?

Use == to Compare Two Numbers
for Equality

$i = 4 == 4; # TRUE

$i = 4 == 2 + 2; # TRUE

$i = 4 == $j; # depends on what $j is

! Do not confuse == with =
! == is for numeric comparison.

! = is for assignment.

Use != to Compare Two numbers
for Non-Equality

$i = 4 != 4; # FALSE

$i = 4 != 2 + 2; # FALSE

$i = 4 != $j; # depends on what $j is

Use > and < for "Greater than",
"Less than"

$i = 4 > 3; # TRUE

$i = 4 < 3; # FALSE

$i = 4 > $j; # depends on what $j is

Use >= and <= for "Greater than
or Equal", "Less than or Equal"

$i = 4 >= 3; # TRUE

$i = 4 >= 4; # TRUE

$i = 4 <= $j; # depends on what $j is

Use <=> to Compare Two Numbers
$result = $i <=> $j

! $result is
! -1 if the left side is less than the right side

! 0 if the left side equals the right side

! +1 if the left side is greater than the right side

! Nota Bene: The <=> operator is really useful in
conjunction with the sort() function.

$i = 'fred' eq 'fred'; # TRUE

$i = 'fred and lucy' eq 'fred'.'and'.'lucy'; # TRUE

$i = 'fred' eq $j; # depends on what $j is

! Do not confuse == with eq
! == is for numeric comparison.
! eq is for string comparison.

$i = 'fred' == 'lucy'; # WRONG WRONG WRONG!

Use eq to Compare Two Strings
for Equality

$i = 'fred' ne 'fred'; # FALSE

$i = 'fred' ne 'lucy'; # TRUE

$i = 'fred' eq $j # depends on what $j
is

Use ne to Compare Two Strings
for Non-Equality

Use gt, lt, ge, ne for "Greater
than", "Less than", "Greater or
Equal" etc.
! String comparison is in ASCII alphabetic order.

! $i = 'fred' gt 'lucy'; # FALSE

! $i = 'fred' lt 'lucy'; # TRUE

! $i = 'Lucy' lt 'lucy'; # TRUE

! $i = 'Lucy' lt 'fred'; # TRUE !!

! In ASCII alphabetic order, the set of capital letters is less
than the set of lowercase letters.

Use cmp to Compare Two Strings

$result = $i cmp $j

! $result is
! -1 if the left side is less than the right side

! 0 if the left side equals the right side

! +1 if the left side is greater than the right side

! Nota Bene: cmp is also really useful in the sort() function.

What is TRUE (in Perl)

1. The string "0" is False.

2. The number 0 is False.

3. The empty string ("" or '') is False

4. The empty list is False

5. The undefined value is False (e.g. an uninitialized
variable)

6. A number is false if it converts to string "0".

7. Everything else is True.

What is TRUE (in Perl)

! $a;
! $a = 1;
! $b = 0;
! $c = "";
! $d = 'true';
! $e = 'false';
! $f = ' ';
! $g = "\n";
! @h = ();
! $i = 0.0;
! $j = '0.0';

FALSE (not yet defined)
TRUE
FALSE
FALSE
TRUE
TRUE (watch out! "false" is a non-empty string)
TRUE (a single space is non-empty)
TRUE (a single newline is non-empty)
FALSE array is empty
FALSE
TRUE (watch out! The string "0.0" is not the same

as "0")

Truth and the Comparison
Operations

! If a comparison operation is true, it returns 1.
! If a comparison operation is false, it returns

undefined.

$i = 4 == 1+3;

print "The answer is $i","\n";

! The answer is 1.

Logical Operators
! To combine comparisons, use the and, or and not logical

operators.
! and also known as &&,

! or also known as ||

! not also known as !

! The short forms have higher precedence (will be interpreted
first by Perl)

$i && $j TRUE if $i AND $j are TRUE

$i || $j TRUE if either $i OR $j are TRUE

!$i TRUE if $i is FALSE

Logical Operators Examples

if ($i < 100 && $i > 0) {

 print "a is the right size\n";

} else {

 die "out of bounds error, operation aborted!";

}

if ($i >= 100 || $i <= 0) {

 die "out of bounds error, operation aborted!";

}

To Reverse Truth, use not or !

 $ok = ($i < 100 and $i > 0);

 print "a is too small\n" if not $ok;

 # same as this:

 print "a is too small\n" unless $ok;

 # and this:

 print "a is too small\n" if !$ok;

and versus &&, or versus ||
! Precedence

! && higher than = which is higher than and.
! || higher than = which is higher than or.

! This is an issue in assignments
! Example 1
 $ok = $i < 100 and $i > 0;

This doesn't mean:

 $ok = ($i < 100 and $i > 0);

 # but:

 ($ok = $i < 100) and $i > 0;

! Example 2
$ok = $i < 100 && $i > 0;

This does mean

 $ok = ($i < 100 && $i > 0);

! When in doubt, use parentheses.

The or and || operators do no
more than necessary.

! If what is on the left is true, then what is on the
right is never evaluated, because it doesn't need to
be.

$i = 10;

 $j = 99;

$j comparison never evaluated

 $i < 100 or $j < 100;

The "or die" Idiom
! The die() function aborts execution with an error

message

! You Combine “or die” and truth statements idiomatically
like this

($i < 100 and $i > 0) or die "\$i is the wrong size";

File Tests
! A set of operators are used to check whether files exist,

directories exist, files are readable, etc.
! -e <filename> # file exists
! -r <filename> # file is readable
! -x <filename> # file is executable
! -w <filename> # file is writable
! -d <filename> # filename is a directory
! Examples

(-w "./fasta.out”)or die "Can't write to file";
print "This file is executable\n" if -x
"/usr/bin/perl";

Loops
! Loops let you execute the same piece of code over

and over again.

! A while loop
! Has a condition at the top.

! The code within the block will execute until the condition
becomes false.

while (CONDITION) {

 # Code to execute

 }

While loop: Print "below 5" until
the number is not below 5

! Code:
#!/usr/bin/perl

file: counter.pl

$number = 0;

while ($number < 5) {

print "$number is less
than 5\n";

$number = $number + 1;

}

! Output of: 51% counter.pl

0 is less than 5

 1 is less than 5

 2 is less than 5

 3 is less than 5

 4 is less than 5

foreach Loops

! foreach will process each element of an array or
list:

 foreach $list_item (@array) {
 Do something with $list_item;

 }

for Loops
! The for loop is the most general form of loop:

for (initialization; test; update) {

Do something

}

! The first time the loop is entered, the code at
initialization is executed.

! Each time through the loop, the test is
reevaluated and the loop stops if it returns false.

! After the execution of each loop, the code at
update is performed.

A simple for loop
for ($i = 1; $i < 5; $i++) {

print $i,"\n";

}

! This will print out the numbers 1 to 4:
! From command line: 52% loop.pl

 1

 2

 3

 4

! This is equivalent to the previous while example.
! There are ways to leave loops outside of the conditional, but this

practice is discouraged.

Basic Input & Output (I/O)

Getting computer programs to talk to the
rest of the world.

The STDIN, STDOUT and STDERR
File handles

! Every Perl scripts starts out with three connections to the
outside world:

! STDIN (Standard input)
! Used to read input. By default connected to the keyboard, but

can be changed from shell using redirection (<) or pipe (|).

! STDOUT (Standard output)
! Used to write data out. By default connected to the terminal,

but can be redirected to a file or other program from the shell
using redirection or pipes.

! STDERR (Standard error)
! Intended for diagnostic messages. By default connected to the

terminal, etc.

! In addition to these 3 file handles, you can create your own.

Reading Data from STDIN
! To read a line of data into your program use the

angle bracket function:
$line = <STDIN>

! <STDIN> will return one line of input as the result.
! You usually will assign the result to a scalar variable.

! The newline character is not removed line automatically;
you have to do that yourself with chomp:

Reading Data from STDIN
print "Type your name: ";

$name = <STDIN>;

chomp $name;

if ($name eq 'Jim Watson') {

 print "Hail great master!;

else {

 print "Hello $name\n";

}

! The read/chomp sequence is often abbreviated as:
chomp($name = <STDIN>);

The Input Loop
! At the "end of file" (or when the user presses ^D to end

input) <STDIN> will return whatever's left, which may or may
not include a newline. Thereafter, <STDIN> will return an
undefined value.

! This truthiness leads to typical input loop:
while ($line = <STDIN>) {

chomp $line;

now do something with $line...

}

! This while loop will read one line of text after another. At
the end of input, the <STDIN> function returns undef and
the while loop terminates. Remember that even blank lines
are TRUE, because they consist of a single newline character.

Output
! The print function writes data to output. In its full form, it

takes a file handle as its first argument, followed by a list of
scalars to print:
! print FILEHANDLE $data1,$data2,$data3,...

! Notice there is no comma between FILEHANDLE and the data
arguments.

! If FILEHANDLE is omitted it defaults to STDOUT. So these
alternate statements are equivalent:
print STDOUT "Hello world\n";

print "Hello world\n";

! To print to standard error:
print STDERR "Does not compute.\n";

File handles
! You can create your own file handles using the
open function
! read and/or write to them

! clean them up using close.

! Open prepares a file for reading and/or writing,
and associates a file handle with it.
! You can choose any name for the file handle, but the

convention is to make it all caps. In the examples, we use
FILEHANDLE.

Opening files for different purposes
! For reading

open FILEHANDLE,"cosmids.fasta"

! alternative form:
open FILEHANDLE,"<cosmids.fasta"

! For writing
open FILEHANDLE,">cosmids.fasta"

! For appending
open FILEHANDLE,">>cosmids.fasta"

! For reading and writing
open FILEHANDLE,"+<cosmids.fasta"

Catching Open Failures
! It's very common for open to fail.

! Maybe the file doesn't exist
! you don't have permissions to read or create it.

! Always check open's return value, which is TRUE if the
operation succeeded, FALSE otherwise:
$result = open COSMIDS,"cosmids.fasta";

die "Can't open cosmids file: $!\n" unless $result;

! When an error occurs, the $! variable holds a descriptive
string containing a description of the error, such as "file not
found".

! The compact idiom for accomplishing this in one step is:
open COSMIDS,"cosmids.fasta" or die "Can't open

cosmids file: $!\n";

Using a File handle
! Once you've created any file handle, you can read from it or write to

it, just as if it were STDIN or STDOUT.
! This code reads from file "text.in" and copies lines to "text.out":

open IN,"text.in" or die "Can't open input file: $!\n";

open OUT,">text.out" or die "Can't open output file: $!\n";

while ($line = <IN>) {

print OUT $line;

}

! Here is a more compact way to do the same thing:
while (<IN>) {

print OUT;

}

! And the minimalist solution:
print OUT while <IN>;

Closing a File handle
! When you are done with a filehandle, you should

close it.
! This will also happen automatically when your program ends

! Or if you reuse the same file handle name.

close IN or warn "Errors closing filehandle: $!";

! Some errors, like file system full, only occur when
you close the file handle, so check for errors in the
same way you do when you open a file handle.

Pipes
! You can open pipes to and from other programs using the pipe ("|")

symbol:
open PIPEIN, "ls -l |" or die "Can't open pipe in: $!\n";

open PIPEOUT,"| sort" or die "Can't open pipe out: $!\n";

print PIPEOUT while <PIPEIN>;

! This mysterious, silly example
! Runs the ls -l command,
! Reads its output a line at a time,
! and does nothing but send the lines to the sort command.

More useful pipe example
! Count the # of occurrences of the string pBR322 in a file.

#!/usr/bin/perl

my $file = shift or die "Please provide a file name";

if ($file =~ /\.gz$/) { # a GZIP file

open IN,"gunzip -c $file |" or die "Can't open zcat pipe:
$!\n";

} else {

open IN,$file or die "Can't open file: $!\n";

}

$count = 0;

while (my $line = <IN>) {

chomp $line;

$count++ if $line eq 'pBR322';

}

close IN or die "Error while closing: $!\n";

print "Found $count instances\n";

The Magic of <>
! The bare <> function when used without any

explicit file handle is magical.
! It reads from each of the files on the command line as if

they were one single large file.

! If no file is given on the command line, then <> reads from
standard input.

! This can be extremely useful.

A Practical Example of <>
! Count the number of lines and bytes in a series of files. If no file is

specified, count from standard input (like wc does).
#!/usr/bin/perl

($bytes,$lines) = (0,0);

while (my $line = <>) {

$bytes += length($line);

$lines++;

}

print "LINES: $lines\n";

print "BYTES: $bytes\n";

! Because <> uses open internally, you can use "-" to indicate standard
input, or the pipe symbol to indicate a command pipe to create.

Perl Hygeine
! Because you don't have to predeclare variables in

Perl, there is a big problem with typos:

$value = 42;

print "Value is OK\n" if $valu < 100; # UH OH

Use Warnings Will Warn of
Uninitialized Variables

#!/usr/bin/perl

use warnings;

$value = 42;

print "Value is OK\n" if $valu < 100; # UH OH

! When run from the command line (% perl uninit.pl)
Name "main::valu" used only once: possible typo at

uninit.pl line 4.

Name "main::value" used only once: possible typo at
uninit.pl line 3.

Use of uninitialized value in numeric gt (>) at
uninit.pl line 4.

"use strict"
! The "use strict" pragma forces you to predeclare all

variables using "my":
#!/usr/bin/perl -w

use strict;

$value = 42;

print "Value is OK\n" if $valu < 100; # UH OH

! When run from command line (% perl uninit.pl)
Global symbol "$value" requires explicit package

name at uninit.pl line 4.

Global symbol "$valu" requires explicit package
name at uninit.pl line 5.

Execution of uninit.pl aborted due to compilation
errors.

Using my
! Put a my in front of the variable in order to declare it:

#!/usr/bin/perl -w

use strict;

my $value = 42;

print "Value is OK\n" if $value < 100;

! When run from the command line (% perl uninit.pl)
Value is OK

! You can use "my" on a single variable, or on a list of
variables. The only rule is to declare it before you use it.
my $value = 42;

my $a;

$a = 9;

my ($c,$d,$e,$f);

my ($first,$second) = (1,2);

Take home messages

ALWAYS use warnings

ALWAYS use strict

References
! Perl docs online perldoc.perl.org

! Learning Perl. Schwartz and Christiansen
! Chapter 2

Perl Scripting III

Arrays and Hashes

(Also known as

Data Structures)

Ed Lee & Suzi Lewis

Genome Informatics

Basic Syntax
! In Perl the first character of the variable name

determines how that variable will be interpreted
when the code is run.
! "$" indicates a "scalar" variable

! "@" indicates an "array" variable

! "%" indicates a "hash" variable

! You can have three variables with the same name
! For example $x, @x, and %x

! These represent three different things

An Array Is a List of Values
! For example, consider a list such as this

! the number 3.14 as the first element

! the string 'abA' as the second element

! the number 65065 as the third element.

! How do you express this list in Perl?

"Literal Representation"
! Most simply

! my @array = (3.14, 'abA', 65065);

! Or we can initialize from variables
! my $pi = 3.14;

! my $s = 'abA’;

! my @array = ($pi, $s, 65065);

! We can also do integer ranges
! my @array = (-1..5); # shorthand for

! Counting down not allowed!

-1 0 1 2 3 4 5

3.14 ‘abA’65065

3.14 ‘abA’65065

Array Variables and Assignment
! my $pi = 3.14;

! my $x = 65065;

! my @x = ($pi, 'abA', $x);

! my @y = (-1..5);

! my @z = ($x, $pi, @x, @y);

65065 3.14 3.14 ‘abA’ 65065 -1 0 1 2 3 4 5

3.14 ‘abA’65065

-1 0 1 2 3 4 5

Array Variables and Assignment

! my ($first, @rest) = @z;

65065

65065 3.14 3.14 ‘abA’ 65065 -1 0 1 2 3 4 5

3.14 3.14 ‘abA’ 65065 -1 0 1 2 3 4 5

! my $first = $z[0]; #

! $z[0] = 2; # assign a new value to the 1st item

! $first = $z[0]; #

! my $max_index = $#z; # 11

! my $last = $z[$#z]; #

65065

65065 3.14 3.14 ‘abA’ 65065 -1 0 1 2 3 4 5

Getting at Array Elements

2

5

! Add 9 to the end (or top) of @z;
! push @z, 9;

Push

65065 3.14 3.14 ‘abA’ 65065 -1 0 1 2 3 4 5begin end

5

4

3

2

1

0

-1

65065

‘abA’

3.14

3.14

65065

9

9

5

4

3

2

1

0

-1

65065

‘abA’

3.14

3.14

65065

top

bottom

! Take the 9 and 5 off the end (or top) of @z:
! my $end1 = pop @z;

! my $end2 = pop @z;

Pop

4

3

2

1

0

-1

65065

‘abA’

3.14

3.14

65065

5

4

3

2

1

0

-1

65065

‘abA’

3.14

3.14

65065

9
5

4

3

2

1

0

-1

65065

‘abA’

3.14

3.14

65065

POP

9

POP

5

! Add 9 to the beginning (or bottom) of @z;
! unshift @z, 9;

Unshift
4

3

2

1

0

-1

65065

‘abA’

3.14

3.14

65065

4

3

2

1

0

-1

65065

‘abA’

3.14

3.14

65065

9

[11]

UNSHIFT

9

Shift
! Take 9 and then 65065 off the beginning of @z:

! my $b1 = shift @z;

! my $b2 = shift @z;

4

3

2

1

0

-1

65065

‘abA’

3.14

3.14

4

3

2

1

0

-1

65065

‘abA’

3.14

3.14

65065

9

4

3

2

1

0

-1

65065

‘abA’

3.14

3.14

65065SHIFT

9 65065

SHIFT

! my @zr = reverse @z;

Reverse

4

3

2

1

0

-1

65065

‘abA’

3.14

3.14

3.14

3.14

‘abA’

65065

-1

0

1

2

3

4

Array and Scalar Context
! The notion of array and scalar context is unique to Perl.

Usually you can remain unaware of it, but it comes up in the
reverse function.

print reverse 'abc';

abc

print reverse 'abc', 'def' , 'ghi' ;

ghidefabc

print scalar reverse 'abc';

cba

my $ba = reverse 'abc';

print $ba;

cba

Array and Scalar Context

! The notion of array and scalar context can also be
used to get the size of an array.

my @z = (1,2,3,4,5,6,7);
print scalar @z ," the number of elements in the

array\n";
print $#z, ' this is max offset into scalar @z' , "\n";

7 the number of elements in the array

6 this is max offset into scalar @z

! Using a “foreach” loop
foreach my $array_value (@z) {

 print “$array_value\n”;

}

! Using a “for” loop
for (my $index = 0; $index < scalar(@z); ++$index) {

 my $array_value = $z[$index];

 print “$array_value\n”;

 }

Iterating Through Array Contents
3.14 3.14 ‘abA’ 65065 -1 0 1 2 3 4

! Alphabetically:
! my @sortedArray = sort @z;

! This does exactly the same alphabetical sort
! @sortedArray = sort {$a cmp $b} @z;

Sorting
3.14 3.14 ‘abA’ 65065 -1 0 1 2 3 4

-1 0 1 2 3 3.14 3.14 4 65065 ‘abA’

! An alphabetical sort (with only numbers in the array)
! my @numberArray = (-1, 3, -20);

! my @sortedNums = sort @numberArray;

! Need a numerical sort to sort as numbers
! my @sortedNums = sort {$a <=> $b} @numberArray;

Sorting

-1 3 -20

-1 -20 3

-20 -1 3

! What happens :
! @sortedArray = sort {$a <=> $b} @z;

! Argument "abA" isn't numeric in sort at arraySort.pl line 19.

Sorting
3.14 3.14 ‘abA’ 65065 -1 0 1 2 3 4

-1 0 ‘abA’ 1 2 3 3.14 3.14 4 65065

Split and Join
! Split using a literal

my $string = "one,two,three";
my @array = split "," , $string;
print "@array" , ” - from array\n";

one two three - from array

! Join it up again
$string = join ‘:’, @array;
print $string , " - rejoined with colons\n";

one two three - from array
one:two:three - rejoined with colons

Split and Join
! Split using a regular expression

my $string = "one1two22three333fin";

my @array = split /\d+/ , $string;

print "@array" , "\n";

one two three fin

Swallowing Whole Files in a Single Gulp

! Read the file from stdin
! my @file = <>;

! Eliminate newlines from each line
! chomp @file;

A Hash Is a Lookup Table
! Hashes use a key to find an associated

value.
my %translate; # the percent sign denotes a hash

$translate{'atg'} = 'M'; # codon is the key

$translate{'taa'} = '*'; # aa is the value

$translate{'ctt'} = 'K'; # lysine, oops

$translate{'ctt'} = 'L'; # leucine, fixed

print $translate{'atg'};

M

Initializing & Removing Key, Value Pairs

! Initializing From a List

! Removing key-value pairs
delete $translate{'taa'};

%translate = ('atg' => ’M’,

 'taa' => ‘*’,

 'ctt' => ‘L’,

 'cct' => ’P’);

Checking if a key exists
if (exists $translate{‘atg’}) {

print “Methionine found in translation table\n”;
}
else {

print “Methionine not found in translation table\n”;
}
if (exists $translate{‘ata’}) {

print “Isoleucine found in translation table\n”;
}
else {

print “Isoleucine not found in translation table\n”;
}

Methionine found in translation table
Isoleucine not found in translation table

Reaching into a hash
my @codons = keys %translate;
print "@codons" , " - all keys\n";

atg ctt taa - all keys

my @aa = values %translate;
print "@aa" , " - all values\n";

M L * - all values

! First get all the keys from the hash
my @keys = keys %translate;

! Using a “foreach” loop
foreach my $key (@keys) {

 print “The AA code for ”, $key, “ is “, $translate{$key}, “\n”;

}

! Using a “for” loop
for (my $index = 0; $index < scalar(@keys); ++$index) {

 my $key = $keys[$index];

 print “The AA code for “, $key, “ is ”, $translate{$key}, “\n”;

 }

Iterating Through Hash Contents

Problem Sets
! Problem #1

! Exercises 1-3, page 54, Learning Perl

! Problem #2
! Exercises 1, page 105, Learning Perl
! How the program (call it names.pl) in exercise 1 works:

$ names.pl fred

 flinstone

$ names.pl barney

 rubble

$ names.pl wilma

flinstone

References
! Perl docs online perldoc.perl.org

! Learning Perl. Schwartz and Christiansen
! Chapters 3 & 6

! Programming Perl. Wall, Christiansen and Schwartz

! Effective Perl Programming. Hall and Schwartz

References
Simon Prochnik, Dave Messina, Lincoln Stein, Steve Rozen

PfB 2010

1Tuesday, October 12, 2010

What good are references?

Sometimes you need a more complex
data structure than a list.

What if you want to keep together
several related pieces of information?

Gene Sequence Organism

HOXB2 ATCAGCAATATACAATTATAAAGGCCTAAATTTAAAA mouse
HDAC1 GAGCGGAGCCGCGGGCGGGAGGGCGGACGGAC human

2Tuesday, October 12, 2010

What is a reference?

Well first, what is a variable?

A variable is a labeled memory address
that holds a value. The location's label is
the name of the variable.

$x=1; really means 1
0x84048ec

SCALAR x:

3Tuesday, October 12, 2010

What is a list?

@y = (1, ‘a’, 23);

really means

1 ‘a’ 23
0x82056b4

ARRAY y:

4Tuesday, October 12, 2010

A variable is a labeled memory address.

When we read the contents of the
variable, we are reading the contents of
the memory address.

0x82056b4
ARRAY y: 1 ‘a’ 23

5Tuesday, October 12, 2010

So, what is a reference?

A reference is a variable that contains
the memory address of some data.

It does not contain the data itself. It
contains the memory address where
some data is stored.

6Tuesday, October 12, 2010

We can create a reference to named
variable @y this way:

0x82056b4
y:

ref_to_y: 0x82056b4

1 ‘a’ 23

SCALAR

ARRAY

7Tuesday, October 12, 2010

If we try to print out $ref_to_y, we see
the raw memory address:

print $ref_to_y,"\n";
ARRAY(0x82056b4)

ref_to_y: 0x82056b4SCALAR

8Tuesday, October 12, 2010

To see the contents of what $ref_to_y
points to, we have to dereference it:
print join ' ',@{$ref_to_y};
1 a 23

0x82056b4
y:

ref_to_y: 0x82056b4

1 ‘a’ 23

SCALAR

ARRAY

9Tuesday, October 12, 2010

You can create references to scalars,
arrays and hashes

dereference your references:
$count_copy = ${$scalar_ref};
@array_copy = @{$array_ref};
%hash_copy = %{$hash_ref};

create some references
$scalar_ref = \$count;
$array_ref = \@array;
$hash_ref = \%hash;

To dereference a reference, place the
appropriate symbol ($, @, %) in front of the
reference:

10Tuesday, October 12, 2010

A reference is a pointer to the data. It isn't
a copy of the data.

When you make a reference to a variable,
you have only created another way to get
at the data.

There is still only one copy of the data.

@y = (1,'a',23);
$ref_to_y = \@y;
print join ' ',@{$ref_to_y};
1 a 23

push @{$ref_to_y},'new1','new2';

print join ' ',@y;
1 a 23 new1 new2

11Tuesday, October 12, 2010

@y = (1,'a',23);
@z = @y;
push @y,'new1','new2';

print join ' ',@y;
1 a 23 new1 new2

print join ' ',@z;
1 a 23

This is in contrast to doing a direct copy
from one variable to another, which creates a
new data structure in a new memory
location.

12Tuesday, October 12, 2010

If you have a reference to an array or a
hash, you can access any element.

$value = $y[2];

$value = ${$ref_to_y}[2];

${$ref_to_y}[2] = 'new';
print join ' ',@y;
1 a new

directly access the 3rd
element in @y

dereference the
reference, then
access the 3rd
element in @y

change the value of the
3rd element in @y

13Tuesday, October 12, 2010

%z = (‘dog‘ => 'animal',
 ‘potato’ => 'vegetable',
 ‘quartz’ => 'mineral',
 ‘tomato’ => 'vegetable');

$ref_to_z = \%z;

$value = $z{‘dog’};

$value = ${$ref_to_z}{‘dog’};

${$ref_to_z}{‘tomato’} = 'fruit';
print $z{‘tomato’}, “\n”;
fruit

directly access the value
associated with the key
‘dog’ in the hash %z

dereference the
reference, then get the
value associated with the
key ‘dog’ in the hash %z

change the value
associated with the key
‘tomato’ in the hash %z

14Tuesday, October 12, 2010

Anonymous Hashes and Arrays

You will not usually make references to existing
variables. Instead you will create anonymous hashes
and arrays. These have a memory location, but no

symbol or name, i.e. you can't write @my_data. The
reference is the only way to address them.

To create an anonymous array use the form:
$ref_to_arry = ['item1','item2',...]

To create an anonymous hash, use the form:
$ref_to_hash = {‘key1’=>'val1',‘key2’=>'value2'}

15Tuesday, October 12, 2010

$y_gene_families = ['DAZ', 'TSPY', 'RBMY', 'CDY1',
'CDY2'];

$y_gene_family_counts = { 'DAZ' => 4,
 'TSPY' => 20,
 'RBMY' => 10,
 'CDY2' => 2 };

$third_item_of_array = $y_gene_families->[2];
$daz_count = $y_gene_family_counts->{DAZ};

$y_gene_families is a reference to an array, and
$y_gene_family_counts is a reference to a hash.

16Tuesday, October 12, 2010

Making a Hash of Hashes
The beauty of anonymous arrays and hashes is that you can nest them:

my %y_gene_data = (
 ‘DAZ’ => {‘family_size’ => 4,
 ‘description’ => 'deleted in azoospermia' },
 ‘TSPY’ => {‘family_size’ => 20,
 ‘description’ => 'testis specific protein'},
 ‘RBMY’ => {‘family_size’ => 10,
 ‘description’ => 'RNA-binding motif Y'},
 ‘CDY2’ => {‘family_size’ => 2,
 ‘description’ => 'chromodomain protein' }
);

what is the size of the RBMY family?
my $size = $y_gene_data{‘RBMY’}{‘family_size’};

what is the description of TSPY?
my $desc = $y_gene_data{‘TSPY’}{‘description’};

17Tuesday, October 12, 2010

Making an Array of Arrays

my @spotarray = (
 [0.124, 43.2, 0.102, 80.4],
 [0.113, 60.7, 0.091, 22.6],
 [0.084, 112.2, 0.144, 35.3]
);
my $cell_1_0 = $spotarray[1][0];
print $cell_1_0;

0.113

18Tuesday, October 12, 2010

Examining References

Inside a Perl script, the ref function tells you what kind
of value a reference points to:

print ref($y_gene_data), "\n";
HASH

print ref($spotarray), "\n";
ARRAY

$x = 1;
print ref($x), "\n";
(empty string)

19Tuesday, October 12, 2010

Examining complex data structures in the debugger

Inside the Perl debugger, the "x" command will pretty-print the
contents of a complex reference:

DB<3> x $y_gene_data
0 HASH(0x8404bb0)
 'CDY2' => HASH(0x8404b80)
 'description' => 'chromodomain protein, Y-linked'
 'family_size' => 2
 'DAZ' => HASH(0x84047fc)
 'description' => 'deleted in azoospermia'
 'family_size' => 4
 'RBMY' => HASH(0x8404b50)
 'description' => 'RNA-binding motif Y'
 'family_size' => 10
 'TSPY' => HASH(0x8404b20)
 'description' => 'testis specific protein Y-linked'
 'family_size' => 20

20Tuesday, October 12, 2010

Scripting Example: Creating a Hash of Hashes

We are presented with a table of sequences in the following format:
the ID of the sequence, followed by a tab, followed by the sequence
itself.

2L52.1 atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattggaagtaag...
4R79.2 tcaaatacagcaccagctcctttttttatagttcgaattaatgtccaact...
AC3.1 atggctcaaactttactatcacgtcatttccgtggtgtcaactgttattt...
...

For each sequence calculate the length of the sequence and the count
for each nucleotide. Store the results into a hash of hashes in which
the outer hash's key is the ID of the sequence, and the inner hashes'
keys are the nucleotides and the values are the counts.

21Tuesday, October 12, 2010

#!/usr/bin/perl -w

use strict;

tabulate nucleotide counts, store into %sequences

my %seqs; # initialize hash
while (my $line = <>) {
 chomp $line;
 my ($id,$sequence) = split "\t",$line;
 my @nucleotides = split '', $sequence; # array of base pairs
 foreach my $n (@nucleotides) {
 $seqs{$id}{$n}++; # count nucleotides and keep tally
 }
}

print table of results
print join("\t",'id','a','c','g','t'),"\n";

foreach my $id (sort keys %seqs) {
 print join("\t",$id,
 $seqs{$id}{a},
 $seqs{$id}{c},
 $seqs{$id}{g},
 $seqs{$id}{t},
),"\n";
}

22Tuesday, October 12, 2010

The output will look something like this:

id a! c! g! t
2L52.1! 23! 4! 12 11
4R79.2! 15! 12 ! 5! 18
AC3.1! 11! 11! 8! 20
...

23Tuesday, October 12, 2010

Perl References
Simon Prochnik, Lincoln Stein (From Steve Rozen, 2001)

Problem Set
1. What kind of data structure could you use to represent the data in the table below?

CDC2 45 liver

PLK1 34.2 heart

MCM4 9 kidney

2. Write a script to generate a data structure which represents the table above.

3. The table below is the same as the table above, but has labels added as headings.

Modify your script such that the data is now stored according to the labels, so that you can
access the data using those labels. For example, if your data structure is called %hash,
you should be able to look up the data related the CDC2 gene like this:

$gene = 'CDC2';
my $expression_for_gene = $hash{$gene}{'expression'};
my $tissue_for_gene = $hash{$gene}{'tissue'};

gene expression tissue
CDC2 45 liver

PLK1 34.2 heart

MCM4 9 kidney

4. Modify your script so that the data for MCM4 is printed out like this:

gene expression tissue
MCM4 9 kidney

Perl6 - Subroutines and Modules
Lincoln Stein

Suggested Reading
Chapters 4 and 11 of Learning Perl, especially the section Using Simple Modules. Chapter 6 of Beginning
Perl for Bioinformatics.

Lecture Notes
Subroutines

Creating Subroutines1.
Subroutine Arguments2.
Subroutine Position in Scripts3.

Modules

Using a Module1.
Getting Module Documentation2.
Installing Modules3.
Where are Modules Installed?4.
The Anatomy of a Module5.
Exporting Variables & Functions from Modules6.

Problem Set
Write a subroutine to concatenate two strings of DNA.1.
Write a subroutine to report the percentage of each nucleotide in DNA. You've seen the plus operator
+. You will also want to use the divide operator / and the multiply operator *. Count the number of each
nucleotide, divide by the total length of the DNA, then multiply by 100 to get the percentage. Your
arguments should be the DNA and the nucleotide you want to report on. The int function can be used
to discard digits after the decimal point, if needed.

2.

Using the CPAN web site, locate a module for verifying credit card numbers. Download and build it
(don't try to install it, because you need root privileges to do this).

3.

Using the standard object-oriented Math::BigInt library, which allows you to store really big integers,
write a script that will read in a 100+ digit integer and calculate its square root.

4.

(extra credit) Create a module that counts the number of times a restriction site appears in a
nucleotide string. The exported function should be named count_sites() and should be called like this:

 $count = count_sites('name_of_site',$nucleotide_string);

 # for example
 $count = count_sites('ecoRI','GGGATTTGACCGGAATTCCGATCCCAAGGTTC');

Hints: Use a parenthesized regular expression and assign the results of a string match to an array.
Store the relationships between the name of a restriction site and its regular expression in a hash.

5.

Subroutines

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

1 of 14 10/14/10 9:32 AM

Subroutines are blocks of code that you can call in different places and contexts. Subroutines can take
arguments, and return results.

Why is this useful? Because it lets you solve a problem once and then reuse your solution over and over
again. For example, say you've written a chunk of code that normalizes a DNA sequence by removing
unwanted characters. By turning it into a named subroutine, you can reuse this piece of code over and over
again within the same program without cutting and pasting. Later, you'll be able to put this subroutine into a
personal code library and reuse it among many scripts.

Subroutines also make scripts shorter and easier to understand.

Example: Cleansing a Sequence
Sequences that come out of GenBank are "contaminated" with line numbers and whitespace, like this:

 1 aagacacgga agtagctccg aacaggaaga ggacgaaaaa aataaccgtc cgcgacgccg
 61 agacaaaccg gacccgcaac caccatgaac agcaaaggcc aatatccaac acagccaacc
 121 taccctgtgc agcctcctgg gaatccagta taccctcaga ccttgcatct tcctcaggct
 181 ccaccctata ccgatgctcc acctgcctac tcagagctct atcgtccgag ctttgtgcac
 241 ccaggggctg ccacagtccc caccatgtca gccgcatttc ctggagcctc tctgtatctt
 301 cccatggccc agtctgtggc tgttgggcct ttaggttcca caatccccat ggcttattat
 361 ccagtcggtc ccatctatcc acctggctcc acagtgctgg tggaaggagg gtatgatgca
 421 ggtgccagat ttggagctgg ggctactgct ggcaacattc ctcctccacc tcctggatgc
 481 cctcccaatg ctgctcagct tgcagtcatg cagggagcca acgtcctcgt aactcagcgg
 541 aaggggaact tcttcatggg tggttcagat ggtggctaca ccatctggtg aggaaccaag
 601 gccacctttg tgccgggaaa gacatcacat accttcagca cttctcacaa tgtaactgct
 661 ttagtcatat taacctgaag ttgcagttta gacacatgtt gttggggtgt ctttctggtg
 721 cccaaacttt caggcacttt tcaaatttaa taaggaacca tgtaatggta gcagtacctc
 781 cctaaagcat tttgaggtag gggaggtatc cattcataaa atgaatgtgg gtgaagccgc
 841 cctaaggatt ttcctttaat ttctctggag taatactgta ccatactggt ctttgctttt
 901 agtaataaaa catcaaatta ggtttggagg gaactttgat cttcctaaga attaaagttg
 961 ccaaattatt ctgattggtc tttaatctcc tttaagtctt tgatatatat tactttataa
 1021 atggaacgca ttagttgtct gccttttcct ttccatccct tgccccaccc atcccatctc
 1081 caaccctagt c

You want to remove all this extraneous stuff and turn the sequence into a single long string:

aagacacggaagtagctccgaacaggaagaggacgaaaaaaataaccgtccgcgacgccgagacaaaccggacccgcaaccaccatgaac...

To do this, you've written several statements that lowercase the sequence, and remove whitespace. If the
sequence contains unexpected characters after this, we die:

$sequence = lc $sequence; # translate everything into lower case
$sequence =~ s/[\s\d]//g; # remove whitespace and numbers
$sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid characters!";

We can turn this into a named subroutine with the following three steps:

Turn it into a block:

 {
 $sequence = lc $sequence; # translate everything into lower case
 $sequence =~ s/[\s\d]//g; # remove whitespace and numbers
 $sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid characters!";
 }

1.

Label the block with sub subroutine_name:

 sub cleanup_sequence

2.

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

2 of 14 10/14/10 9:32 AM

 {
 $sequence = lc $sequence; # translate everything into lower case
 $sequence =~ s/[\s\d]//g; # remove whitespace and numbers
 $sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid characters!";
 }

Add statements to read the subroutine argument(s) and return the subroutine result(s):

 sub cleanup_sequence
 {
 my ($sequence) = @_;
 $sequence = lc $sequence; # translate everything into lower case
 $sequence =~ s/[\s\d]//g; # remove whitespace and numbers
 $sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid characters!";
 return $sequence;
 }

3.

cleanup_sequence() now acts like a built-in function. It takes a list of arguments (in this case only one, the
original sequence) and returns a list of results (in this case, only one, the cleaned-up sequence):

my $seq;
while (my $seqline = <IN>) { # read sequence from a file
 my $clean = cleanup_sequence($seqline); # clean it up
 $seq .= $clean; # add it to full sequence
}

Getting Data in and out of a Subroutine
When you invoke a subroutine, you pass it a list of arguments and receive a list of results:

my @results = my_subroutine('arg1','arg2','arg3'...);

You'll now see how subroutines can retrieve its arguments and return its results.

Getting the Subroutine Arguments
Within the subroutine, the arguments are passed to it in an automatic ("magic") array variable named @_.
One common idiom is for the first statement in a subroutine to copy @_ into a list of named variables:

sub my_subroutine {
 my ($arg1,$arg2,$arg3) = @_;
 ...
}

Returning the Subroutine Results
To return a list of results from a subroutine to its caller, use the return operator. Usually you will call return
at the very end of the subroutine, but you can call it earlier in special cases if you want to exit the subroutine
earlier.

This subroutine will add a PCR primer sequence to the beginning and end of a DNA sequence and return
the result.

sub add_linkers {
 my ($linker,$sequence) = @_;

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

3 of 14 10/14/10 9:32 AM

 my $reverse_linker = $linker;
 $reverse_linker =~ tr/gatcGATC/ctagCTAG/; # reverse complement it
 my $result = $linker . $sequence . $reverse_linker;
 return $result;
}

You can return a single value, a list, or nothing:

 return $single_value; # scalar
 return ('a','long','list','of','items'); # list
 return @an_array; # list contained in an array variable
 return; # return empty list or undef, depending on context

Subroutine Anatomy
Anatomy of a Subroutine
Lastly, the age old question, Where do you put the subroutines in your script?. Usually the subroutine
definitions go at the bottom of the script, following the last statement.

To visually separate the statements from the subroutine, you can add a comment line if you like.

 #!/usr/bin/perl -w

 # comments describing what the script does
 # more comments, including author and script name

 my ($variables, $variables, @more_variables); # declare some variables

 while (my $line = <IN>) {
 my @results = subroutine_1();
 my $result = subroutine_2(\@results);
 }

 do_something_at_end_of_script;

 ### Subroutines ###

 sub subroutine_1 {
 my ($local1,$local2,$local3) = @_;
 do_something;
 }

 sub subroutine_2 {
 my ($local1,$local2,$local3) = @_;
 do_something;
 }

Modules

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

4 of 14 10/14/10 9:32 AM

Using a Module
A module is a package of useful subroutines and variables that someone has put together. Modules extend
the ability of Perl.

Example 1: The File::Basename Module
The File::Basename module is a standard module that is distributed with Perl. When you load the
File::Basename module, you get two new functions, basename and dirname.

basename takes a long UNIX path name and returns the file name at the end. dirname takes a long UNIX
path name and returns the directory part.

 #!/usr/bin/perl
 # file: basename.pl

 use strict;
 use File::Basename;

 my $path = '/bush_home/bush1/lstein/C1829.fa';
 my $base = basename($path);
 my $dir = dirname($path);

 print "The base is $base and the directory is $dir.\n";

The output of this program is:

The base is C1829.fa and the directory is /bush_home/bush1/lstein.

The use function loads up the module named File::Basename and imports the two functions. If you didn't
use use, then the program would print an error:

Undefined subroutine &main::basename called at basename.pl line 8.

Example 2: The Env Module
The Env module is a standard module that provides access to the environment variables. When you load it,
it imports a set of scalar variables corresponding to your environment.

#!/usr/bin/perl
file env.pl

use strict;
use Env;

print "My home is $HOME\n";
print "My path is $PATH\n";
print "My username is $USER\n";

When this runs, the output is:

My home is /bush_home/bush1/lstein

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

5 of 14 10/14/10 9:32 AM

My path is /net/bin:/usr/bin:/bin:/usr/local/bin:/usr/X11R6/bin:/bush_home/bush1/lstein/bin:.
My username is lstein

Finding out What Modules are Installed
Here are some tricks for finding out what modules are installed.

Preinstalled Modules
To find out what modules come with perl, look in Appendix A of Perl 5 Pocket Reference. From the
command line, use the perldoc command from the UNIX shell. All the Perl documentation is available with
this command:

% perldoc perlmodlib
PERLMODLIB(1) User Contributed Perl Documentation PERLMODLIB(1)

NAME
 perlmodlib - constructing new Perl modules and finding
 existing ones

DESCRIPTION
THE PERL MODULE LIBRARY
 Many modules are included the Perl distribution. These
 are described below, and all end in .pm. You may discover
...
 Standard Modules

 Standard, bundled modules are all expected to behave in a
 well-defined manner with respect to namespace pollution
 because they use the Exporter module. See their own docu-
 mentation for details.

 AnyDBM_File Provide framework for multiple DBMs

 AutoLoader Load subroutines only on demand

 AutoSplit Split a package for autoloading

 B The Perl Compiler
...

To learn more about a module, run perldoc with the module's name:

% perldoc File::Basename

NAME
 fileparse - split a pathname into pieces

 basename - extract just the filename from a path

 dirname - extract just the directory from a path

SYNOPSIS
 use File::Basename;

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

6 of 14 10/14/10 9:32 AM

 ($name,$path,$suffix) = fileparse($fullname,@suffixlist)
 fileparse_set_fstype($os_string);
 $basename = basename($fullname,@suffixlist);
 $dirname = dirname($fullname);
...

Optional Modules that You May Have Installed
perldoc perllocal will list the names of locally installed modules.

% perldoc perllocal
 Thu Apr 27 16:01:31 2000: "Module" the DBI manpage

 o "installed into: /usr/lib/perl5/site_perl"

 o "LINKTYPE: dynamic"

 o "VERSION: 1.13"

 o "EXE_FILES: dbish dbiproxy"

 Thu Apr 27 16:01:41 2000: "Module" the Data::ShowTable
 manpage

 o "installed into: /usr/lib/perl5/site_perl"

 o "LINKTYPE: dynamic"

 o "VERSION: 3.3"

 o "EXE_FILES: showtable"

 Tue May 16 18:26:27 2000: "Module" the Image::Magick man-
 page
...

But often it's just easier to test directly using perl itself:

% perl -e 'use File::Basename;'
%

If you get no error when you try to use the module, then the module is installed.

Installing Modules
You can find thousands of Perl Modules on CPAN, the Comprehensive Perl Archive Network:

http://www.cpan.org

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

7 of 14 10/14/10 9:32 AM

Installing Modules Manually
Search for the module on CPAN using the keyword search. When you find it, download the .tar.gz module.
Then install it like this:

% tar zxvf bioperl-1.6.1.tar.gz
bioperl-1.6.1/
bioperl-1.6.1/Bio/
bioperl-1.6.1/Bio/DB/
bioperl-1.6.1/Bio/DB/Ace.pm
bioperl-1.6.1/Bio/DB/GDB.pm
bioperl-1.6.1/Bio/DB/GenBank.pm
bioperl-1.6.1/Bio/DB/GenPept.pm
bioperl-1.6.1/Bio/DB/NCBIHelper.pm
bioperl-1.6.1/Bio/DB/RandomAccessI.pm
bioperl-1.6.1/Bio/DB/SeqI.pm
bioperl-1.6.1/Bio/DB/SwissProt.pm
bioperl-1.6.1/Bio/DB/UpdateableSeqI.pm
bioperl-1.6.1/Bio/DB/WebDBSeqI.pm
bioperl-1.6.1/Bio/AlignIO.pm

% perl Makefile.PL
Generated sub tests. go make show_tests to see available subtests
...
Writing Makefile for Bio

% make
cp Bio/Tools/Genscan.pm blib/lib/Bio/Tools/Genscan.pm
cp Bio/Root/Err.pm blib/lib/Bio/Root/Err.pm
cp Bio/Annotation/Reference.pm blib/lib/Bio/Annotation/Reference.pm
cp bioback.pod blib/lib/bioback.pod
cp Bio/AlignIO/fasta.pm blib/lib/Bio/AlignIO/fasta.pm
cp Bio/Location/NarrowestCoordPolicy.pm blib/lib/Bio/Location/NarrowestCoordPolicy.pm
cp Bio/AlignIO/clustalw.pm blib/lib/Bio/AlignIO/clustalw.pm
cp Bio/Tools/Blast/Run/postclient.pl blib/lib/Bio/Tools/Blast/Run/postclient.pl
cp Bio/LiveSeq/Intron.pm blib/lib/Bio/LiveSeq/Intron.pm
...
Manifying blib/man3/Bio::LiveSeq::Exon.3
Manifying blib/man3/Bio::Location::CoordinatePolicyI.3
Manifying blib/man3/Bio::SeqFeature::Similarity.3

% make test
PERL_DL_NONLAZY=1 /net/bin/perl -Iblib/arch -Iblib/lib
 -I/net/lib/perl5/5.6.1/i686-linux -I/net/lib/perl5/5.6.1 -e 'use
 Test::Harness qw(&runtests $verbose); $verbose=0; runtests @ARGV;' t/*.t
t/AAChange..........ok
t/AAReverseMutate...ok
t/AlignIO...........ok
t/Allele............ok
...
t/WWW...............ok
All tests successful, 95 subtests skipped.
Files=60, Tests=1011, 35 wallclock secs (25.47 cusr + 1.60 csys = 27.07 CPU)

% make install
Installing /net/lib/perl5/site_perl/5.6.1/bioback.pod
Installing /net/lib/perl5/site_perl/5.6.1/biostart.pod
Installing /net/lib/perl5/site_perl/5.6.1/biodesign.pod

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

8 of 14 10/14/10 9:32 AM

Installing /net/lib/perl5/site_perl/5.6.1/bptutorial.pl
...

Installing Modules Using the CPAN Shell
Perl has a CPAN module installer built into it. You run it like this:

% cpan

cpan shell -- CPAN exploration and modules installation (v1.59_54)
ReadLine support enabled

cpan>

From this shell, there are commands for searching for modules, downloading them, and installing them.

[The first time you run the CPAN shell, it will ask you a lot of configuration questions. Generally, you can just
hit return to accept the defaults. The only trick comes when it asks you to select CPAN mirrors to download
from. Choose any ones that are in your general area on the Internet and it will work fine.]

Here is an example of searching for the Text::Wrap program and installing it:

cpan> i /Wrap/
Going to read /bush_home/bush1/lstein/.cpan/sources/authors/01mailrc.txt.gz
CPAN: Compress::Zlib loaded ok
Going to read /bush_home/bush1/lstein/.cpan/sources/modules/02packages.details.txt.gz
 Database was generated on Tue, 16 Oct 2001 22:32:59 GMT
CPAN: HTTP::Date loaded ok
Going to read /bush_home/bush1/lstein/.cpan/sources/modules/03modlist.data.gz
Distribution B/BI/BINKLEY/CGI-PrintWrapper-0.8.tar.gz
Distribution C/CH/CHARDIN/MailQuoteWrap0.01.tgz
Distribution C/CJ/CJM/Text-Wrapper-1.000.tar.gz
...
Module Text::NWrap (G/GA/GABOR/Text-Format0.52+NWrap0.11.tar.gz)
Module Text::Quickwrap (Contact Author Ivan Panchenko)
Module Text::Wrap (M/MU/MUIR/modules/Text-Tabs+Wrap-2001.0929.tar.gz)
Module Text::Wrap::Hyphenate (Contact Author Mark-Jason Dominus)
Module Text::WrapProp (J/JB/JBRIGGS/Text-WrapProp-0.03.tar.gz)
Module Text::Wrapper (C/CJ/CJM/Text-Wrapper-1.000.tar.gz)
Module XML::XSLT::Wrapper (M/MU/MULL/XML-XSLT-Wrapper-0.32.tar.gz)
41 items found

cpan> install Text::Wrap
Running install for module Text::Wrap
Running make for M/MU/MUIR/modules/Text-Tabs+Wrap-2001.0929.tar.gz
CPAN: LWP::UserAgent loaded ok
Fetching with LWP:
 ftp://archive.progeny.com/CPAN/authors/id/M/MU/MUIR/modules/Text-Tabs+Wrap-2001.0929.tar.gz
CPAN: MD5 loaded ok
Fetching with LWP:
 ftp://archive.progeny.com/CPAN/authors/id/M/MU/MUIR/modules/CHECKSUMS
Checksum for /bush_home/bush1/lstein/.cpan/sources/authors/id/M/MU/MUIR/modules/Text-Tabs+Wrap
Scanning cache /bush_home/bush1/lstein/.cpan/build for sizes
Text-Tabs+Wrap-2001.0929/
Text-Tabs+Wrap-2001.0929/MANIFEST
Text-Tabs+Wrap-2001.0929/CHANGELOG
Text-Tabs+Wrap-2001.0929/Makefile.PL
Text-Tabs+Wrap-2001.0929/t/

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

9 of 14 10/14/10 9:32 AM

Text-Tabs+Wrap-2001.0929/t/fill.t
Text-Tabs+Wrap-2001.0929/t/tabs.t
Text-Tabs+Wrap-2001.0929/t/wrap.t
Text-Tabs+Wrap-2001.0929/README
Text-Tabs+Wrap-2001.0929/lib/
Text-Tabs+Wrap-2001.0929/lib/Text/
Text-Tabs+Wrap-2001.0929/lib/Text/Wrap.pm
Text-Tabs+Wrap-2001.0929/lib/Text/Tabs.pm

 CPAN.pm: Going to build M/MU/MUIR/modules/Text-Tabs+Wrap-2001.0929.tar.gz

Checking if your kit is complete...
Looks good
Writing Makefile for Text
cp lib/Text/Wrap.pm blib/lib/Text/Wrap.pm
cp lib/Text/Tabs.pm blib/lib/Text/Tabs.pm
Manifying blib/man3/Text::Wrap.3
Manifying blib/man3/Text::Tabs.3
 /usr/bin/make -- OK
Running make test
PERL_DL_NONLAZY=1 /net/bin/perl -Iblib/arch -Iblib/lib
-I/net/lib/perl5/5.6.1/i686-linux -I/net/lib/perl5/5.6.1 -e 'use
Test::Harness qw(&runtests $verbose); $verbose=0; runtests @ARGV;' t/*.t
t/fill..............ok
t/tabs..............ok
t/wrap..............ok
All tests successful.
Files=3, Tests=37, 0 wallclock secs (0.20 cusr + 0.00 csys = 0.20 CPU)
 /usr/bin/make test -- OK
Running make install
Installing /net/lib/perl5/5.6.1/Text/Wrap.pm
Installing /net/man/man3/Text::Wrap.3
Installing /net/man/man3/Text::Tabs.3
Writing /net/lib/perl5/5.6.1/i686-linux/auto/Text/.packlist
Appending installation info to /net/lib/perl5/5.6.1/i686-linux/perllocal.pod
 /usr/bin/make install UNINST=1 -- OK

cpan> quit
Lockfile removed.

Where are Modules Installed?
Module files end with the extension .pm. If the module name is a simple one, like Env, then Perl will look for
a file named Env.pm. If the module name is separated by :: sections, Perl will treat the :: characters like
directories. So it will look for the module File::Basename in the file File/Basename.pm

Perl searches for module files in a set of directories specified by the Perl library path. This is set when Perl
is first installed. You can find out what directories Perl will search for modules in by issuing perl -V from the
command line:

 % perl -V
 Summary of my perl5 (revision 5.0 version 6 subversion 1) configuration:
 Platform:
 osname=linux, osvers=2.4.2-2smp, archname=i686-linux
 ...
 Compiled at Oct 11 2001 11:08:37

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

10 of 14 10/14/10 9:32 AM

 @INC:
 /usr/lib/perl5/5.6.1/i686-linux
 /usr/lib/perl5/5.6.1
 /usr/lib/perl5/site_perl/5.6.1/i686-linux
 /usr/lib/perl5/site_perl/5.6.1
 /usr/lib/perl5/site_perl
 .

You can modify this path to search in other locations by placing the use lib command somewhere at the top
of your script:

 #!/usr/bin/perl

 use lib '/home/lstein/lib';
 use MyModule;
 ...

This tells Perl to look in /home/lstein/lib for the module MyModule before it looks in the usual places. Now
you can install module files in this directory and Perl will find them.

Sometimes you really need to know where on your system a module is installed. Perldoc to the rescue again
-- use the -l command-line option:

% perldoc -l File::Basename
/System/Library/Perl/5.8.8/File/Basename.pm

The Anatomy of a Module File
Here is a very simple module file named "MySequence.pm":

package MySequence;
#file: MySequence.pm

use strict;
our $EcoRI = 'ggatcc';

sub reverseq {
 my $sequence = shift;
 $sequence = reverse $sequence;
 $sequence =~ tr/gatcGATC/ctagCTAG/;
 return $sequence;
}

sub seqlen {
 my $sequence = shift;
 $sequence =~ s/[^gatcnGATCN]//g;
 return length $sequence;
}

1;

A module begins with the keyword package and ends with "1;". package gives the module a name, and the

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

11 of 14 10/14/10 9:32 AM

1; is a true value that tells Perl that the module compiled completely without crashing.

The our keyword declares a variable to be global to the module. It is similar to my, but the variable can be
shared with other programs and modules ("my" variables cannot be shared outside the current file,
subroutine or block). This will let us use the variable in other programs that depend on this module.

To install this module, just put it in the Perl module path somewhere, or in the current directory.

Using the MySequence.pm Module
Using this module is very simple:
 #!/usr/bin/perl
 #file: sequence.pl

 use strict;
 use MySequence;

 my $sequence = 'gattccggatttccaaagggttcccaatttggg';
 my $complement = MySequence::reverseq($sequence);

 print "original = $sequence\n";
 print "complement = $complement\n";

% sequence.pl
original = gattccggatttccaaagggttcccaatttggg
complement = cccaaattgggaaccctttggaaatccggaatc

Unless you explicitly export variables or functions, the calling function must explicitly qualify each
MySequence function by using the notation:

MySequence::function_name

For a non-exported variable, the notation looks like this:

$MySequence::EcoRI

Exporting Variables and Functions from Modules
To make your module export variables and/or functions like a "real" module, use the Exporter module.

package MySequence;
#file: MySequence.pm

use strict;
use base 'Exporter';

our @EXPORT = qw(reverseq seqlen);
our @EXPORT_OK = qw($EcoRI);

our $EcoRI = 'ggatcc';

sub reverseq {
 my $sequence = shift;
 $sequence = reverse $sequence;

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

12 of 14 10/14/10 9:32 AM

 $sequence =~ tr/gatcGATC/ctagCTAG/;
 return $sequence;
}

sub seqlen {
 my $sequence = shift;
 $sequence =~ s/[^gatcnGATCN]//g;
 return length $sequence;
}

1;

The use base 'Exporter' line tells Perl that this module is a type of "Exporter" module. As we will see later,
this is a way for modules to inherit properties from other modules. The Exporter module (standard in Perl)
knows how to export variables and functions.

The our @EXPORT = qw(reverseq seqlen) line tells Perl to export the functions reverseq and seqlen
automatically. The our @EXPORT_OK = qw($EcoRI) tells Perl that it is OK for the user to import the
$EcoRI variable, but not to export it automatically.

The qw() notation is telling Perl to create a list separated by spaces. These lines are equivalent to the
slightly uglier:

our @EXPORT = ('reverseq','seqlen');

Using the Better MySequence.pm Module
Now the module exports its reverseq and seqlen functions automatically:
 #!/usr/bin/perl
 #file: sequence2.pl

 use strict;
 use MySequence;

 my $sequence = 'gattccggatttccaaagggttcccaatttggg';
 my $complement = reverseq($sequence);

 print "original = $sequence\n";
 print "complement = $complement\n";

The calling program can also get at the value of the $EcoRI variable, but he has to ask for it explicitly:
 #!/usr/bin/perl
 #file: sequence3.pl

 use strict;
 use MySequence;

 my $sequence = 'gattccggatttccaaagggttcccaatttggg';
 my $complement = reverseq($sequence);

 print "original = $sequence\n";
 print "complement = $complement\n";

 if ($complement =~ /$EcoRI/) {

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

13 of 14 10/14/10 9:32 AM

 print "Contains an EcoRI site.\n";
 } else {
 print "Doesn't contain an EcoRI site.\n";
 }

POD - Documenting your code
We've used the # sign to comment out lines in our programs, and they're a good form of documenting our
code. But comment are only visible when we look at the code, not when we run the program.

But there are other ways to document your code, and the one most commonly used in Perl is POD. When
you add POD to your code, then you can produce your very own man page for your program.

Perl 6 - Subroutines and Modules http://infoserver.cshl.edu/LectureNotes/perl6_Subroutines_an...

14 of 14 10/14/10 9:32 AM

Object Oriented Perl or ‘OOP’
Simon Prochnik

CSHL 2009

• To understand object-oriented syntax in perl, we need to recap three things:
references, subroutines, packages.

• These three elements of perl are recycled with slightly different uses to provide
object-oriented programming

• The OOP paradigm provides i) a solid framework for sharing code -- reuse

• and ii) a guarantee or contract or specification for how the code will work and
how it can be used -- an interface

• and iii) hides the details of implementation so you only have to know how to use
the code, not how it works -- saves you time, quick to learn

• Here we are briefly introducing you to OOP and objects so that you can quickly
add code that’s already written into your scripts, rather than spend hours re-
inventing wheels. Many more people use objects than write them.

Why objects? A programming paradigm

• Objects store data and use methods to do things with that data

• they keep the data separate from the rest of the program to stop
people (and/or poorly-written code) from messing with the data.
The kind of data you can store in an object is specific to a certain
class of object.

• the methods (functionality) are also specific to an object and
come with it for free (i.e. someone else wrote them and you can
use them)

• Objects look after namespace

• ‘use strict’ and ‘my’ avoid conflicts between two variables with the same
name

• objects avoid conflicts between two subroutines (methods) with the same
name

• they are a very convenient way to share code that will actually
work in the way you expect

I: Recap references

example of syntax
$ref_to_hash = {key1=>'value1',key2=>'value2',...}
code example
my $microarray = {gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
 };

key value

gene CDC2

expression 45

tissue liver

$microarray anonymous hash

Here is the data structure in memory

We can store any
pieces of data we
would like to keep
together in a hash

scalar hash
reference

II: recap subroutines: example from yesterday

#!/usr/bin/perl -w
use strict;
my $seq;
while (my $seqline = <>) { # read sequence from standard in
 my $clean = cleanup_sequence($seqline); # clean it up
 $seq .= $clean; # add it to full sequence
}
sub cleanup_sequence {
 my ($sequence) = @_; # set $sequence to first argument
 $sequence = lc $sequence; # translate everything into lower case
 $sequence =~ s/[\s\d]//g; # remove whitespace and numbers
 $sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid
 characters!";
 return $sequence;
}

• solve a problem, write code once, and re-use the code

• reusing a single piece of code instead of copying, pasting and modifying
reduces the chance you’ll make an error and simplifies bug fixing.

III: now let’s recap packages

#file: Sequence.pm
package Sequence;
use strict;
use base Exporter;
our @EXPORT = (‘cleanup_sequence’);
sub cleanup_sequence {
 my ($sequence) = @_; # set $sequence to first argument
 $sequence = lc $sequence; # translate everything into lower case
 $sequence =~ s/[\s\d]//g; # remove whitespace and numbers
 $sequence =~ m/^[gatcn]+$/ or die "Sequence contains invalid
characters!";
 return $sequence;
}
1;

#!/usr/bin/perl -w
#File: read_clean_sequence.pl
use strict;
use Sequence;
my $seq;
while (my $seqline = <>) { # read sequence from standard in
 my $clean = cleanup_sequence($seqline); # clean it up
 $seq .= $clean; # add it to full sequence
}

• organise code that goes together into reusable modules, packages

read_clean_sequence.pl

Sequence.pm

Let’s recap subroutines: new example with references

#!/usr/bin/perl -w
use strict;

my $microarray = { gene => ‘CDC2,
 expression => 45,
 tissue => ‘liver’,

 };
...
my $gene_name = gene($microarray);
...
sub gene {

my ($ref) = @_;
return $ref->{gene};

}
sub tissue {

my ($ref) = @_;
return $ref->{tissue};

}

recap packages

#!/usr/bin/perl -w
#File: script.pl
use strict;
use Microarray;

my $microarray = {gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
}
my $gene_name = gene($microarray);
print “Gene for this microarray is
$gene\n”;

#File: Microarray.pm
package Microarray;
use strict;
use base ‘Exporter’;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my ($ref) = @_;
return $ref->{gene};

}
sub tissue {

my ($ref) = @_;
return $ref ->{tissue};

}
1;

script.pl

Microaray.pm

perl module file

main script
file

Three Little Rules

• Rule 1: To create a class, build a package

• Rule 2: To create a method, write a subroutine

• Rule 3: To create an object, bless a reference

74 CHAPTER 3 GETTING STARTED

3.1.1 Rule 1: To create a class, build a package
Perl packages already have a number of classlike features:

• They collect related code together;
• They distinguish that code from unrelated code;
• They provide a separate namespace within the program, which keeps subroutine names

from clashing with those in other packages;
• They have a name, which can be used to identify data and subroutines defined in the

package.

In Perl, those features are sufficient to allow a package to act like a class.
Suppose we wanted to build an application to track faults in a system. Here’s how to de-

clare a class named Bug in Perl:
package Bug;

That’s it! Of course, such a class isn’t very interesting or useful, since it has no attributes
or behavior. And that brings us to the second rule…

3.1.2 Rule 2: To create a method, write a subroutine
Methods are just subroutines, associated with a particular class, that exist specifically to oper-
ate on objects that are instances of that class.

Happily, in Perl, a subroutine that is declared in a particular package is associated with
that package. So to write a Perl method, we just write a subroutine within the package acting
as our class.

For example, here’s how we provide an object method to print our Bug objects:

package Bug;

sub print_me

{

The code needed to print the Bug goes here

}

package Bug;

use strict;

sub new

{

 my ($class) = @_;

 my $objref = {};

 .

 .

 bless $objref, $class;

}

sub print_me

{

 my ($self) = @_;

 .

 .

}

Rule 1:
To create a class,
build a package .

Rule 3:
To create an object,
bless a referent.

Bug.pm

Rule 2
To create a method,
write a subroutine .

Figure 3.1 Three little rules

Rule 1: To create a class, build a package

• all the code that goes with an object (methods, special
vaiables) goes inside a special package

• perl packages are just files whose names end with ‘.pm’ e.g.
Microarray.pm

• package filenames should start with a capital letter

• the name of the perl package tells us the class of the object. This is
really the type or kind of object we are dealing with.

• Micorarray.pm is a package, so it will be easy to
convert into object-oriented code

Rule 2: To create a method, write a subroutine

• we already have gene() in Microarray.pm

• this can be turned into a method

• we need one extra subroutine to create new objects

• the creator method is called new() and has one piece of magic...

Rule 3: To create an object, bless a reference

• The new() subroutine uses the bless function to create an object

• full details coming up... but here’s the skeleton of a new() method

sub new {
...
my $self = {};
bless $self, $class;
...

}

create a reference, a
hashref {} is the most
common seen in perl

bless a reference
into a class

recap packages

#!/usr/bin/perl -w
#File: script.pl
use strict;
use Microarray;

my $microarray = { gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
 };
my $gene_name = gene($microarray);
print “Gene for this microarray is $gene\n”;

#File: Microarray.pm
package Microarray;
use strict;
use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my $ref = shift;
return $ref->{gene};

}
sub tissue {

my $ref = shift;
return $ref ->{tissue};

}
1;

transforming a package into an object-oriented module or class

#File: Microarray.pm
package Microarray;
use strict;
use base Exporter;

our @EXPORT = (‘gene’, ‘tissue’);

sub gene {
my ($ref) = @_;
return $ref->{gene};

}
sub tissue {

my ($ref) = @_;
return $ref ->{tissue};

}
1;

procedural perl package
(what you saw yesterday)

...transforming the package into a class...

#File: Microarray.pm
package Microarray;
use strict;

sub gene {
my $self = shift; # same as my ($self) = @_;
return $self->{gene};

}
sub tissue {

my $self = shift;
return $self ->{tissue};

}
1;

sub new {
! my $class = shift;
! my %args = @_;!
! my $self = {};
! foreach my $key (keys %args) {!
! ! $self -> {$key} =
! ! ! ! $args{$key};!
! }
! # the quasi-religious magic
! # happens here
! bless $self, $class;
! return $self;
}

the new() method

the first argument is always the
class of the object you are
making. perl gives you this as
the first argument
automatically

a hash reference is the data
structure you build an object from
in perl

bless makes the object $self (which is
a hash reference) become a member
of the class $class

here we initialise variables in the
object (in case there are any)

bless associates an object with its class

Make an anonymous hash in the debugger
$a = {};
p ref $a;
HASH

Make a MySequence object in the debugger

$self = {};
$class = ‘MySequence’;
bless $self , $class;

x $self
0 MySequence=HASH(0x18bd7cc)
 empty hash
p ref $a
MySequence

final step

object-oriented module or class
#File: Microarray.pm
package Microarray;
use strict;

sub new {
my $class = shift;
my %args = @_;!
my $self = {};
foreach my $key (keys %args) {!

! $self -> {$key} = $args{$key};!
}
the magic happens here
bless $self, $class;
return $self;

}

sub gene {
my $self = shift;
return $self->{gene};

}
sub tissue {

my $self = shift;
return $self ->{tissue};

}
1;

OOP script

#File: script.pl
my $microarray = (gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
);
my $gene_name = gene($microarray);
print “Gene for this microarray is $gene\n”;

#File: OO_script.pl
my $microarray = Microarray->new(gene => ‘CDC2’,
 expression => 45,
 tissue => ‘liver’,
);
my $gene_name = $microarray->gene();
print “Gene for this microarray is $gene_name\n”;
my $tissue = $microarray->tissue();
print “The tissue is $tissue\n”;

procedural version

OO version

Did I mention “code lazy”?

• This lecture has introduced you to object-oriented
programming

• We are biologists, not computer scientists.

• you only really need to understand how to use objects

• use other people’s packages (classes) to do exciting things so you
don’t have to write them yourself see bioperl with > 1,000 modules

• this saves a lot of time

• create your own modules and objects if you have to

• check CPAN to see if see if someone has already done it for you

Problems

1) Add a method to Microarray.pm called expression() which returns the
expression value

2) Curently calling $a = $m->gene() gets the value of gene in the object $m.
Modify the gene() method so that it can also set the value of gene if you call gene
() with an argument, e.g.

$m->gene(‘FOXP1’); # this should set the gene name to ‘FOXP1’

print $m->gene(); # this should print the value ‘FOXP1’

Further reading

• An object is nothing but a way of tucking away complex behaviours into a neat little
easy-to-use bundle. (This is what professors call abstraction.) Smart people who have
nothing to do but sit around for weeks on end figuring out really hard problems make
these nifty objects that even regular people can use. (This is what professors call
software reuse.) Users (well, programmers) can play with this little bundle all they
want, but they aren't to open it up and mess with the insides. Just like an expensive
piece of hardware, the contract says that you void the warranty if you muck with the
cover. So don't do that.

• Just what is an object really; that is, what's its fundamental type? The answer to the
first question is easy. An object is different from any other data type in Perl in one and
only one way: you may dereference it using not merely string or numeric subscripts as

with simple arrays and hashes, but with named subroutine calls. In a word, with
methods.

• The answer to the second question is that it's a reference, and not just any reference,
mind you, but one whose referent has been bless()ed into a particular class (read:

package). What kind of reference? Well, the answer to that one is a bit less concrete.
That's because in Perl the designer of the class can employ any sort of reference they'd

like as the underlying intrinsic data type. It could be a scalar, an array, or a hash
reference. It could even be a code reference. But because of its inherent flexibility, an

object is usually a hash reference.

• taken from http://perl.about.com

Bioperl I
Sofia Robb

University of Utah

What is Bioperl?

	 Collection of tools to help you get your work done

	 Open source, contributed by users
				
	 Used by GMOD, wormbase, flybase, me, you

	 http://www.bioperl.org

Why use BioPerl?

		 Code is already written.
		 Manipulate sequences.
		 Run programs (e.g., blast, clustalw and phylip).
		 Parsing program output (e.g., blast and alignments).
		 And much, much more. (http://www.bioperl.org/wiki/Bptutorial.pl)

	

Learning about bioperl:
	 Navigating bioperl website
	 Deobfuscator
	 Bioperl docs

Manipulation of sequences from a file
	
Query a local fasta file

Query a remote database

Creating a sequence record

File format conversions

Retrieving annotations

Learning about Bioperl:

Navigating Bioperl website
Deobfuscator
Bioperl docs

www.bioperl.org Main Page

Deobfuscator

doc.bioperl.org

Bio::SeqIO module synopsis
doc.bioperl.org

Bio::SeqIO module description
doc.bioperl.org

Bio::SeqIO method list
doc.bioperl.org

Bio::SeqIO new method description
doc.bioperl.org

Manipulation of sequences from a file

Problem:

You have a sequence file and you want to do
something to each sequence.

What do you do first?
	 HowTo:
			 http://www.bioperl.org/wiki/HOWTOs

#!/usr/bin/perl -w
#file: inFasta_loop.pl
use strict;
use Bio::SeqIO;

my $file = shift;

my $seqIO_object = Bio::SeqIO->new(
 -file => $file,
 -format => ‘fasta’,
);

while (my $seq_object = $seqIO_object->next_seq){
 #do stuff to each sequence in the fasta
}

What is a SeqIO object?
What is a Seq object?

Objects are like boxes that hold
your data and

tools (methods) for your data

Objects

 data:

methods:

new()
next_seq()

SeqIO Object
Bio::SeqIO Object

new()

SeqIO Object

methods:

new()
translate()
length()

 seq:

Bio::Seq Object

SeqIO Object

 data:

methods:

new()
next_seq()

next_seq()

Bio::SeqIO Object

#!/usr/bin/perl -w
#file: inFasta_loop.pl
use strict;
use Bio::SeqIO;

get fasta filename from user input
my $file = shift;

create a SeqIO obj with $file as filename
$SeqIO_object contains all the individual sequence
that are in file named $file
my $seqIO_object = Bio::SeqIO->new(
 -file => $file,
 -format => ‘fasta’,
);

using while loop and next_seq method to “get to”
and create a Seq obj for each individual sequence
in the SeqIO obj of many sequences
while (my $seq_object = $seqIO_object->next_seq){
 #do stuff to each sequence in the fasta
}

#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;

my $file = shift;
my $seqIO_object = Bio::SeqIO->new(
 -file => $file,
 -format => ‘fasta’,
);
my $out = Bio::SeqIO->new(-format => ‘fasta’);

while (my $seq_object = $seqIO_object->next_seq){
 my $id = $seq_object->id;
 my $desc = $seq_object->desc;
 my $seqString = $seq_object->seq;
 my $revComp = $seq_object->revcom;
 my $alphabet = $seq_object-> alphabet;
 my $translation_seq_obj = $seq_object-> translate;
 my $translation = $translation_seq_obj -> seq;
 my $seqLen = $seq_object->length;

 print “translation: $translation\n”;
 print “alphapet: $alphabet\n”;
 print “seqLen: $seqLen\n”;

	 #prints to STDOUT
	 $out->write_seq($seq_object);
}

1. Get a file name from user
input (@ARGV) and stores in
$file

2. Create a new seqIO object
in $seqIO_object, using
filename $file and format
‘fasta’

3. Create a second seqIO
object in $out using format
‘fasta’

4. Loop thru each seq object
in $seqIO_object storing
information from the object in
variables.

5. Print out the stored
information

6. Print out $seq_object using
the method or tool ‘write_
seq()’ and the seqIO object
$out.

#file: inFasta_doStuff_outFasta.pl

fasta input:

output:

Table from
http://www.bioperl.org/wiki/HOWTO:Beginners

List of seq object methods

Change ‘format’ in the
new() method from ‘fasta’
to ‘genbank’ to change the
way the SeqIO object $out
is displayed in STDOUT.

#file: inFasta_outGenBank.pl
#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;

my $file = shift;
my $seqIO_object = Bio::SeqIO->new(
 -file => $file,
 -format => ‘fasta’,
);

my $out = Bio::SeqIO->new(-format => ‘genbank’);

while (my $seq_object = $seqIO_object->next_seq){
 $out->write_seq($seq_object); #prints to STDOUT
}

Query a local fasta file

Query a local fasta file

You have a fasta file that contains many records.

You want to retrieve a specific record.

You do not want to loop through all records until you
find the correct record.

Use Bio::DB::Fasta.

Can also find these pages at http://doc.bioperl.org/bioperl-live/

Bio::DB::fasta module synopsis
doc.bioperl.org

Bio::DB::fasta module description
doc.bioperl.org

Bio::DB::fasta method description
doc.bioperl.org

Query a local
fasta file

output

#file:local_seq_query.pl
#!/usr/bin/perl -w
use strict;
use Bio::DB::Fasta;

my $dbfile = ‘uniprot_sprot.fasta’;
my $db = Bio::DB::Fasta->new($dbfile);

retrieve a sequence
my $id = ‘sp|Q13547|HDAC1_HUMAN’;
my $seq_obj = $db->get_Seq_by_id($id);

if ($seq_obj) {
 print “seq: “,$seq_obj->seq,”\n”;
} else {
 warn(“Cannot find $id\n”);
}

Query a remote database

#!/usr/bin/perl -w
use strict;
use Bio::DB::Fasta;

my $dbfile = ‘uniprot_sprot.fasta’;
my $db = Bio::DB::Fasta->new($dbfile);

retrieve a sequence
my $id = ‘sp|Q13547|HDAC1_HUMAN’;
my $seq_obj = $db->get_Seq_by_id($id);

if ($seq_obj) {
 print “seq: “,$seq_obj->seq,”\n”;
} else {
 warn(“Cannot find $id\n”);
}

Query a remote database

You do not have a fasta file that contains the needed
records.

You want to retrieve a specific record or set of
records.

Records are available through GenBank.

Use Bio::DB::GenBank.

#!/usr/bin/perl -w
use strict;
use Bio::DB::GenBank;

my $out = Bio::SeqIO->new(-format => ‘genbank’);
my $dbh = Bio::DB::GenBank->new;
my $query = ‘MUSIGHBA1’;
my $seq_obj = $dbh->get_Seq_by_id($query);

if($seq_obj) {
 $out->write_seq($seq_obj);
} else {
 warn(“cannot find sequence $query\n”);
}

Query a remote database: GenBank with an ID
(acc, gi, or unique identifier)

1. Use
Bio::DB::Genbank
module.

2. Create new SeqIO
object ($out).

3. Create new GenBank
DB object ($dbh).

4. Use get_Seq_by_id
method.

5. Print $out (Seq object
in genbank format) to
STDOUT.

can change from
‘genbank’ to ‘fasta’
or other format

#file:getSeqRecord_genbank.pl

Output:
GenBank
file

LOCUS MUSIGHBA1 408 bp mRNA linear ROD 27-APR-1993
DEFINITION Mouse Ig active H-chain V-region from MOPC21, subgroup VH-II,
 mRNA.
ACCESSION J00522
VERSION J00522.1 GI:195052
KEYWORDS constant region; immunoglobulin heavy chain; processed gene; variable region; variable region sub-
group VH-II.
SOURCE Mus musculus (house mouse).
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
 Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 408)
 AUTHORS Bothwell,A.L., Paskind,M., Reth,M., Imanishi-Kari,T., Rajewsky,K.
 and Baltimore,D.
 TITLE Heavy chain variable region contribution to the NPb family of
 antibodies: somatic mutation evident in a gamma 2a variable region
 JOURNAL Cell 24 (3), 625-637 (1981)
 PUBMED 6788376
COMMENT Original source text: Mouse C57Bl/6 myeloma MOPC21, cDNA to mRNA,
 clone pAB-gamma-1-4. [1] studies the response in C57Bl/6 mice to
 NP proteins. It is called the b-NP response because this mouse
 strain carries the b-IgH haplotype. See other entries for b-NP
 response for more comments.
FEATURES Location/Qualifiers
 source 1..408
 /db_xref=”taxon:10090”
 /mol_type=”mRNA”
 /organism=”Mus musculus”
 CDS <1..>408
 /db_xref=”GI:195055”
 /codon_start=1
 /protein_id=”AAD15290.1”
 /translation=”RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT
 FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSL
 RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS”
 /note=”Ig H-chain V-region from MOPC21”
 sig_peptide <1..48
 mat_peptide 49..>408
 /product=”Ig H-chain V-region from MOPC21 mature peptide”
 misc_recomb 343..344
 /note=”V-region end/D-region start (+/- 1bp)”
 misc_recomb 356..357
 /note=”D-region end/J-region start”
BASE COUNT 95 a 98 c 111 g 104 t
ORIGIN 57 bp upstream of PvuII site, chromosome 12.
 1 aggctcaatt tagttttcct tgtccttatt ttaaaaggtg tccagtgtga tgtgcagctg
 61 gtggagtctg ggggaggctt agtgcagcct ggagggtccc ggaaactctc ctgtgcagcc
 121 tctggattca ctttcagtag ctttggaatg cactgggttc gtcaggctcc agagaagggg
 181 ctggagtggg tcgcatacat tagtagtggc agtagtaccc tccactatgc agacacagtg
 241 aagggccgat tcaccatctc aagagacaat cccaagaaca ccctgttcct gcaaatgacc
 301 agtctaaggt ctgaggacac ggccatgtat tactgtgcaa gatggggtaa ctacccttac
 361 tatgctatgg actactgggg tcaaggaacc tcagtcaccg tctcctca
//

Creating a sequence record

Creating a sequence record

You have a sequence and want to create a Seq object
on the fly.

Use Bio::Seq.

#!/usr/bin/perl -w
use strict;
use Bio::Seq;
use Bio::SeqIO;

my $seqObj = Bio::Seq->new(-seq => ‘ATGAATGATGAA’,
 -display_id => ‘seq_example’,
 -description=> ‘this seq is awesome’);

my $out = Bio::SeqIO->new(-format => ‘fasta’);
$out->write_seq($seqObj);

print “Id: “,$seqObj->display_id, “\n”;
print “Length: “, $seqObj->length, “\n”;
print “Seq: “,$seqObj->seq,”\n”;
print “Subseq (3..6): “, $seqObj->subseq(3,6), “\n”;
print “Translation: “, $seqObj->translate->seq, “\n”;

Create a sequence record on the fly.

1. Create a new seq
object

2. Create and print
a new seqIO object
in fasta format using
$seqObj

3. Get features of
$seqObj by using
seqObj methods

Notice the coupling of methods.

#file:createSeqOnFly.pl

Output

>seq_example this seq is awesome
ATGAATGATGAA
Id: seq_example
Length: 12
Seq: ATGAATGATGAA
Subseq (3..6): GAAT
Translation: MNDE

File format conversions

File format conversions

You have GenBank files and want to extract only the
sequence in fasta format.

Use Bio::SeqIO.

http://www.bioperl.org/wiki/HOWTO:SeqIO

LOCUS MUSIGHBA1 408 bp mRNA linear ROD 27-APR-1993
DEFINITION Mouse Ig active H-chain V-region from MOPC21, subgroup VH-II,
 mRNA.
ACCESSION J00522
VERSION J00522.1 GI:195052
KEYWORDS constant region; immunoglobulin heavy chain; processed gene; variable re-
gion; variable region subgroup VH-II.
SOURCE Mus musculus (house mouse).
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
 Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 408)
 AUTHORS Bothwell,A.L., Paskind,M., Reth,M., Imanishi-Kari,T., Rajewsky,K.
 and Baltimore,D.
 TITLE Heavy chain variable region contribution to the NPb family of
 antibodies: somatic mutation evident in a gamma 2a variable region
 JOURNAL Cell 24 (3), 625-637 (1981)
 PUBMED 6788376
COMMENT Original source text: Mouse C57Bl/6 myeloma MOPC21, cDNA to mRNA,
 clone pAB-gamma-1-4. [1] studies the response in C57Bl/6 mice to
 NP proteins. It is called the b-NP response because this mouse
 strain carries the b-IgH haplotype. See other entries for b-NP
 response for more comments.
FEATURES Location/Qualifiers
 source 1..408
 /db_xref=”taxon:10090”
 /mol_type=”mRNA”
 /organism=”Mus musculus”
 CDS <1..>408
 /db_xref=”GI:195055”
 /codon_start=1
 /protein_id=”AAD15290.1”
 /translation=”RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT
 FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSL
 RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS”
 /note=”Ig H-chain V-region from MOPC21”
 sig_peptide <1..48
 mat_peptide 49..>408
 /product=”Ig H-chain V-region from MOPC21 mature peptide”
 misc_recomb 343..344
 /note=”V-region end/D-region start (+/- 1bp)”
 misc_recomb 356..357
 /note=”D-region end/J-region start”
BASE COUNT 95 a 98 c 111 g 104 t
ORIGIN 57 bp upstream of PvuII site, chromosome 12.
 1 aggctcaatt tagttttcct tgtccttatt ttaaaaggtg tccagtgtga tgtgcagctg
 61 gtggagtctg ggggaggctt agtgcagcct ggagggtccc ggaaactctc ctgtgcagcc
 121 tctggattca ctttcagtag ctttggaatg cactgggttc gtcaggctcc agagaagggg
 181 ctggagtggg tcgcatacat tagtagtggc agtagtaccc tccactatgc agacacagtg
 241 aagggccgat tcaccatctc aagagacaat cccaagaaca ccctgttcct gcaaatgacc
 301 agtctaaggt ctgaggacac ggccatgtat tactgtgcaa gatggggtaa ctacccttac
 361 tatgctatgg actactgggg tcaaggaacc tcagtcaccg tctcctca
//

GenBank Format

>MUSIGHBA1 Mouse Ig active H-chain V-region from MOPC21,
subgroup VH-II, mRNA.
AGGCTCAATTTAGTTTTCCTTGTCCTTATTTTAAAAGGTGTCCAGTGTGATGTGCAGCTG
GTGGAGTCTGGGGGAGGCTTAGTGCAGCCTGGAGGGTCCCGGAAACTCTCCTGTGCAGCC
TCTGGATTCACTTTCAGTAGCTTTGGAATGCACTGGGTTCGTCAGGCTCCAGAGAAGGGG
CTGGAGTGGGTCGCATACATTAGTAGTGGCAGTAGTACCCTCCACTATGCAGACACAGTG
AAGGGCCGATTCACCATCTCAAGAGACAATCCCAAGAACACCCTGTTCCTGCAAATGACC
AGTCTAAGGTCTGAGGACACGGCCATGTATTACTGTGCAAGATGGGGTAACTACCCTTAC
TATGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA

Fasta Format

=

Convert from GenBank to fasta.

#file:convert_genbank2fasta.pl#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;

my ($informat,$outformat) = (‘genbank’,’fasta’);
my ($infile,$outfile) = @ARGV;

my $in = Bio::SeqIO->new(
 -format => $informat,
 -file => $infile,
);
my $out = Bio::SeqIO->new(
 -format => $outformat,
 -file => “>$outfile”
);

while (my $seqObj = $in->next_seq) {
 $out->write_seq($seqObj);
}

Retrieving annotations

Retrieving annotations

You have GenBank files and want to retrieve
annotations.

Use Bio::SeqIO.

Sample GenBank file with Features/Annotations
LOCUS MUSIGHBA1 408 bp mRNA linear ROD 27-APR-1993
DEFINITION Mouse Ig active H-chain V-region from MOPC21, subgroup VH-II,
 mRNA.
ACCESSION J00522
VERSION J00522.1 GI:195052
KEYWORDS constant region; immunoglobulin heavy chain; processed gene; variable re-
gion; variable region subgroup VH-II.
SOURCE Mus musculus (house mouse).
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
 Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 408)
 AUTHORS Bothwell,A.L., Paskind,M., Reth,M., Imanishi-Kari,T., Rajewsky,K.
 and Baltimore,D.
 TITLE Heavy chain variable region contribution to the NPb family of
 antibodies: somatic mutation evident in a gamma 2a variable region
 JOURNAL Cell 24 (3), 625-637 (1981)
 PUBMED 6788376
COMMENT Original source text: Mouse C57Bl/6 myeloma MOPC21, cDNA to mRNA,
 clone pAB-gamma-1-4. [1] studies the response in C57Bl/6 mice to
 NP proteins. It is called the b-NP response because this mouse
 strain carries the b-IgH haplotype. See other entries for b-NP
 response for more comments.
FEATURES Location/Qualifiers
 source 1..408
 /db_xref=”taxon:10090”
 /mol_type=”mRNA”
 /organism=”Mus musculus”
 CDS <1..>408
 /db_xref=”GI:195055”
 /codon_start=1
 /protein_id=”AAD15290.1”
 /translation=”RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFT
 FSSFGMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSL
 RSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS”
 /note=”Ig H-chain V-region from MOPC21”
 sig_peptide <1..48
 mat_peptide 49..>408
 /product=”Ig H-chain V-region from MOPC21 mature peptide”
 misc_recomb 343..344
 /note=”V-region end/D-region start (+/- 1bp)”
 misc_recomb 356..357
 /note=”D-region end/J-region start”
BASE COUNT 95 a 98 c 111 g 104 t
ORIGIN 57 bp upstream of PvuII site, chromosome 12.
 1 aggctcaatt tagttttcct tgtccttatt ttaaaaggtg tccagtgtga tgtgcagctg
 61 gtggagtctg ggggaggctt agtgcagcct ggagggtccc ggaaactctc ctgtgcagcc
 121 tctggattca ctttcagtag ctttggaatg cactgggttc gtcaggctcc agagaagggg
 181 ctggagtggg tcgcatacat tagtagtggc agtagtaccc tccactatgc agacacagtg
 241 aagggccgat tcaccatctc aagagacaat cccaagaaca ccctgttcct gcaaatgacc
 301 agtctaaggt ctgaggacac ggccatgtat tactgtgcaa gatggggtaa ctacccttac
 361 tatgctatgg actactgggg tcaaggaacc tcagtcaccg tctcctca
//

primary_tag tag=value

Get annotations from a GenBank file

MUSIGHBA1(1..408) source db_xref:taxon:10090
MUSIGHBA1(1..408) source mol_type:mRNA
MUSIGHBA1(1..408) source organism:Mus musculus
MUSIGHBA1(1..408) CDS codon_start:1
MUSIGHBA1(1..408) CDS db_xref:GI:195055
MUSIGHBA1(1..408) CDS note:Ig H-chain V-region from MOPC21
MUSIGHBA1(1..408) CDS protein_id:AAD15290.1
MUSIGHBA1(1..408) CDS translation:RLNLVFLVLILKGVQCDVQLVESGGGLVQPGGSRKLSCAASGFTFSSF
GMHWVRQAPEKGLEWVAYISSGSSTLHYADTVKGRFTISRDNPKNTLFLQMTSLRSEDTAMYYCARWGNYPYYAMDYWGQGTSVTVSS
MUSIGHBA1(49..408) mat_peptide product:Ig H-chain V-region from MOPC21 mature pep-
tide
MUSIGHBA1(343..344) misc_recomb note:V-region end/D-region start (+/- 1bp)
MUSIGHBA1(356..357) misc_recomb note:D-region end/J-region start

Output

#file: get_annot_from_genbank.pl

get_SeqFeature
produces an array of
Bio::SeqFeatureI objects

#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;

my $infile = shift;
my $seqIO = Bio::SeqIO->new(
 -file => $infile,
 -format => ‘genbank’,
);
while (my $seqObj = $seqIO -> next_seq){
 my $name = $seqObj -> id;
 foreach my $feature ($seqObj->get_SeqFeatures){
 my $primary_tag = $feature->primary_tag;
 my ($start, $end) = ($feature->start , $feature->end);
 my $range = $start . “..” . $end;
 foreach my $tag (sort $feature->get_all_tags) {
 my @values = $feature->get_tag_values($tag);
 my $value_str = join “,”, @values;
 print “$name($range)\t$primary_tag\t$tag:$value_str\n”;
 }
 }
}

Bioperl II
Sofia Robb

University of Utah

BLAST

Multiple Alignments

Other cool things

BLAST

Parsing BLAST reports

Running BLAST

Parsing BLAST reports

Use Bio::SearchIO

Where do you start?

BLASTX 2.2.12 [Aug-07-2005]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
“Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs”, Nucleic Acids Res. 25:3389-3402.

Query= smed-HDAC1-1
 (1213 letters)

Database: swissprot.aa
 427,028 sequences; 157,875,145 total letters

Searching..done

 Score E
Sequences producing significant alignments: (bits) Value

sp|P56517|HDAC1_CHICK RecName: Full=Histone deacetylase 1; Short... 535 e-151

>sp|P56517|HDAC1_CHICK RecName: Full=Histone deacetylase 1; Short=HD1
 Length = 480

 Score = 535 bits (1379), Expect = e-151
 Identities = 255/343 (74%), Positives = 292/343 (85%), Gaps = 1/343 (0%)
 Frame = +3

Query: 3 CPVFDGLFEFCQLSAGGSVASAVKLNKNKADIAINWSGGLHHAKKSEASGFCYVNDIVMG 182
 CPVFDGLFEFCQLSAGGSVASAVKLNK + DIA+NW+GGLHHAKKSEASGFCYVNDIV+
Sbjct: 100 CPVFDGLFEFCQLSAGGSVASAVKLNKQQTDIAVNWAGGLHHAKKSEASGFCYVNDIVLA 159

Query: 183 ILELLKYHERVLYVDIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFPXXXXXXXXXXXXX 362
 ILELLKYH+RVLY+DIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFP
Sbjct: 160 ILELLKYHQRVLYIDIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFPGTGDLRDIGAGKG 219

Query: 363 XNYAVNFPLRDGIDDESYESIFKPVVEKVIESFKPNAIVLQCGADSLSGDRLGCFNLSLK 542
 YAVN+PLRDGIDDESYE+IFKPV+ KV+E+F+P+A+VLQCG+DSLSGDRLGCFNL++K
Sbjct: 220 KYYAVNYPLRDGIDDESYEAIFKPVISKVMETFQPSAVVLQCGSDSLSGDRLGCFNLTIK 279

Query: 543 GHGKCVEYMRQQPIPLLMLGGGGYTIRNVARCWTYETALALGTTIPNELPYNDYYEYFTP 722
 GH KCVE+++ +P+LMLGGGGYTIRNVARCWTYETA+AL T IPNELPYNDY+EYF P
Sbjct: 280 GHAKCVEFVKSFNLPMLMLGGGGYTIRNVARCWTYETAVALDTEIPNELPYNDYFEYFGP 339

Query: 723 DFKLHISPSNMANQNTPEYLERMKQKLFENLRSIPHAPSVQMQDIPEDAMDIDDGEQMDN 902
 DFKLHISPSNM NQNT EYLE++KQ+LFENLR +PHAP VQMQ IPEDA+ D G++ +
Sbjct: 340 DFKLHISPSNMTNQNTNEYLEKIKQRLFENLRMLPHAPGVQMQPIPEDAVQEDSGDE-EE 398

Query: 903 ADPDKRISILASDKYREHEADLSDSEDEGD-NRKNVDCFKSKR 1028
 DP+KRISI SDK + + SDSEDEG+ RKNV FK +
Sbjct: 399 EDPEKRISIRNSDKRISCDEEFSDSEDEGEGGRKNVANFKKAK 441

 Database: /common/data/swissprot.aa
 Posted date: Oct 4, 2009 2:02 AM
 Number of letters in database: 157,875,145
 Number of sequences in database: 427,028

Lambda K H
 0.318 0.134 0.401

Gapped
Lambda K H
 0.267 0.0410 0.140

Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Hits to DB: 281,587,467
Number of Sequences: 427028
Number of extensions: 5577736
Number of successful extensions: 16223
Number of sequences better than 1.0e-10: 1
Number of HSP’s better than 0.0 without gapping: 15290
Number of HSP’s successfully gapped in prelim test: 0
Number of HSP’s that attempted gapping in prelim test: 0
Number of HSP’s gapped (non-prelim): 16078
length of database: 157,875,145
effective HSP length: 119
effective length of database: 107,058,813
effective search space used: 30404702892
frameshift window, decay const: 40, 0.1
T: 12
A: 40
X1: 16 (7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)

Result

Hit

HSP

Result

NCBI BLAST
Report

See

http://www.bioperl.org/wiki/HOWTO:SearchIO

for a GREAT example of a blast report,

code to parse it,

a table of methods,

and the values the methods return.

Bookmark it!!

Bio::SearchIO object for BLAST reports

#!/usr/bin/perl -w
use strict;
use Bio::SearchIO;
#file: blast_parser_intro.pl

my $blast_report = shift;

my $searchIO_obj = Bio::SearchIO->new(
 -file => $blast_report,
 -format => ‘blast’
);

Result object and methods

program=BLASTX queryName=smed-HDAC1-1 queryDesc=histone deacetylase 1 queryLen=1213

Output:

#file: sample_Blast_parse_1.pl
#!/usr/bin/perl -w
use strict;
use Bio::SearchIO;

my $blast_report = shift;

my $searchIO_obj = Bio::SearchIO->new(
 -file => $blast_report,
 -format => ‘blast’
);

while (my $result_obj = $searchIO_obj ->next_result) {
 my $program = $result_obj ->algorithm;
 my $queryName = $result_obj ->query_name;
 my $queryDesc = $result_obj ->query_description;
 my $queryLen = $result_obj ->query_length;
 print “program=$program\tqueryName=$queryName\t”;
 print “queryDesc=$queryDesc\tqueryLen=$queryLen\n”;
}

http://www.bioperl.org/wiki/HOWTO:SearchIO

hitName=sp|P56517|HDAC1_CHICK hitAcc=P56517 hitLen=480 hitSig=1e-151 hitScore=535
Output:

Hit object and methods
#file: sample_Blast_parser_2.pl

must get hit objects
from a result object

#!/usr/bin/perl -w
use strict;
use Bio::SearchIO;

my $blast_report = shift;

my $searchIO_obj = Bio::SearchIO->new(
 -file => $blast_report,
 -format => ‘blast’
);

while (my $result_obj = $searchIO_obj->next_result) {
 while (my $hit_obj = $result_obj->next_hit){
 my $hitName = $hit_obj->name;
 my $hitAcc = $hit_obj->accession;
 my $hitLen = $hit_obj->length;
 my $hitSig = $hit_obj->significance;
 my $hitScore = $hit_obj->raw_score;

 print “hitName=$hitName\thitAcc=$hitAcc\thitLen=$hitLen\t”;
 print “hitSig=$hitSig\thitScore=$hitScore\n”;
 }
}

http://www.bioperl.org/wiki/HOWTO:SearchIO

#!/usr/bin/perl -w
use strict;

use Bio::SearchIO;

my $blast_report = shift;

my $searchIO_obj = Bio::SearchIO->new(
 -file => $blast_report,
 -format => ‘blast’
);

while (my $result_obj = $searchIO_obj->next_result) {
 while (my $hit_obj = $result_obj->next_hit){
 while (my $hsp_obj = $hit_obj ->next_hsp){
 my $evalue = $hsp_obj->evalue;
 my $hitString = $hsp_obj->hit_string;
 my $queryString = $hsp_obj->query_string;
 my $homologyString = $hsp_obj->homology_string;

 print “hsp evalue: $evalue\n”;
 print “HIT : “,substr($hitString,0,50),”\n”;
 print “HOMOLOGY: “,substr($homologyString,0,50),”\n”;
 print “QUERY : “,substr($queryString,0,50),”\n”;
 }
 }
} hsp evalue: 1e-151

HIT : CPVFDGLFEFCQLSAGGSVASAVKLNKQQTDIAVNWAGGLHHAKKSEASG
HOMOLOGY: CPVFDGLFEFCQLSAGGSVASAVKLNK + DIA+NW+GGLHHAKKSEASG
QUERY : CPVFDGLFEFCQLSAGGSVASAVKLNKNKADIAINWSGGLHHAKKSEASG

Output:

HSP object and methods
#file: sample_Blast_parser.pl

must get hsp objects
from a hit object

http://www.bioperl.org/wiki/HOWTO:SearchIO

Running BLAST

Running BLAST

on the command line

with Bioperl

BLAST on the command line:

get it.

install it.

run it.

Get BLAST

http://www.ncbi.nlm.nih.gov/Ftp/

http://www.bioperl.org/wiki/HOWTO:StandAloneBlast

Running BLAST on the command line

see ftp://ftp.ncbi.nih.gov/blast/documents/blastall.html for more information on options

blastall -p blastn -d database -i QUERY -o out.QUERY

Included in the blastall package.

Used to format fasta files as blast databases.

For parameters, run the following at the command line
	 ‘formatdb --help’.

Common usage:

formatdb

formatdb -i yourFasta -p T/F -o T

Running BLAST with Bioperl

Use Bio::Tools::Run::StandAloneBlast

Getting sequences from a fasta file

#!/usr/bin/perl -w
#file:runblast_fasta_parse_reportObj_1.pl
use strict;

use Bio::SeqIO;
use Bio::Tools::Run::StandAloneBlast;
use Bio::SearchIO;

my $inFasta = shift;
my $seqIO_obj = Bio::SeqIO -> new (
 -format => ‘fasta’,
 -file => $inFasta
);
while (my $seqObj = $seqIO_obj->next_seq){
 #run blastall with $seqObj
}

Setting up BLAST parameters
#!/usr/bin/perl -w
#file:runblast_fasta_parse_reportObj_2.pl
use strict;
use Bio::SeqIO;
use Bio::Tools::Run::StandAloneBlast;
use Bio::SearchIO;

my $inFasta = shift;
my $seqIO_obj = Bio::SeqIO -> new (
 -format => ‘fasta’,
 -file => $inFasta
);
#create blast parameters
my @params = (program => ‘blastx’,
 database => ‘/common/data/swissprot.aa’,
 expect => 1e-40, b => 5, v => 5
);
while (my $seqObj = $seqIO_obj->next_seq){
 #run blastall with blast parameters
 #run blastall with $seqObj
}

Running BLAST#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;
use Bio::Tools::Run::StandAloneBlast;
use Bio::SearchIO;

my $inFasta = shift;
my $seqIO_obj = Bio::SeqIO -> new (
 -format => ‘fasta’,
 -file => $inFasta
);
#create blast parameters
my @params = (program => ‘blastx’,
 database => ‘/common/data/swissprot.aa’,
 expect => 1e-40, b => 5, v => 5
);
while (my $seqObj = $seqIO_obj->next_seq){
 #set up blast object with parameters
 my $blast_obj = Bio::Tools::Run::StandAloneBlast->new(@params);
 #run blastall with blast object
 my $report_obj = $blast_obj->blastall($seqObj);
}

#file:runblast_fasta_parse_reportObj_3.pl

Parsing Report Object
#file: runBlast_fasta_parse_reportObj.pl

#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;
use Bio::Tools::Run::StandAloneBlast;
use Bio::SearchIO;

my $inFasta = shift;
my $seqIO_obj = Bio::SeqIO -> new (
 -format => 'fasta',
 -file => $inFasta
);
#create blast parameters
my @params = (program => 'blastx',
 database => '/common/data/swissprot.aa',
 expect => 1e-40, b => 5, v => 5
);
print "QueryName\tHit_Name\tEvalue\n";
while (my $seqObj = $seqIO_obj->next_seq){
 #set up blast object with parameters
 my $blast_obj = Bio::Tools::Run::StandAloneBlast->new(@params);
 #run blastall with blast object
 my $report_obj = $blast_obj->blastall($seqObj);
 #parse report object
 while(my $result_obj = $report_obj->next_result) {
 my $queryName = $result_obj->query_name;
 while(my $hit_obj = $result_obj->next_hit) {
 my $hitName = $hit_obj->name;
 while (my $hsp_obj = $hit_obj -> next_hsp){
 my $hspEvalue = $hsp_obj->evalue;
 print "$queryName\t$hitName\t$hspEvalue\n";
 }
 }
 }
}

Writing BLAST results to STDOUT
#file:runblast_inFasta_write_report.pl

#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;
use Bio::SearchIO;
use Bio::Tools::Run::StandAloneBlast;
use Bio::SearchIO::Writer::TextResultWriter;

my $inFasta = shift;
my $seqIO_obj = Bio::SeqIO -> new (
 -format => ‘fasta’,
 -file => $inFasta
);
while (my $seqObj = $seqIO_obj->next_seq){
 my @params = (program => ‘blastx’,
 database => ‘/common/data/swissprot.aa’,
 expect => 1e-40);
 #set up blast object with parameters
 my $blast_obj = Bio::Tools::Run::StandAloneBlast->new(@params);
 #run blastall with blast object
 my $report_obj = $blast_obj->blastall($seqObj);
	 #parse report object
 print “Hit_Name\tEvalue\n”;
 while(my $result_obj = $report_obj->next_result) {
 while(my $hit_obj = $result_obj->next_hit) {
 print $hit_obj->name,”\t”, $hit_obj->significance, “\n”;
		 }
	 }
	 #write output to STDOUT
	 my $writer = Bio::SearchIO::Writer::TextResultWriter->new();
	 my $out = Bio::SearchIO->new(-writer => $writer);
 	 $out->write_result($report_obj->next_result);
}

Writing BLAST results to a
file

#file:runblast_inFasta_write_report.pl

#!/usr/bin/perl -w
use strict;
use Bio::SeqIO;
use Bio::SearchIO;
use Bio::Tools::Run::StandAloneBlast;
use Bio::SearchIO::Writer::TextResultWriter;

my $inFasta = shift;
my $seqIO_obj = Bio::SeqIO -> new (
 -format => ‘fasta’,
 -file => $inFasta
);
while (my $seqObj = $seqIO_obj->next_seq){
 my @params = (program => ‘blastx’,
 database => ‘/common/data/swissprot.aa’,
 expect => 1e-40);
 #set up blast object with parameters
 my $blast_obj = Bio::Tools::Run::StandAloneBlast->new(@params);
 #run blastall with blast object
 my $report_obj = $blast_obj->blastall($seqObj);
	 #parse report object
 print “Hit_Name\tEvalue\n”;
 while(my $result_obj = $report_obj->next_result) {
 while(my $hit_obj = $result_obj->next_hit) {
 print $hit_obj->name,”\t”, $hit_obj->significance, “\n”;
		 }
	 }
	 #write output to file
	 my $writer = Bio::SearchIO::Writer::TextResultWriter->new();
	 my $out = Bio::SearchIO->new(-writer => $writer.
							 -file => ‘blast.out’);
 	 $out->write_result($report_obj->next_result);
}

Bio::SearchIO::Writer modules
doc.bioperl.org

www.bioperl.org/wiki/HOWTO:SearchIO

Multiple Alignments

Use Bio::AlignIO

for parsing and writing multiple alignment file formats
including:

fasta, phylip, nexus, clustalw, msf, mega,
meme, pfam, psi, selex, stockholm.

Convert from fasta_aln to nexus

next_aln produces a
Bio::SimpleAlign object

#file: multi_align_convert.pl

#!/usr/bin/perl -w
use strict;
use Bio::AlignIO;

my $align_fasta = shift;
my $in_alignIO_obj = Bio::AlignIO->new(
 -format => 'fasta',
 -file => $align_fasta
);
my $out_alignIO_obj = Bio::AlignIO->new(
 -format => 'nexus',
 -file => ">$align_fasta.nex"
);
while(my $align_obj = $in_alignIO_obj->next_aln){
 $out_alignIO_obj->write_aln($align_obj);
}

Bio::SimpleAlign Object

Remove some sequences and rewrite the result

Extract or remove columns
	

Calculate consensus string and percent identity

Other Cool Things

Whole set of wrappers for running Bioinformatics tools
in bioperl-run

Run BLAST locally or submit remote jobs (through NCBI)

Run PAML - handles setup and take down of temporary
files and directories

Run alignment progs through similar interfaces: TCoffee, MUSCLE,
Clustalw

Create and query databases

Relational Databases for sequence and features

Repository of scripts to do really cool things. (http://www.bioperl.org/wiki/Scripts)

1

Building Biological Databases	

Sheldon McKay	

What is a database?	

2

3	

Outline	

•  Existing databases	

•  Types of databases	

•  SQL and relational database basics	

•  Normalization	

•  Denormalization	

•  Dealing with very dense data	

•  Factors in database choice	

4	

Why do I need a database?

•  Keeping data in flat files has limits
–  requires parsers
–  little or no organizing principles
–  inefficient and awkward to query

3

5	

Existing Biological Databases	

•  Don’t reinvent the wheel; has someone already solved your
problem?

•  Genome annotation
–  Ensembl, Bio::DB::GFF, etc.

•  Model organism and general purpose
– Chado

•  Maps
– CMap, ArkDB

•  Pathways
– Reactome, Panther, BioCyc

•  Warehousing/data mining
–  Biomart

6	

Existing Biological Databases	

•  However there is still a need for…

–  Create lab databases, such as LIMS

–  Design databases for the special and unique data
that only your group possesses

–  Extend and improve existing models and schemas
to suit your needs.

4

7	

Selected Data Models	

•  Flat Model

•  Hierarchical Model

•  Object Model

•  Relational Model

8	

Flat (Table) Model	

•  A single, two-dimensional array of data elements

•  All members of a column are assumed to be similar values

•  All members of a row are assumed to be related to one another

•  Example: spreadsheet

5

9	

Hierarchical Model	

•  Data organized into a tree-like structure

•  Represents relationships like parent/child

System_id	

 System	

10	

 electrical	

20	

 drive-train	

30	

 brakes	

Parent_system	

 part	

10	

 ABS relay	

10	

 flasher	

10	

 body control module	

20	

 transmission	

20	

 head gasket	

10	

Object Model	

•  Attempt to apply object-oriented programming principles, such

as encapsulation and polymorphism, to database organization

•  Reached its peak of popularity in the 1990s

•  Successfully applied to genome annotation database AceDB

6

11	

Relational Model	

•  A mathematical model, originally proposed by E.
F. Codd in 1970, defined in terms of predicate
logic and set theory	

•  Relational databases implement a model that is an
approximation to Codd’s mathematical model	

12	

Relational Model	

•  A relational database contains multiple tables, each similar
to the one in the "flat" database model	

•  Relationships between tables are not defined explicitly;
instead, keys are used to match up rows of data in
different tables	

gene_id
symbol
species

gene gene_process

gene_id
process

7

13	

DataBase Management Systems	

•  A complex set of software programs that
controls the organization, storage and
retrieval of data in a database	

•  In principal, this term is not interchangeable
with the database itself.	

14	

8

15	

Common Relational DBMSs	

–  Free/open source	

•  MySQL	

•  PostgreSQL	

–  Commercial	

•  Oracle	

•  Sybase	

•  DB2	

•  Microsoft SQL Server	

16	

Person

Command Line
Interface

Application

Programmatic
Interface (eg DBI)

 DATABASE MANAGEMENT SYSTEM

9

17	

Relational database basics	

•  SQL	

•  Tables and Schemas	

•  Data Description Language	

•  Adding data	

•  Queries	

18	

Structured Query Language
•  Structured English Query Language ("SEQUEL") was designed to
manipulate and retrieve data stored in IBM’s original relation database
“System R”.

•  The acronym SEQUEL was later condensed to SQL due to trademark
issues.

•  SQL was adopted as a standard by ANSI (American National
Standards Institute) in 1986.

•  According to ANSI, the official pronunciation for SQL is /ɛs kjuː ɛl/ (but it
also common to pronounce it sequel).

•  Although SQL is a defined standard, there are many flavors, some
proprietary

10

19	

What can you do with SQL?
•  Data retrieval

SELECT

•  Data manipulation
INSERT, UPDATE, MERGE, TRUNCATE, DELETE

•  Data definition
CREATE, DROP

•  Data transaction
START TRANSACTION, COMMIT, ROLLBACK

•  Data Control
GRANT, REVOKE

20	

Tables and queries

•  Data stored in tables
–  Each row is a tuple (ordered list)

•  A collection of table definitions is called a
schema

•  Data are entered and retrieved using SQL
statements

11

21	

A table	

id	

 first_name	

 last_name	

 color	

100
 Tom
 Jones
 blue

101
 John
 Smith
 red

Table: ‘favorite_color’

 4 columns

 2 rows (tuples)

22	

SQL Data Description Language	

CREATE TABLE favorite_color (

 id INTEGER,

 first_name VARCHAR(255),

 last_name VARCHAR(255),

 color VARCHAR(255)

);	

12

23	

Some SQL Domains	

•  INTEGER	

•  CHAR	

•  VARCHAR	

•  FLOAT	

•  DOUBLE PRECISION	

•  TEXT	

•  DATE	

Some constraints:	

•  UNIQUE	

•  NOT NULL	

24	

Adding data using SQL INSERTs
CREATE TABLE favorite_color (

 id INTEGER,

 first_name VARCHAR(255),

 last_name VARCHAR(255),

 color VARCHAR(255)

);

INSERT INTO favorite_color VALUES

 (100, ‘Tom’, ‘Jones’, ‘blue’);

INSERT INTO favorite_color VALUES

 (101, ‘John’, ‘Smith’, ‘red’);

13

25	

Retrieving data
•  Data can be retrieved using SQL queries

•  SQL can used interactively, or programmatically (eg
via DBI)

•  SQL is based (loosely) on relational algebra
–  a set of operations for manipulating relations
–  main operations:

•  PROJECT
•  RESTRICT
•  JOIN

26	

Projection	

id	

 symbol	

 species	

 process	

Q13478
 IL18R_Human
 Homo sapiens
 Immune response

P33704
 CD4_CANFA
 Canis familiaris
 Immune response

P05542
 CD4_SHEEP
 Ovis aries
 T cell
differentiation

SELECT symbol FROM gene;

14

27	

Restriction	

id	

 symbol	

 species	

 process	

Q13478
 IL18R_Human
 Homo sapiens
 Immune response

P33704
 CD4_CANFA
 Canis familiaris
 Immune response

P05542
 CD4_SHEEP
 Ovis aries
 T cell
differentiation

SELECT *

FROM gene

WHERE species=‘Ovis aries’

28	

Combining operators: restrict
+project	

id	

 symbol	

 species	

 process	

Q13478
 IL18R_Human
 Homo sapiens
 Immune response

P33704
 CD4_CANFA
 Canis familiaris
 Immune response

P05542
 CD4_SHEEP
 Ovis aries
 T cell
differentiation

SELECT symbol, species

FROM gene

WHERE process=‘Immune response’

15

29	

Closure	

•  The result of a relational query is always a
relation	

•  This allows queries to be composed	

–  the result of a query can be used in another

query	

30	

Closure	

id	

 symbol	

 species	

 process	

Q13478
 IL18R_Human
 Homo sapiens
 Immune response

P33704
 CD4_CANFA
 Canis familiaris
 Immune response

P05542
 CD4_SHEEP
 Ovis aries
 T cell
differentiation

SELECT process

FROM gene

WHERE id=‘Q13478’

16

31	

MySQL command line interface: interactive

[smckay@brie3 DBI_lecture]$ mysql -usmckay -pcourse genes !

mysql> desc favorite_color;!
+------------+--------------+------+-----+---------+-------+!
| Field | Type | Null | Key | Default | Extra |!
+------------+--------------+------+-----+---------+-------+!
| id | int(11) | YES | | NULL | |!
| first_name | varchar(255) | YES | | NULL | |!
| last_name | varchar(255) | YES | | NULL | |!
| color | varchar(255) | YES | | NULL | |!
+------------+--------------+------+-----+---------+-------+!
4 rows in set (0.00 sec)!

mysql> select * from favorite_color;!
+------+------------+-----------+-------+!
| id | first_name | last_name | color |!
+------+------------+-----------+-------+!
| 100 | Tom | Jones | blue |!
| 101 | John | Smith | red |!
+------+------------+-----------+-------+!
2 rows in set (0.00 sec)!

32	

MySQL command line interface:
passing SQL via STDIN

DROP TABLE favorite_color;!
CREATE TABLE favorite_color (!
 id INTEGER,!
 first_name VARCHAR(255),!
 last_name VARCHAR(255),!
 color VARCHAR(255)!
);!
INSERT INTO favorite_color VALUES (100,'Tom','Jones','blue');!
INSERT INTO favorite_color VALUES (101,'John','Smith','red');!
SELECT * FROM favorite_color;	

[smckay@brie3 DBI_lecture]$ mysql -usmckay -pcourse genes <input.txt!
id first_name last_name color!
100 Tom Jones blue!
101 John Smith red!

17

33	

Normalization	

•  process of restructuring the logical data
model of a database to eliminate
redundancy	

•  also to help organize data efficiently, and
reduce the potential for anomalies during
data operations	

34	

Normalization	

Consider the data:	

A gene can belong to multiple processes. How do we model
this?	

id	

 symbol	

 species	

 process	

Q13478
 IL18R_Human
 Homo sapiens
 Immune response

P33704
 CD4_CANFA
 Canis familiaris
 Immune response

P05542
 CD4_SHEEP
 Ovis aries
 “T cell
differentiation”,

“positive
regulation of
interleukin-2
biosynthesis”

18

35	

What is wrong with this
approach?	

id	

 symbol	

 species	

 process	

Q13478
 IL18R_Human
 Homo sapiens
 Immune response

P33704
 CD4_CANFA
 Canis familiaris
 Immune response

P05542
 CD4_SHEEP
 Ovis aries
 “T cell
differentiation”,

“positive
regulation of
interleukin-2
biosynthesis”

violates atomicity

36	

Next try: duplicating rows	

id	

 symbol	

 species	

 process	

Q13478
 IL18R_Human
 Homo sapiens
 Immune response

P33704
 CD4_CANFA
 Canis familiaris
 Immune response

P05542
 CD4_SHEEP
 Ovis aries
 T cell
differentiation

P05542
 CD4_SHEEP
 Ovis aries
 positive
regulation of
interleukin-2
biosynthesis

problem: redundancy

19

37	

Normalization	

•  Tables with redundant data are said to be
not in normal form	

•  We normalize the schema by representing
different kinds of data in different tables	

38	

Normalized schema	

gene_id	

 symbol	

 species	

Q13478
 IL18R_Human
 Homo sapiens

P33704
 CD4_CANFA
 Canis familiaris

P05542
 CD4_SHEEP
 Ovis aries

gene_id	

 process	

Q13478
 Immune response

P33704
 Immune response

P05542
 T cell
differentiation

P05542
 positive
regulation of
interleukin-2
biosynthesis

table: gene

table: gene_process

20

39	

Schema	

gene_id (PK)
symbol
species

gene gene_process

gene_id (FK)
process

40	

Primary keys and foreign keys	

•  A primary key for a table is one or more
columns which are guaranteed to be unique
for every row in that table	

•  A foreign key for a table is one or more
columns that refer to a primary key in
some other table 	

21

41	

Choosing primary keys	

•  Must be unique	

–  gene symbol may be a bad choice	

•  Primary key should be immutable	

–  should not change during lifetime of db	

•  ‘Natural’ vs ‘surrogate’	

–  natural keys come from existing columns	

•  Potentially useful for relating to external databases	

–  surrogate keys are artificial and have no meaning	

•  Are database accessions ‘natural’?	

42	

•  Data can be retrieved from >1 table using
the JOIN operator	

•  The JOIN operator is actually the
composition of two operators	

–  product	

–  restrict	

Now that we have a normalized database, how
do we query across multiple tables?	

22

43	

Joining two tables	

gene_id	

 symbol	

 species	

Q13478
 IL18R_Human
 Homo sapiens

P33704
 CD4_CANFA
 Canis familiaris

P05542
 CD4_SHEEP
 Ovis aries

gene_id	

 process	

Q13478
 Immune response

P33704
 Immune response

P05542
 T cell differentiation

P05542
 positive regulation
of interleukin-2
biosynthesis

gene.
gene_id	

gene.
symbol	

gene.species	

 gene_process.
gene_id	

gene_process.
process	

Q13478
 IL18R_Human
 Homo sapiens
 Q13478
 Immune response

P33704
 CD4_CANFA
 Canis familiaris
 P33704
 Immune response

P05542
 CD4_SHEEP
 Ovis aries
 P05542
 T cell differentiation

P05542
 CD4_SHEEP
 Ovis aries
 P05542
 positive regulation
of interleukin-2
biosynthesis

JOIN	

44	

Join syntax	

gene_id	

 process	

Q13478
 Immune response

P33704
 Immune response

P05542
 T cell differentiation

P05542
 positive regulation
of interleukin-2
biosynthesis

SELECT *

FROM

 gene, gene_process

WHERE

 gene.gene_id = gene_process.gene_id

gene_id	

 symbol	

 species	

Q13478
 IL18R_Human
 Homo sapiens

P33704
 CD4_CANFA
 Canis familiaris

P05542
 CD4_SHEEP
 Ovis aries

23

45	

SELECT *

FROM

 gene, gene_process

gene
 Cartesian product of gene, gene_process

gp.process
gp.gene_id
g.species
g.symbol
g.gene_id

P05542

P33704

Q13478

P05542

P33704

Q13478

P05542

P33704

Q13478

P05542

P33704

Q13478

CD4_SHEEP

CD4_CANFA

IL18R_Human

CD4_SHEEP

CD4_CANFA

IL18R_Human

CD4_SHEEP

CD4_CANFA

IL18R_Human

CD4_SHEEP

CD4_CANFA

IL18R_Human

Ovis aries

Canis
familiaris

Homo
sapiens

Ovis aries

Canis
familiaris

Homo
sapiens

Ovis aries

Canis
familiaris

Homo
sapiens

Ovis aries

Canis
familiaris

Homo
sapiens

positive
regulation of…

P05542

positive
regulation of…

P05542

positive
regulation of…

P05542

T cell
differentiation

P05542

T cell
differentiation

P05542

T cell
differentiation

P05542

Immune
response

P33704

Immune
response

P33704

Immune
response

P33704

Immune
response

Q13478

Immune
response

Q13478

Immune
response

Q13478

gene_id
 symbol
 species

Q13478
 IL18R_Human
 Homo
sapiens

P33704
 CD4_CANFA
 Canis
familiaris

P05542
 CD4_SHEEP
 Ovis aries

gene_id
 process

Q13478
 Immune response

P33704
 Immune response

P05542
 T cell
differentiation

P05542
 positive regulation
of interleukin-2
biosynthesis

gene_process

46	

g.gene_id
 g.symbol
 g.species
 gp.gene_id
 gp.process

Q13478
 IL18R_Human
 Homo
sapiens

Q13478
 Immune
response

P33704
 CD4_CANFA
 Canis
familiaris

Q13478
 Immune
response

P05542
 CD4_SHEEP
 Ovis aries
 Q13478
 Immune
response

Q13478
 IL18R_Human
 Homo
sapiens

P33704
 Immune
response

P33704
 CD4_CANFA
 Canis
familiaris

P33704
 Immune
response

P05542
 CD4_SHEEP
 Ovis aries
 P33704
 Immune
response

Q13478
 IL18R_Human
 Homo
sapiens

P05542
 T cell
differentiation

P33704
 CD4_CANFA
 Canis
familiaris

P05542
 T cell
differentiation

P05542
 CD4_SHEEP
 Ovis aries
 P05542
 T cell
differentiation

Q13478
 IL18R_Human
 Homo
sapiens

P05542
 positive
regulation of…

P33704
 CD4_CANFA
 Canis
familiaris

P05542
 positive
regulation of…

P05542
 CD4_SHEEP
 Ovis aries
 P05542
 positive
regulation of…

SELECT *

FROM

 gene AS g, gene_process AS gp

WHERE

 gene.gene_id = gene_process.gene_id

gene_id
 symbol
 species

Q13478
 IL18R_Human
 Homo
sapiens

P33704
 CD4_CANFA
 Canis
familiaris

P05542
 CD4_SHEEP
 Ovis aries

gene_id
 process

Q13478
 Immune response

P33704
 Immune response

P05542
 T cell
differentiation

P05542
 positive regulation
of interleukin-2
biosynthesis

gene

gene_process

24

47	

Further normalizations
table: gene

Sheep

Dog

Human

species_common_name

Ovis aries CD4_SHEEP P05542

Canis familiaris CD4_CANFA P33704

Homo sapiens IL18R_Human Q13478

species symbol gene_id

•  not fully normalized
•  non-primary key columns are dependent on each other

48	

Further normalizations	

gene_id	

 symbol	

 species_id	

Q13478
 IL18R_Human
 9606

P33704
 CD4_CANFA
 9615

P05542
 CD4_SHEEP
 9940

table: species

species_id	

 common_name	

 scientific_name	

9606
 human
 Homo sapiens

9615
 dog
 Canis familiaris

9940
 sheep
 Ovis aries

table: gene

25

49	

More normalizations	

gene_id	

 process	

Q13478
 Immune response

P33704
 Immune response

P05542
 T cell differentiation

P05542
 positive regulation
of interleukin-2
biosynthesis

gene_process

needs ‘keyword’ table

 - controlled vocabularies

 - ontologies

50	

More normalization	

gene_id	

 term_id	

Q13478
 6955

P33704
 6955

P05542
 30217

P05542
 45086

term_id	

 name	

6955
 Immune response

30217
 T cell differentiation

45086
 positive regulation
of interleukin-2
biosynthesis

gene_process

term

26

51	

Denormalization	

•  The process of attempting to optimize the
performance of a database by adding redundant
data	

•  Usually proceeds from a normalized database	

•  Sometimes required to improve performance for
large batch/data-mining queries (eg Ensembl ->
BioMart)	

52	

Should a database schema
always be normalized?

•  It depends…
– updates vs queries
–  type of queries
– philosophical disposition

•  Know when to stop normalizing
– normalized = more tables, more joins

•  Data ‘warehouses’
– e.g. BioMart

27

53	

Examples
•  Bulk data downloads

–  performance is a factor
–  Query optimized, denormalized database

•  Large genomic data repository
–  Data integrity, storage efficiency
–  Normalized database

•  OLAP (On Line Analytical Processing)
–  Data summaries and calculated values that are not in the

parent database
–  Denormalized database with pre-computed fields

54	

Summary	

Relational databases are backed by theory	

–  powerful	

–  fast (usually)	

–  but some things are hard or difficult to express	

Further reading on Normalization Theory	

http://en.wikipedia.org/wiki/Database_normalization

28

Further Reading on normalization theory

http://en.wikipedia.org/wiki/Database_normalization

56	

Dealing with very dense data	

•  Microarrays	

•  Next-gen Sequencing	

29

57	

•  Wiggle	

–  Large amounts of scored data with genomic

coordinates	

–  Too many table rows for a relational database	

–  Solution is a hybrid database/serialized data approach	

WIG is a format specification introduced by the UCSC
Genome Browser and also adopted by GBrowse

1)  The WIG file is converted to a query-optimized binary file
2)  A pointer to the binary file is stored in the database
3)  An external adapter queries the binary file

http://genome.ucsc.edu/goldenPath/help/wiggle.html	

http://gmod.org/wiki/GBrowse/Uploading_Wiggle_Tracks	

58	

•  SAM/BAM (Sequence Alignment/Map)	

– NGS data generates huge numbers of aligned reads	

– The SAM specification allows efficient storage of

read alignments against reference sequences	

– BAM is a highly efficient, compressed binary version

of SAM	

– The SAMTools package provides utilities for

handling the alignment data. 	

– Third party implementers are starting to support

SAM/BAM, for example Bio::DB::SAM/GBrowse	

http://samtools.sourceforge.net/	

30

59	

•  Choose a design that fits your data
and working environment	

•  There are some tasks for which
relational databases are not
appropriate	

60	

•  There are plenty of database schemas and tools
out there	

–  know which one to use and when	

–  extend vs write your own	

31

61	

Problem Set

A quick primer on SQLite
-  SQLite is a simple, stand alone, file based RDBMS

-  The sqlite3 client is installed by default on many unix-like operating systems,
including Mac OS X

-  sqlite3 accepts two kinds of commands: meta-commands (preceded by a
dot) and SQL statements.

Some useful meta-commands:

.schema tablename

.quit

.help (shows all of the available meta-commands)

Creating and loading a database:

$ sqlite3 my_database_name < my_SQL_file.sql

1

Querying databases with DBI

Sheldon McKay

Outline:

Sample data and database

SQL review and example queries

DBI
 architecture
 opening a connection
 error handling
 a basic DBI script
 basic queries
 fetch methods
 a more advanced DBI script

2

The data
Borrelia burgdorferi gene information downloaded from TIGR*

[smckay@brie3 dbi]$ head -20 annotations.txt |cut -f1-7!
TIGR Locus TIGR Common Name TIGR Gene Symbol TIGR 5' End TIGR 3' End!
 SWISS-PROT/TrEMBL Accession GenBank ID!
BB0001 hypothetical protein 105 677 O51035 AAC66406.1!
BB0002 "beta-N-acetylhexosaminidase, putative" 1796 768 O54536 AAC66400.1!
BB0003 hypothetical protein 3148 1784 O51036 AAC66405.1!
BB0004 phosphoglucomutase femD 3395 5188 O51037 AAC66399.1!
BB0005 tryptophanyl-tRNA synthetase trsA 6312 5251 O51038 AAC66398.1!
BB0006 conserved hypothetical integral membrane protein 7433 6309 O51039 AAC66397.1!
BB0007 hypothetical protein 8315 7458 O51040 AAC66404.1!
BB0008 conserved hypothetical protein 8412 9197 O51041 AAC66396.1!
BB0009 hypothetical protein 9202 10206 O51042 AAC66403.1!
BB0010 "holo-acyl-carrier protein synthase, putative" 10203 10577 O51043 AAC66395.1!
BB0011 hypothetical protein 10581 11420 O51044 AAC66402.1!
BB0012 pseudouridylate synthase I hisT 11421 12161 P70830 AAC66394.1!
BB0013 hypothetical protein 12154 12753 O51046 AAC66401.1!
BB0014 primosomal protein N priA 12746 14728 Q45032 AAC66393.1!
BB0015 uridine kinase udk 15348 14725 Q59190 AAC66392.1!
BB0016 glpE protein glpE 15722 15345 O51048 AAC66391.1!
BB0017 conserved hypothetical integral membrane protein 15845 16804 O51049 AAC66414.1!
BB0018 conserved hypothetical protein 17817 16807 P70870 AAC66413.1!
BB0019 hypothetical protein 18304 17792 O51051 AAC66416.1!

* Now J. Craig Venter Institute

The database schema

3

sqlite> .schema gene!
CREATE TABLE gene (!
 gid INTEGER NOT NULL primary key,!
 aid INTEGER,!
 did INTEGER,!
 name TEXT NOT NULL,!
 symbol TEXT,!
 ref TEXT NOT NULL,!
 start INTEGER NOT NULL,!
 end INTEGER NOT NULL,!
 strand TEXT,!
 genbank_id TEXT,!
 swiss_acc TEXT!
);!

The ‘gene’ table

BB0004 phosphoglucomutase femD 3395 5188 O51037 AAC66399.1 chromosome!data!

table!

name ! ! symbol start end swiss_acc genbank_id ref !

The ‘gene’ table

sqlite> SELECT * FROM gene LIMIT 10;!
gid aid did name symbol ref start end strand genbank_id swiss_acc !
--- --- --- ------- ------ ---------- ------ ------ ------ ------------ ----------!
1 3 1 BB0001 chromosome 105 677 + AAC66406.1 O51035 !
2 1 2 BB0002 chromosome 768 1796 - AAC66400.1 O54536 !
3 3 1 BB0003 chromosome 1784 3148 - AAC66405.1 O51036 !
4 1 3 BB0004 femD chromosome 3395 5188 + AAC66399.1 O51037 !
5 1 4 BB0005 trsA chromosome 5251 6312 - AAC66398.1 O51038 !
6 2 5 BB0006 chromosome 6309 7433 - AAC66397.1 O51039 !
7 3 1 BB0007 chromosome 7458 8315 - AAC66404.1 O51040 !
8 2 6 BB0008 chromosome 8412 9197 + AAC66396.1 O51041 !
9 3 1 BB0009 chromosome 9202 10206 + AAC66403.1 O51042 !
10 1 7 BB0010 chromosome 10203 10577 + AAC66395.1 O51043 !

4

The ‘description’ table

sqlite> .schema description!
CREATE TABLE description (!
 did INTEGER NOT NULL primary key,!
 description TEXT!
);!

data!

table!

BB0004 phosphoglucomutase femD 3395 5188 O51037 AAC66399.1 B31!

sqlite> SELECT * FROM description LIMIT 10;!
did description !
--- --!
1 hypothetical protein !
2 beta-N-acetylhexosaminidase, putative !
3 phosphoglucomutase !
4 tryptophanyl-tRNA synthetase !
5 conserved hypothetical integral membrane protein !
6 conserved hypothetical protein !
7 holo-acyl-carrier protein synthase, putative !
8 pseudouridylate synthase I !
9 primosomal protein N !
10 uridine kinase !

The ‘annotation’ table

sqlite> .schema annotation!
CREATE TABLE annotation (!
 aid INTEGER NOT NULL primary key,!
 annotation_state TEXT NOT NULL,!
 annotation_desc TEXT!
);!

sqlite> SELECT * FROM annotation;!
aid annotation_state annotation_desc !
--- ------------------------- --!
1 curated human curation; based on experimental evidence !
2 conserved_hypothetical conserved putative ORF; unknown function !
3 predicted based on ab initio gene prediction algorithm !

5

The database schema

sqlite> SELECT count(*) FROM gene;!
count(*) !
----------!
1740 !

sqlite> SELECT name,symbol,genbank_id FROM gene LIMIT 10;!
name symbol genbank_id!
---------- ---------- ----------!
BB0001 AAC66406.1!
BB0002 AAC66400.1!
BB0003 AAC66405.1!
BB0004 femD AAC66399.1!
BB0005 trsA AAC66398.1!
BB0006 AAC66397.1!
BB0007 AAC66404.1!
BB0008 AAC66396.1!
BB0009 AAC66403.1!
BB0010 AAC66395.1!

Count the genes

View some data

SQL and exploration of the database
Simple queries

6

Comparison operators:

Filtering with conditional clauses

=	

 Tests equality between columns and/or literal values	

<>	

 Tests for inequality (some databases use !=, ^=, or ~=)	

>,<,<=,>=	

 Greater than, less than, etc. (same as Perl)	

IN	

 Tests equality of a column within a specified set of
values	

LIKE	

 Allows limited wildcard matching of strings (some
databases use MATCHES or CONTAINS)	

Logical operators:

AND	

 Returns the logical AND -- true if both sides evaluate
as true	

OR	

 Returns the logical OR -- true if either the left or right
side evaluates as true	

NOT	

 Negates the logical value of the expression that follows
it	

7

sqlite> SELECT name,symbol,genbank_id FROM gene WHERE symbol IS NOT NULL LIMIT 10;!
name symbol genbank_id!
---------- ---------- ----------!
BB0004 femD AAC66399.1!
BB0005 trsA AAC66398.1!
BB0012 hisT AAC66394.1!
BB0014 priA AAC66393.1!
BB0015 udk AAC66392.1!
BB0016 glpE AAC66391.1!
BB0020 pfpB AAC66412.1!
BB0022 ruvB AAC66410.1!
BB0023 ruvA AAC66409.1!
BB0026 folD AAC66407.1!
sqlite> SELECT name,start,end FROM gene WHERE start > 5000 AND end < 5601;!
name start end !
---------- ---------- ----------!
BBA08 5250 5585 !
BBE05 5377 5529 !
BBF11 5435 5542 !
BBI12 5128 5346 !
BBK06 5126 5236 !

Only genes with a symbol

Only genes in a coordinate range

Filtering with conditional clauses

sqlite> SELECT did,description FROM description!
 ...> WHERE description LIKE '%protease%';!
did description !
--- --!
53 periplasmic serine protease DO !
65 zinc protease, putative !
141 ATP-dependent protease LA !
184 carboxyl-terminal protease !
190 ATP-dependent Clp protease, subunit A !
319 ATP-dependent Clp protease proteolytic component !
320 ATP-dependent Clp protease, subunit X !
390 sialoglycoprotease !
420 ATP-dependent Clp protease, subunit C !

Descriptions containing the string “protease”

8

sqlite> SELECT name,symbol,description FROM gene,description!
 ...> WHERE gene.did = description.did LIMIT 5;!
name symbol description !
------- ------- ------------------------------------- !
BB0001 hypothetical protein !
BB0002 beta-N-acetylhexosaminidase, putative !
BB0003 hypothetical protein !
BB0004 femD phosphoglucomutase !
BB0005 trsA tryptophanyl-tRNA synthetase !

Joining two tables

sqlite> SELECT name,annotation_state,description FROM gene,annotation,description!
 ...> WHERE gene.did = description.did AND gene.aid = annotation.aid!
 ...> AND annotation_state <> 'predicted' LIMIT 5;!
name annotation_state description !
---------- ---------------------- --!
BB0002 curated beta-N-acetylhexosaminidase, putative !
BB0004 curated phosphoglucomutase !
BB0005 curated tryptophanyl-tRNA synthetase !
BB0006 conserved_hypothetical conserved hypothetical integral membrane protein !
BB0008 conserved_hypothetical conserved hypothetical protein !

More complex joins

Q: what happens if there is no description (the WHERE
clause is not satisfied)?

9

sqlite> SELECT name,symbol,start,end FROM gene!
 ...> where ref LIKE 'chromosome%' AND start > 1000 AND end < 10000!
 ...> ORDER BY start DESC;!
name symbol start end !
---------- ---------- ---------- ----------!
BB0008 8412 9197 !
BB0007 7458 8315 !
BB0006 6309 7433 !
BB0005 trsA 5251 6312 !
BB0004 femD 3395 5188 !
BB0003 1784 3148 !

Ordering with “ORDER BY”

All genes on the main chromosome between
positions 1001 and 10000 in descending order by
‘start’

sqlite> SELECT name,symbol,(end-start) as length FROM gene!
 ...> ORDER by length DESC LIMIT 10;!
name symbol length !
---------- ---------- ----------!
BBF32 8271 !
BB0512 6500 !
BB0420 4484 !
BB0794 4397 !
BB0388 rpoC 4133 !
BBH09 3836 !
BBE02 3833 !
BB0633 recB 3509 !
BB0579 dnaE 3485 !
BB0389 rpoB 3467!

What are the 10 longest genes in the B.
burgdorferi genome?

•  ‘length’ is not in the database. It can be calculated and the result aliased as ‘length’

(end-start) as length!

•  The “ORDER BY” operation is performed on the alias value of (end-start)

ORDER by length DESC

10

sqlite> SELECT annotation_state,count(*) AS number FROM gene,annotation!
 ...> WHERE gene.aid = annotation.aid!
 ...> GROUP by gene.aid;!
annotation_state number !
------------------------------ ----------!
curated 669 !
conserved_hypothetical 398 !
predicted 673 !

sqlite> SELECT description,count(*) AS number FROM gene,description!
 ...> WHERE gene.did = description.did!
 ...> GROUP BY gene.did!
 ...> ORDER BY number DESC LIMIT 5;!
description number !
--- ----------!
hypothetical protein 637 !
conserved hypothetical protein 327 !
conserved hypothetical protein, pseudogene 34 !
plasmid partition protein, putative 21 !
conserved hypothetical integral membrane protein 18 !

grouping and sorting

Distribution of “annotation states”

Top 5 descriptions

DBI Architecture

MySQL

Oracle

etc.

DBD:mysql

DBD::Oracle

etc.

DBI

Driver DBMS

script

11

How it works
DBI provides a high-level interface to a
DBMS via a specific driver

The details and heavy lifting are
handled by the drivers

If you know OOP and SQL, you know
how to use DBI

How it works
There are two basic types of handle, a
database handle and a statement handle

The database handle manages the
connection and most non-query
statements

The statement handle manages queries

12

Selected DBI class methods
(from http:/http://search.cpan.org/~timb/DBI/DBI.pm)

drivers and data sources

#!/usr/bin/perl -w !
use strict;!
use DBI;!

my @drivers = DBI->available_drivers;!

print "\n--- Available DBI drivers and data sources ---\n\n";!

for my $driver (@drivers) {!
 my @sources = eval { DBI->data_sources($driver) };!

 # was there an error? !
 if ($@) {!
 print "Something is wrong with the $driver driver\n\n";!
 }!
 elsif (@sources) {!
 print "Driver $driver:\n\tSources: ", join("\n\t\t ",@sources), "\n\n";!
 }!
 else {!
 print "No data sources visible for $driver\n\n";!
 }!
}!

13

smckay@bush1:dbi > ./drivers_and_sources.pl!

--- Available DBI drivers and data sources --- !

Driver DBM:!
 Sources: DBI:DBM:f_dir=.!

Driver ExampleP:!
 Sources: dbi:ExampleP:dir=.!

Driver File:!
 Sources: DBI:File:f_dir=.!

Something is wrong with the Proxy driver!

No data sources visible for Sponge!

Driver mysql:!
 Sources: DBI:mysql:RunSilent!
 DBI:mysql:boo!
 DBI:mysql:boooo!
 DBI:mysql:genes!
 DBI:mysql:mysql!
 DBI:mysql:test!
 DBI:mysql:toximoron!

Connecting to the database

#!/usr/bin/perl -w!
use strict;!
use DBI;!

my $db = 'genes';!

my $dbh = DBI->connect("dbi:SQLite:$db");!

print "We have a connection to $db\n";!

sleep 1;!

might as well get into the habit now!
$dbh->disconnect;!

print "We have disconnected\n";!

smckay@bush1:dbi > ./connect.pl !
We have a connection to genes!
We have disconnected!

14

Object Methods

15

#!/usr/bin/perl -w!
use strict;!
use DBI;!

my $db = 'genes';!
my $dbh = DBI->connect("dbi:SQLite:$db");!

my $sth = $dbh->prepare(<<END);!
SELECT name,symbol,description FROM gene,description!
WHERE gene.did = description.did!
AND symbol IS NOT NULL!
LIMIT 10!
END!
;!

$sth->execute;!
while (my @array = $sth->fetchrow_array) {!
 print join("\t",@array), "\n";!
}!

$sth->finish;!
undef $sth; # not usually necessary!
$dbh->disconnect;!

A basic DBI script

smckay@bush1:dbi > ./fetchrow_array.pl!
BB0004 femD phosphoglucomutase!
BB0005 trsA tryptophanyl-tRNA synthetase!
BB0012 hisT pseudouridylate synthase I!
BB0014 priA primosomal protein N!
BB0015 udk uridine kinase!
BB0016 glpE glpE protein!
BB0020 pfpB pyrophosphate--fructose 6-phosphate 1-phosphotransferase, beta subunit!
BB0022 ruvB Holliday junction DNA helicase!
BB0023 ruvA Holliday junction DNA helicase!
BB0026 folD methylenetetrahydrofolate dehydrogenase!

16

Error handling

Errors can be handled by DBI automatically

Error handling can be turned on/off with the
attributes RaiseError and PrintError

Error messages can be accessed by:

eg!
$dbh->{RaiseError} = 1!
$dbh->{PrintError} = 1!

eg!
print $DBI::errstr!
or die $dbh->errstr!
or warn $sth->errstr!

[smckay@brie3 dbi]$./dump.pl | head !
'BB0004', 'femD', 'phosphoglucomutase'!
'BB0005', 'trsA', 'tryptophanyl-tRNA synthetase'!
'BB0012', 'hisT', 'pseudouridylate synthase I'!
'BB0014', 'priA', 'primosomal protein N'!
'BB0015', 'udk', 'uridine kinase'!
'BB0016', 'glpE', 'glpE protein'!
'BB0020', 'pfpB', 'pyrophosphate--fructose 6-phosphate 1-phosphotransferase, beta subunit'!
'BB0022', 'ruvB', 'Holliday junction DNA helicase'!
'BB0023', 'ruvA', 'Holliday junction DNA helicase'!
'BB0026', 'folD', 'methylenetetrahydrofolate dehydrogenase'!

$sth->execute;!
$sth->dump_results(80); # max field length of 80 chars !

Testing your SQL query
Are you getting what you expect?

17

my $ar1 = $sth->fetchrow_arrayref;!
print "The data structure:\n",Dumper($ar1),"\n"; !

process the results!
print join("\t",@$ar1), "\n";!
while (my $ar = $sth->fetchrow_arrayref) {!
 print join("\t",@$ar), "\n";!
}!

[smckay@brie3 dbi]$./fetchrow_arrayref.pl!
The data structure:!
$VAR1 = [!
 'BB0004',!
 'femD',!
 'phosphoglucomutase'!
];!

BB0004 femD phosphoglucomutase!
BB0005 trsA tryptophanyl-tRNA synthetase!
BB0012 hisT pseudouridylate synthase I!
BB0014 priA primosomal protein N!
BB0015 udk uridine kinase!
etc.!

Fetching Rows

Faster than
fetchrow_array

$sth->execute;!
my $hr1 = $sth->fetchrow_hashref; # just first row!
print "The data structure for the first row:\n",!
 (Dumper($hr1)),"\n";!

smckay@bush1:dbi > ./fetchrow_hashref.pl!
The data structure for the first row:!
$VAR1 = {!
 'symbol' => 'femD',!
 'name' => 'BB0004',!
 'description' => 'phosphoglucomutase'!
 };!

18

$sth->execute;!
my $table = $sth->fetchall_arrayref;!
print "The data structure:\n",!
 (Dumper [@{$table}[0..2]]),!
 "\n";!

smckay@bush1:dbi > ./fetchall_arrayref.pl!
The data structure:!
$VAR1 = [!
 [!
 'BB0004',!
 'femD',!
 'phosphoglucomutase'!
],!
 [!
 'BB0005',!
 'trsA',!
 'tryptophanyl-tRNA synthetase'!
],!
 [!
 'BB0012',!
 'hisT',!
 'pseudouridylate synthase I'!
]!
];!

Bulk Fetching

$sth->execute;!
my $result = $sth->fetchall_hashref('name');!
print Dumper $result;!

$VAR1 = {!
 'BB0012' => {!
 'symbol' => 'hisT',!
 'name' => 'BB0012',!
 'description' => 'pseudouridylate synthase I'!
 },!
 'BB0005' => {!
 'symbol' => 'trsA',!
 'name' => 'BB0005',!
 'description' => 'tryptophanyl-tRNA synthetase'!
 },!
 'BB0004' => {!
 'symbol' => 'femD',!
 'name' => 'BB0004',!
 'description' => 'phosphoglucomutase'!
 }!
 };!

19

my $q = 'SELECT name, symbol FROM gene WHERE symbol IS NOT NULL LIMIT 3';!
my $result = $dbh->selectall_arrayref($q);!
print Dumper $result;!

$VAR1 = [!
 [!
 'BB0004',!
 'femD'!
],!
 [!
 'BB0005',!
 'trsA'!
],!
 [!
 'BB0012',!
 'hisT'!
]!
];!

my $q = 'SELECT name, symbol FROM gene WHERE symbol IS NOT NULL LIMIT 3';!
my $result = $dbh->selectall_hashref($q, 'name');!
print Dumper $result;!

smckay@bush1:dbi > ./selectall_hashref.pl !
$VAR1 = {!
 'BB0012' => {!
 'symbol' => 'hisT',!
 'name' => 'BB0012'!
 },!
 'BB0005' => {!
 'symbol' => 'trsA',!
 'name' => 'BB0005'!
 },!
 'BB0004' => {!
 'symbol' => 'femD',!
 'name' => 'BB0004'!
 }!
 };!

20

my $sth = $dbh->prepare(<<END);!
SELECT name,symbol,d.description,ref,start,end,strand!
FROM gene g,description d!
WHERE g.did = d.did!
AND d.description LIKE ?!
AND start >= ? AND end <= ?!
AND ref LIKE ?!
END!

my @queries = (!
 [qw/%ATPase% 1 300000 chromosome%/],!
 [qw/%kinase% 1 300000 chromosome%/]!
);!

for my $q (@queries) {!
 $sth->execute(@$q);!
 report($q,$sth->fetchall_arrayref);!
}!

sub report {!
 my $q = shift;!
 my $ref = shift;!
 my @terms = map {qq(\"$_\")} @$q;!
 print "Search terms: ",join(', ',@terms), "\n";!
 print join("\t",qw/name symbol description!
 ref start end strand/), "\n";!
 for my $array (@$ref) {!
 print join("\t",map {$_ || ''} @$array), "\n";!
 }!
 print "---\n\n";!
}!

Improving efficiency
a more advanced DBI script -- binding and placeholders

$./example_scripts/binding_and_placeholders.pl!
Search terms: "%ATPase%", "1", "300000", "chromosome%"!
name symbol description ref start end strand!
BB0090 V-type ATPase, subunit K, putative chromosome Borrelia burgdorferi B31 86926 87360 -!
BB0091 V-type ATPase, subunit I, putative chromosome Borrelia burgdorferi B31 87377 89203 -!
BB0092 atpD V-type ATPase, subunit D chromosome Borrelia burgdorferi B31 89200 89814 -!
BB0093 atpB V-type ATPase, subunit B chromosome Borrelia burgdorferi B31 89811 91115 -!
BB0094 atpA V-type ATPase, subunit A chromosome Borrelia burgdorferi B31 91137 92792 -!
BB0096 V-type ATPase, subunit E, putative chromosome Borrelia burgdorferi B31 93433 94035 -!
---!

Search terms: "%kinase%", "1", "300000", "chromosome%"!
name symbol description ref start end strand!
BB0015 udk uridine kinase chromosome Borrelia burgdorferi B31 14725 15348 -!
BB0056 pgk phosphoglycerate kinase chromosome Borrelia burgdorferi B31 51253 52434 -!
BB0128 cmk cytidylate kinase chromosome Borrelia burgdorferi B31 124149 124814 -!
BB0239 dck deoxyguanosine/deoxyadenosine kinase(I) subunit 2 chromosome Borrelia burgdorferi B31
244777 245394 -!
BB0241 glpK glycerol kinase chromosome Borrelia burgdorferi B31 246597 248102 +!
---!

HTML
10.18.2010

HTML

• HyperText Markup Language

• Not a programming language

• Stored in text files (just like Perl)

A basic page

<html>

! <head>
! ! <title>My web page title</title>
! </head>

! <body>

 Your HTML content here

! </body>
</html>

A kosher page

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
! <title>An XHTML 1.0 Strict standard template</title>
</head>

<body>

 <p>… Your HTML content here …</p>

</body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

Why use web
standards?

• Accessibility

• To robots

• To people

• Stability

<Tags />
• Most tags open and close

• Tags must be nested properly

• Some tags stand alone

 <hr />

• Some tags take attributes

The Onion

• Elements consist of start and end tags flanking content

!

! Strong and emphasis
!

!
! ! Strong and emphasis
!

Right Wrong

XHTML tags
<!--> <!

DOCTYPE> <a> <abbr> <acronym> <address> <area /> <base /> <bdo>

<big> <blockquote> <body>
 <button> <caption> <cite> <code> <col /> <colgroup>

<dd> <dfn> <div> <dl> <dt> <fieldset> <form> <frame />

<frameset> <head> <h1> - <h6> <hr /> <html> <i> <iframe> <input /> <ins>

<kbd> <label> <legend> <link /> <map> <meta /> <noframes> <noscript> <object>

 <optgroup> <option> <p> <param /> <pre> <q> <samp> <script> <select>

<small> <style> <sub> <sup> <table> <tbody> <td> <textarea>

<tfoot> <th> <thead> <title> <tr> <tt> <var>

http://www.w3schools.com/tags/

http://www.w3schools.com/tags/default.asp
http://www.w3schools.com/tags/default.asp

Text tags
• Heading tag

<h1>This is a top level heading</h1>
<h6>This is the bottom level heading</h6>

• Paragraph tag
<p>This is definitely a paragraph</p>

• Line break
This is just two lines

With a hard break

• Emphasis and Strong
That’s exactly what I mean - I am sick of
this slide

• Comment Tag
<!-- This is a comment. You won't see this on the web-->

Tables
<table border="1">
! <tr>
! ! <th>Column 1 heading</th>
! ! <th>Column 2 heading</th>
! ! <th>Column 3 heading</th>
! </tr>
! <tr>
! ! <td>Row 2, cell 1</td>
! ! <td colspan="2">Row 2, cell 2, also spanning Row 2, cell 3</td>
! </tr>
! <tr>
! ! <td rowspan="2">Row 3, cell 1, also spanning Row 4, cell 1</td>
! ! <td>Row 3, cell 2</td>
! ! <td>Row 3, cell 3</td>
! </tr>
! <tr>
! ! <td>Row 4, cell 2</td>
! ! <td>Row 4, cell 3</td>
! </tr>
</table>

output:

http://htmldog.com/guides/htmlintermediate/tables/

http://htmldog.com/guides/htmlintermediate/tables/
http://htmldog.com/guides/htmlintermediate/tables/

Lists

First things first

Who you know

Not

What you know
What you can do with it

output:

Links

• Relative
Go down a directory
Go up a directory

• Absolute
Go to the root
Go to the NY Times

• Anchors
Go to the end
<h1 id="theEnd">This is the end</h1>

http://nytimes.com
http://nytimes.com

Images

Forms

• POST vs GET

<form name="input" action="html_form_submit.pl" method="post">

Text fields
! <form name="input" action="handleMyForm.pl" method="get">
! First name:
! ! <input type="text" name="firstname" />
! !

! ! Last name:
! ! <input type="text" name="lastname" />
! ! <input type="submit" value="Submit" />
! </form>

output:

Radio buttons

! <form name="input" action="handleMyForm.pl" method="get">
! ! <input type="radio" name="sex" value="male"/> Male
! !

! ! <input type="radio" name="sex" value="female"/> Female
! !

! ! <input type="submit" value="Submit" />
! </form>

output:

xHTML + CSS = Web

+ =

Cascading Style Sheets

• Help separate content from
appearance

• One style sheet can be applied to
hundreds of web pages

• Change styles in just one location

How CSS works

• Statements consist of

• Selectors

• Declarations

• Properties: Values (units)

http://westciv.com/wiki/CSS_Guide:_How_do_style_sheets_work

http://westciv.com/wiki/CSS_Guide:_How_do_style_sheets_work
http://westciv.com/wiki/CSS_Guide:_How_do_style_sheets_work

CSS: Where do I put it?

• Embedded in the <head> of each page
<head><style type="text/css"> </style></head>

• Linked in the <head>
Advantages: templating, speed

<link rel="stylesheet" type="text/css"
href="/styles/style.css" />

• Inline (avoid this)
<p style="color: red">text</p>

http://www.westciv.com/style/style.css
http://www.westciv.com/style/style.css

CSS Selectors
• HTML selectors - raw tags in the style

sheet)

• Class selectors

• use .className in style sheet

• use class="className" in HTML

• ID selectors

• use #idName in style sheet

• use id="idName" in HTML

HTML Selector
Example

.cnn_contentarea { width:990px;text-align:right;
color:fuchsia; letter-spacing:.15em}

.cnn_contentarea { width:990px;text-align:left; }

Go to CNN.com
In the Firefox Web Developer Plugin change:

to

ID Selector Example

#cnn_maint1lftf { float:right;width:250px;margin:0px;display:inline;margin:0 0 0 5px; }

Go to CNN.com
In the Firefox Web Developer Plugin change:

to

#cnn_maint1lftf { float:right;width:250px;margin:0px;display:inline;margin:0 0 0 5px; }

Class selector example
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
! <head>
! ! <title>Class selectors example</title>
! ! <meta http-equiv="content-type"
! ! content="text/html;charset=utf-8" />
! ! <meta http-equiv="Content-Style-Type" content="text/css" />
!
! ! <link rel="stylesheet" type="text/css" href="styles/style.css" />
! </head>
! <body>
! ! <p class="sig">Your result is significant</p>
! ! <p class="notSig">Your result is not significant</p>
! </body>
</html>

p.sig {
! color: green;
}

p.notSig {
! color: red;
}

styles/style.css

sigNotSig.html

output

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

Divs and Spans
• Divs

• Use <div id="myDiv"> </div> to define block
elements. Useful for both formatting and
positioning.

• The id is unique. It refers to one element

• Spans

• Use when you want to apply a class to some text
inline

• This is my sequence
ACTGATCTAGCT

BlueprintCSS

• CSS framework

• grid

• “sensible typography”

• stylesheet for printing

Do Not Reinvent the
Wheel

• http://www.freecsstemplates.org

http://www.freecsstemplates.org/
http://www.freecsstemplates.org/

Where does my
website go?

• On Mac OS X

• Personal web: ~/Sites

• Main web: /Library/Webserver/Documents

• Linux: /var/www/html or /var/apache2/htdocs

• XP Home: C:\Program Files\ApacheGroup
\Apache\htdocs

• Could be elsewhere. Don’t give up!

Naming your html files

• .html .htm

• Why index.html is special

Where is my site?

• In this class:

• http://infoserver.cshl.edu/~username

• On your own machine

• http://localhost/ or http://127.0.0.1

http://courses.cshl.edu/~username
http://courses.cshl.edu/~username
http://localhost
http://localhost

Apache

• /etc/apache2/httpd.conf

• The apache configuration

• /usr/sbin/apachectl

• Apache HTTP server control interface

• /var/logs/apache2/error_log

• Apache error log

Resource: HTML

• HTML Dog
http://htmldog.com

• W3C tags
http://www.w3schools.com/tags

http://htmldog.com
http://htmldog.com
http://htmldog.com
http://htmldog.com
http://www.w3schools.com/tags/default.asp
http://www.w3schools.com/tags/default.asp

Resources: CSS

Cheat sheet:
http://www.addedbytes.com/download/css-cheat-sheet-v2/pdf/

CSS tutorial
http://westciv.com/wiki/Main_Page

Two column style sheet and tutorial
http://www.456bereastreet.com/lab/
developing_with_web_standards/csslayout/2-col/

http://www.addedbytes.com/download/css-cheat-sheet-v2/pdf/
http://www.addedbytes.com/download/css-cheat-sheet-v2/pdf/
http://westciv.com/wiki/Main_Page
http://westciv.com/wiki/Main_Page
http://westciv.com/wiki/Main_Page
http://westciv.com/wiki/Main_Page
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/
http://www.456bereastreet.com/lab/developing_with_web_standards/csslayout/2-col/

Tools of the Trade

• Web Developer Plugin
for Firefox

• CSS editors

• MacRabbit CSSEdit

• SimpleCSS

• TopStyle (Windows)

10/17/10

1

Web Programming with CGI.pm

Sheldon McKay

Executing CGI scripts

Use your personal web space
/Users/yourusername/Sites/cgi-bin

1)  Create your script (end with ‘.pl’)

2) $ chmod 755 myscript.pl

10/17/10

2

A CGI Script that Creates Plain Text

 #!/usr/bin/perl!
 # file: plaintext.pl!

 print "Content-type: text/plain\n\n";!

 print "When that Aprill with his shoures soote\n";!
 print "The droghte of March hath perced to the roote,\n";!
 print "And bathed every veyne in swich licour\n";!
 print "Of which vertu engendered is the flour...\n";!

http://mckay.cshl.edu/cgi-bin/course/plaintext.pl

A CGI Script that Creates HTML

 #!/usr/bin/perl!
 # file: chaucer.pl!

 print "Content-type: text/html\n\n";!

 print "<html><head><title>Chaucer</title></head><body>\n";!
 print "<h1>Chaucer Sez</h1>\n";!

 print "When that Aprill with his shoures soote
\n";!
 print "The droghte of March hath perced to the roote,
\n";!
 print "And bathed every veyne in swich licour
\n";!
 print "Of which vertu engendered is the flour...<p>\n";!

 print "<cite>-Geoffrey Chaucer</cite>\n";!
 print "<hr>\n";!
 print "</body></html>\n";!

http://mckay.cshl.edu/cgi-bin/course/chaucer.pl

10/17/10

3

A CGI Script that Does Something Useful

http://mckay.cshl.edu/cgi-bin/course/process_genes.pl

A CGI script can do anything a Perl script can do, such as opening files and processing them.
Just print your results to STDOUT.

#!/usr/bin/perl -w !
file: process_cosmids.pl !
use strict;!

my @GENES = qw/act-1 dpy-5 unc-13 let-653 skn-1 C02D5.1/;!
my $URL = 'http://www.wormbase.org/db/gene/gene?name=';!

print "Content-type: text/html\n\n";!
print "<html><head><title>Genes</title></head><body>\n";!
print "<h1>Genes</h1>\n";!
print "\n";!

for my $gene (@GENES) {!
 print qq($gene\n);!
}!

print "\n";!
print "</body></html>\n";!

Creating Fill-Out Forms
HTML includes about a half-dozen elements for creating fill-out form
elements. A form must begin with <FORM> and end with </FORM>:

10/17/10

4

Creating Fill-Out Forms II

Creating Fill-Out Forms III

10/17/10

5

Creating Fill-Out Forms IV

Creating Fill-Out Forms V

10/17/10

6

Creating Fill-Out Forms VI

Creating Fill-Out Forms VII

10/17/10

7

What is CGI.pm?

1. Standard module in Perl distribution (>= 5.004)
2. Emits correct HTTP headers
3. HTML shortcuts
4. Parses CGI parameters
5. "Sticky" form fields
6. Creates & processes cookies
7. File uploads

Make HTML Beautiful
CGI.pm defines functions that emit HTML. The page is easier to read and write than raw HTML*

<h1>!
 Eat Your Vegetables!
</h1>!
!
 peas!
 broccoli!
 cabbage!
 !
 peppers !
 !
 red!
 yellow!
 green !
 !
 !
!
<hr>!

 #!/usr/bin/perl!
 # Script: vegetables1.pl!

 use CGI ':standard';!

 print header,!
 start_html('Vegetables'),!
 h1('Eat Your Vegetables'),!
 ol(!
 li('peas'),!
 li('broccoli'),!
 li('cabbage'),!
 li('peppers',!

! ul(!
! li('red'),!
! li('yellow'),!
! li('green')!
!)!
!),!

),!
 hr,!
 end_html;!

http://mckay.cshl.edu/cgi-bin/course/vegetables.pl * if you speak Perl!

10/17/10

8

Make HTML Concise

10/17/10

9

http://mckay.cshl.edu/cgi-bin/course/vegetables2.pl

Using CGI.pm for the Genes Script

http://mckay.cshl.edu/cgi-bin/course/process_genes2.pl

#!/usr/bin/perl -w !
file: process_genes2.pl !

use strict;!
use CGI ':standard';!

my @GENES = qw/act-1 dpy-5 unc-13 let-653 skn-1 C02D5.1/;!
my $URL = 'http://www.wormbase.org/db/gene/gene?name=';!

my @list_items;!
for my $gene (@GENES) {!
 push @list_items,a({-href=>"URLgene"},$gene);!
}!

print header(),!
 start_html('Genes'),!
 h1('Genes'),!
 ol(!
 li(\@list_items)!
),!
 end_html;!

10/17/10

10

Setting & Retrieving CGI Parameters

10/17/10

11

A Simple Form

Form Generating Functions I

10/17/10

12

Form Generating Functions II

A reverse complementation script

10/17/10

13

File Uploading
HTML: <INPUT TYPE="FILE"> CGI.pm: filefield()

Annoying complication:
You have to start the form with start_multipart_form() rather than start_form().

Let’s modify reversec.pl to support file uploads:

•  First part (script too big for one page), print the form

http://mckay.cshl.edu/cgi-bin/course/sequpload.pl

sequpload.pl continued…
If param() returns true, that means that we
have some user input

10/17/10

14

Adding Cascading Stylesheets
#!/usr/bin/perl -w !
Script: veggies_with_style.pl !
use CGI ':standard';!

my $css = <<END;!
<style type="text/css">!
 li.yellow { color: yellow }!
 li.green { color: green }!
 li.red { color: red }!
 ol {!
 background-color: gainsboro;!
 padding: 5px;!
 margin-left: 200px;!
 width: 150px;!
 }!
 ul { background-color: black }!
</style>!
END!

print header,!
 start_html(-title => 'Vegetables',!
 -head => $css);!
print!
 h1('Eat Your Vegetables'),!
 ol(!
 li(['broccoli', 'peas', 'cabbage']),!
 li('peppers',!
 ul(!
 li({-class => 'red'},'red'),!
 li({-class => 'yellow'},'yellow'),!
 li({-class => 'green'},'green')!
)!
),!
),!
 hr,!
 end_html;!

http://mckay.cshl.edu/cgi-bin/course/veggies_with_style.pl

External stylesheet

http://mckay.cshl.edu/cgi-bin/course/veggies_with_style2.pl

#!/usr/bin/perl -w !
Script: veggies_with_style.pl !
use CGI ':standard';!

my $css = '/css/veggies.css';!

print header,!
 start_html(-title => 'Vegetables',!
 -style => $css);!
print!
 h1('Eat Your Vegetables'),!
 ol(!
 li(['broccoli', 'peas', 'cabbage']),!
 li('peppers',!
 ul(!
 li({-class => 'red'},'red'),!
 li({-class => 'yellow'},'yellow'),!
 li({-class => 'green'},'green')!
)!
),!
),!
 hr,!
 end_html;!

10/17/10

15

CGI Exercises
Problem #1

Write a CGI script that prompts the user for his or her name and age. When the
user presses the submit button, convert the age into "dog years" (divide by 7) and
print the result.

Problem #2

Accept a DNA sequence and break it into codons.

Extra credit: Translate the codons into protein.

Overview and Applications of
Next-Generation Sequencing

Technologies

Stéphane Deschamps

Analytical & Genomic Technologies

DuPont Agricultural Biotechnology

Outline

1. Next-Generation Sequencing Platforms

2. Applications of Next-Generation Sequencing Technologies
1. Overview
2. Variant detection with Illumina platform

3. Third-Generation Sequencing technologies: what’s next?

Sanger sequencing

Successive improvements now allows 96 800-900 base reads to be sequenced in less than 2h

Sanger sequencing

Sanger sequencing has been, and still is, very useful...

...but it remains slow and expensive

Sequencing Platform Comparisons

Next-Generation Sequencing

Third-generation platforms:

• Ion Torrent
• SMS/Life Technologies
• Pacific Biosciences
• Intelligent Bio-Systems
• ZS Genetics
• LightSpeed Genomics
• NABsys
• Oxford Nanopore Technologies
• ...

Second-generation platforms:

• 454/Roche
• HiSeq/Illumina
• SOLiD/Life Technologies
• Heliscope/Helicos BioSciences

Nature, 467, September 2010

Next-Generation Sequencing

454 FLX Titanium

•  First next-generation sequencing platform launched

(October 2005)

•  Titanium chemistry for the 454 FLX launched in

September 2008

•  Sequencing By Synthesis

–  Pyrosequencing

–  Chemiluminescent signal

•  Long read technology (~500 nucleotides)

•  Generates up to 0.5Gbps per run

454 FLX Titanium

•  DNA Library Construction

–  Ligation of A & B adaptors

–  No cloning

•  Emulsion PCR

–  DNA capture beads

–  Clonal amplification in “microreactors”

•  Pyrosequencing

–  Deposition of enriched beads into picotiter plate

Bead deposition into plates

•  Deposition of enriched beads into

PicoTiter plate

•  Well diameter = 29uM allowing for a

single bead (20uM diameter) per well

•  Chambers are filled with enzyme

beads, DNA beads and packing

beads.

www.roche-applied-science.com

Pyrosequencing

1.  Polymerase add nucleotide

(sequential flow of dNTPs)

2.  PPi is released

3.  Sulfurylase creates ATP

from PPi

4.  Luciferase hydrolyzes ATP

and use luciferin to make

light

www.roche-applied-science.com

Image and signal processing

1.  Raw data is series of
images (one image per
base per cycle).

2.  Data are extracted,
quantified and
normalized.

3.  Read data are converted
into “flowgrams”.

Post-processing

1.  Output = flowgrams, basecalls, Phred-equivalent scores

2.  Basecall & Flowgrams can be used in the following applications:
1.  De novo assembler – consensus sequences assembled into contigs

with quality scores and ACE file (works best with genomic DNA).

2.  Reference mapper – contigs mapped to reference sequence + list of

high-confidence mutations

3.  Amplicon variant analyzer – identification of sequence variants in

amplicon libraries

Illumina HiSeq 2000

•  Single molecule array (“flow cell”) with tens of

millions of amplified clusters

•  Sequencing By Synthesis

–  Removable fluorescence

–  Reversible terminators

•  Short read technology (>150 nucleotides)

•  Generates >200Gbps per run

Prepare DNA
fragments

+
Ligate

adapters

Sample Prep

Cluster Synthesis

cBot HiSeq 2000

Analysis Pipeline

Illumina HiSeq 2000

Sequencing

Cluster Generation

or RNA

- anneal

Cluster Generation

DNA Clusters
•  ~1,000 copies of DNA in each cluster
•  1-2 microns in diameter

- extension

Reversible Terminator Chemistry

5’

G

T

C

A

G

T

C

A

G

T

C

A

G
T

C

A

G

T
C

A

T

C

A

C

C

T
A
G

C
G

T
A

 First base incorporated

Cycle 1: Add sequencing reagents

 Remove unincorporated bases

 Detect signal

Cycle 2 - n: Add sequencing reagents and repeat

Deblock (removal of fluorescent dye
and protecting group)

Sequencing by Synthesis (SBS)

C
A
T
G

5’

3’

T

Sequencing by Synthesis (SBS)

Data Analysis Workflow - Illumina

Sequence
Analysis

 alignment (ELAND),
 filtering (chastity)

Image
Analysis

Base
calling

Illumina Analysis Pipeline
Images (.tif)

1 image per dye
4 dyes/cycle
202 cycles
120 tiles/lane
8 lanes/flowcell
775,680 images
per 2x101 bases run Alignments,

Assemblies, Normalization,
Annotations &

Post-processing Evaluations

RTA

• Cluster Intensities
• Cluster Noise

• Corrected Cluster Intensities
•  cross-talk correction
•  phasing correction

• Cluster Sequence
• Cluster Probabilities (Scores)

CASSAVA

Other platforms

Sequencing
Platform

Sequencing
Chemistry

Run
Time

Read
Length

(bp)

Reads per
Run

(million)

Throughput
per

Run (Gbp)

Roche 454 FLX Pyrosequencing 10h 400-500 ~1 0.4-0.5

Illumina HiSeq Sequencing by
Synthesis

8 days 100 >2,000 200

ABI SOLiD 4 Sequencing by
Ligation

12-16
days

50 >1,400 80-100
(mappable)

Helicos
HeliScope

Sequencing by
Synthesis

8 days 25-55 600-1,000 21-35

Polonator Sequencing by
Ligation

80h 28 300-400 10

Data Quality

Phred score 20 = 1% error rate

Quality vs. Read Length? Trimming?

~Phred 20

Single short read uniqueness

~4MM reads

Illumina 35 base reads aligned to A. thaliana genome

Applications of
Next-Generation Sequencing

–  Tag count & Alignments

–  Digital Gene Expression Tag Profiling
•  Short cDNA fragments mapping to 3’ ends of transcripts

•  SAGE-like approach (1 short tag/transcript)

•  20 base tag output (RE site + 16 bases) aligned to a reference genome
•  Identify, quantify and annotate expressed genes

–  Transcriptome Profiling (RNA-Seq)
•  cDNA fragments generated via random priming

•  100 base output aligned to a reference genome

•  Assemble entire transcript sequence

•  Identify, quantify and annotate expressed genes

•  Identify SNPs, alleles and alternative splice variants

Gene Expression Profiling

GEX Adaptor 1 Ligation

GTAC
NN

MmeI

GEX Adaptor 2 Ligation
NN
NN

CATG
GTAC

Restriction Enzyme Digestion (DpnII or NlaIII)
AAAAA
TTTTT-bio

CATG

MmeI
AAAAA
TTTTT_bio

CATG
GTAC

AAAAA

AAAAA
TTTTT-bio

1st and 2nd Strand cDNA Synthesis

MmeI digestion
CATG

TAG
PCR Primer 1 PCR Primer 2

PCR Amplification

Tag Profiling – Sample Prep (Illumina)

CATG
GTAC

Cluster
Generation

sequencing primer

mRNA isolation

Total RNA (5ug)

Adaptor Ligations

AAAAA

AAAAA

Fragmentation (random)

Total RNA isolation (10ug)

PCR Primer 1 PCR Primer 2

PCR Amplification

Transcriptome Profiling – RNA-Seq (Illumina)

Cluster
Generation

AAAAA

1st and 2nd Strand cDNA Synthesis (N6 primer)

TTTTT

sequencing primer 1 sequencing primer 2

mRNA isolation

Tissue

–  Small RNA Identification and Profiling
•  Small RNA size is suitable to discovery with next-generation sequencing

–  Deep assessment of alternative splicing isoforms
•  Deep coverage allows discovery of rare isoforms

Novel Transcript Discovery

Mortazavi et al. (2008), Nat. Methods

–  Whole Genome & Transcriptome Sequencing
•  Small genomes that are not too complex (microbial)

•  The longer the reads, the better – 454 chemistry most suitable

•  Recent improvements of Illumina platform - ~500Kbps contigs

•  Paired-End sequencing

–  Targeted Sequencing
•  Indexed PCR products

–  Raindance Technologies

–  Padlock probes

•  Indexed BAC clones

•  Sequence Capture (Solid phase, Liquid phase)

–  Agilent, Febit & Nimblegen

•  Reduced-Representation (Methyl-sensitive Enzymes)

De novo Sequencing

–  ChIP-Seq (immunoprecipitate sequencing)

•  Capture regions of the genome bound by proteins (transcription factors,
histones)

•  Requires complex algorithm to determine differential levels of coverage
throughout the genome

–  Methyl-Seq (methylation status) – Bisulfite Sequencing
•  Technically complex

•  Requires alignment of distinct modified DNA strands to reference sequence

Gene Regulation

Mikkelsen et al. (2007), Nature

RBS_MAIZE Ribulose bisphosphate carboxylase small chain (pco504677)

ORIGINAL TARGET
C+G content = 50%
Identity to Reference = 100%

Sequence 2 (From Antisense)
C+G content = 29%
Identity to Reference = 79%

!"#$"%&"'(')*+,-'!"%."/'
012'&,%3"%3'4'556'

78"%93:'3,';"*"+"%&"'4'<(6'

!"%."=>%9."%."'78"%93:'?'@A6'

Methyl-Seq

(slide courtesy of V. Llaca)

–  Whole Genome Resequencing
•  Small genomes that are not too complex (repeats, duplications...)

•  The longer the reads, the better

–  Targeted Resequencing
•  Complex genomes (crops)

–  Reduced representation libraries (methyl-sensitive enzymes)

–  Transcriptome

•  Sequence Capture (Solid Phase, Liquid Phase)

»  Agilent, Febit & Nimblegen

–  CNVs (Copy Number Variants) & Indels
•  Paired-end sequencing and alignment to reference sequence

Variant & Structural Variation

Challenges in variant discovery

1.  Base quality & filtering (scoring threshold)

2.  Sequencing errors vs. SNPs
1.  To differentiate true polymorphisms from sequencing errors

2.  Coverage of a given SNP region and redundancy of reads (coverage vs. number of samples)

3.  Availability of a reference sequence (genome)
1.  To separate unique vs. duplicated sequences

2.  Duplication in one line but not another (CNVs)
3.  Unmappable data (Indels)

4.  Polymorphism rate in one line vs. another = need to set conditions for alignment

4.  Paired-end sequencing can help unique read placement

5.  Complex genomes = need to reduce complexity prior to sequencing
1.  High repeat content (ex: ~80% in maize, ~70% in soy, 90% in sunflower…)

2.  Gene duplications and genome plasticity (polyploidy, partial or whole genome duplications...)

Methylation in plants

transposon transposon transposon

PstI sites

PstI digestion

Recover digested fraction (gel, column)

1.  DNA methylation in plants occurs at 5-methyl cytosine within CpG dinucleotides and
CpNpG trinucleotides

2.  Transposons and other repeats comprise the largest fraction of methylated DNA. Studies in
Arabidopsis have shown that CG sites in the 3’ end of the transcribed regions of more than
one third of all genes also are methylated (Zhang, Science, 320, 489, 2008).

3.  Methylation is critically important in silencing transposons and regulating plant development
(methylation in promoters appears to reduce transcription)

P P P P P P P P

Library Construction

Digestion with one methyl-sensitive restriction enzyme (RE) and
fractionation

Genomic DNA

Ligation of biotinylated RE-specific adapters 1

Digestion with 4-bp cutter (DpnII)
GATC

Ligation of DpnII-specific adapter

Binding to streptavidin column and digestion with RE
GATC
CTAG

Ligation of RE-specific adapters 2

PCR enrichment, gel purification, size selection (150-500bp fragments),
cluster synthesis and sequencing (36 cycles)

B

B

B

B

GATC
CTAG

GATC
CTAG

SNP detection flowchart

Basecalling, cropping last 4 bases & initial base-quality filter (for individual tags)

Condensing & optional consensus base-quality filter (for unitags sequences)

Creating HQ unitag datasets (removing singlets)

Comparing HQ unitag datasets from genotype “A” and genotype “B” using Vmatch

Filtering, to accept clusters with only two members (A, B) with exactly one mismatch

Recovering matched HQ unitag sequences and SNP sites from Vmatch alignments

Mapping SNP-containing HQ unitags to reference sequence (genome),
using a k-mer table (k=length of trimmed tags), and find copy numbers and locations.

Capturing single-copy HQ unitags with up to a single-base mismatch to the
reference sequence at the exact location of the putative SNP site for one or both genotypes.

Filtering and
Condensing

Comparing
two genotypes

Mapping to
genome

Example: one flow cell in soybean (Williams82 vs. Pintado)

† Filtered total reads defined as having a quality value for individual base greater than or equal to 15

‡ HQ unitag reads defined as having a quality value for each base greater than or equal to 15, and with an individual read
count greater than or equal to 2.

§ Best match to reference sequence of HQ unitag reads aligning uniquely or multiple times to the reference sequence

1

10

100

1,000

10,000

10 100 1,000 10,000

Fr
eq

ue
nc

y

100,000

100,000

Depth

Run Metrics Williams82 Pintado

Number of total reads generated
(after initial basecalling)

37,666,279 38,000,474

Number of filtered total reads † 24,519,484 23,101,973

Number of unitags (generated
from filtered total reads)

965,610 885,429

Number of high quality (HQ)
unitags ‡

255,918 246,102

Alignment of HQ unitags
against the reference sequence:

Zero mismatch § 208,923 197,015

One mismatch § 27,770 27,699

Two or more mismatches § 19,225 21,388

HQ unitags aligning uniquely to
the reference sequence with zero

mismatch

152,185 144,559

Results & Validation

*SNPs confirmed/not confirmed via Sanger sequencing of PCR products for both genotypes

* *

Distribution of HQ unitags & SNPs related to annotated gene density (soybean)

Gene Density (excluding TEs) in 500Kb window

Coverage by HQ unitags in 70Kb window

SNP Density in 70Kb window

Distribution of HQ unitags & SNPs related to distance to
annotated genes (excluding TEs) in soybean

Intron, CDS and
UTR coordinates
determined from
GFF annotation
files

Bioinformatic tools

Alignment and Polymorphism Detection
1.  SOAP – Short Oligonucleotide Alignment Program

•  Ruiqiang Li, Beijing Genomics Institute

•  http://soap.genomics.org.cn

2.  MAQ – Mapping and Assembly with Quality

•  Heng Li, Sanger Centre

•  http://maq.sourceforge.net/maq-man.shtml

3.  Bowtie - An ultrafast memory-efficient short read aligner

•  Ben Langmead and Cole Trapnell, University of Maryland

•  http://bowtie-bio.sourceforge.net/

Bioinformatic tools

Genomic Assembly
1.  Velvet – De novo assembly of short reads

•  Daniel Zerbino and Ewan Birney, EMBL-EBI

•  http://www.ebi.ac.uk/~zerbino/velvet/

2.  SSAKE – Assembly of short reads

•  Rene Warren, et al, British Columbia Cancer Agency

•  http://bioinformatics.oxfordjournals.org/cgi/content/full/23/4/500

3.  Euler – Genomic Assembly

•  Pavel Pevzner and Mark Chaisson, University of California, San Diego

•  http://nbcr.sdsc.edu/euler/

www.illumina.com

Overview

1.  Obtain Bustard reads and align
against Genome with Eland

2.  Aggregate and SNP call data with
CASAVA

3.  GenomeStudio™ wizard import of
data

4.  Examine coverage and quality in
stacked alignment graphs for a
selected region/chromosome

5.  Export table of SNPs and
consensus sequence

Bioinformatic tools - Illumina

Bioinformatic tools - Illumina

Third-Generation Sequencing
technologies: what’s next?

Next-Generation Sequencing

Third-generation platforms:

• Ion Torrent
• SMS/Life Technologies
• Pacific Biosciences
• Intelligent Bio-Systems
• ZS Genetics
• LightSpeed Genomics
• NABsys
• Oxford Nanopore Technologies
• ...

Second-generation platforms:

• 454/Roche
• HiSeq/Illumina
• SOLiD/Life Technologies
• Heliscope/Helicos BioSciences

Next-Generation Sequencing

Known issues related to second-generation sequencing platforms:

1)  Amplification bias
1)  Non-uniform amplification of DNA that leads to over-representation of certain

sequences and under-representation of others

2)  Crosstalk
1)  Overlap between signals for different nucleotides in a sequencing reaction

(emission spectrum of two fluorophores may overlap)

3)  Dephasing
1)  Sequence reads from ensemble of molecules representing a single input

sequences gradually diverge in length in “wash-and-scan” techniques

4)  De novo assembly
1)  Limited assembly of large genomes (repeats)

Next-Generation Sequencing

The answer: single-molecule sequencing!

1)  Single molecules of DNA observed as they are synthesized by single DNA polymerase
(Pacific Biosciences, Life Technologies...)

1)  Problem: missing bases (spectral overlap)

2)  Single molecules of DNA threaded through a nanopore or positioned at proximity of a
nanopore (Oxford Nanopore, NABsys...)

1)  Problem: speed of detection & parallelization

3)  Single molecules of DNA imaged using electronic microscopy techniques (ZS
Genetics, Halcyon...)

1)  Problem: upfront costs and highly trained personnel

4)  Single molecules of DNA ligated to DNA probes using microfluidic techniques (GnuBio)
1)  Problem: ?

Ion Torrent

ion sensor:
1.  Detect pH

change
caused by
released of H
+

2.  Generated
charge
turned into a
voltage

http://www.iontorrent.com/the-simplest-sequencing-chemistry/

1.  $50K instrument (<50lbs)
2.  1.4MM sub-microscopic wells
3.  100-200 bps / reaction
4.  No imaging required: limited need for data

storage & management

Pacific Biosciences

•  SMRT™ Technology

•  Single DNA polymerase attached at bottom surface of

nanometer-scale hole (“ZMW”), incorporates in real-time

fashion fluorescently labeled nucleotides to elongated

strand of DNA

•  Elongated strand can be several thousands of nucleotides

in length

www.pacificbiosciences.com

Pacific Biosciences

1.  Small size of the hole favors rapid in-and-out diffusion of nucleotides and dye following

their cleavage. Meanwhile, incorporated nucleotide is held within the detection volume

for 10’s of milliseconds, order of magnitude longer than the time it takes for nucleotides

to diffuse in and out of the hole, therefore decreasing background noise

2.  Fluorescent dye is attached to the phosphate chain, rather than the base, and is

cleaved when the nucleotide is incorporated to the DNA strand.

=> Decreased background noise and use of phospholinked nucleotides circumvents the need

for successive cycles of incorporation, washing, scanning and removal of the label,

therefore optimizing processivity of the enzyme and allowing longer read lengths

Pacific Biosciences

1.  Current specs:

1.  2 x 80,000 ZMWs per SMRT cell (~30% of ZMWs generate data)

2.  Polymerase incorporates 1-3 nucleotides per second

3.  ~1,000-1,250bps average read lengths => ~30Mbps/15 minutes (up to 96 SMRT cell/48 hours)

4.  Strobe sequencing: 4x250bps, 2x500bps...

5.  99.99% consensus accuracy

2.  Projected specs (2011-2012):

1.  4 x 80,000 ZMWs per SMRT cell (~90% of ZMWs generate data)

2.  Polymerase incorporates 10-15 nucleotides per second (~10-20Kbps reads)

3.  V2 machine (2014):

1.  No camera: each ZMW assigned its own detector (“optode”)

2.  Several millions optodes per SMRT cells

3.  Polymerase incorporate up to 50 nucleotides per second (~50-100Kbps reads)

4.  >100Mbps/second

Oxford Nanopore

Protein nanopore

•  Long read lengths

(1000’s)

•  High read accuracy

•  Current technical

issues:

 1) Attachment of the

exonuclease to the pore

 2) Parallelization

(1,000’s of pores per

chips)
http://www.technologyreview.com/biomedicine/22220/

Exonuclease

Alpha-hemolysin

Cyclodextrine
(encapsulate
nucleotide)

Sequencing-by-Hybridization + Nanopores (Electrical detection)

NABsys

1.  384 pools of oligo probes
2.  Detect signal (ds DNA)
3.  Infer map & sequence

ZS Genetics

http://www.zsgenetics.com/application/GenSeq/index.html

Visualization of Labeled DNA by Transmission Electronic Microscopy

DNA fragments labeled (iodine, bromine) during PCR amplification (labeled nucleotides)

Size and intensity differences between each labeled bases during detection in the TEM image

GnuBio

http://www.technologyreview.com/biomedicine/25481/

“30X Human Genome Sequencing for $30 on a 50K machine”

Microfluidic Manipulation of Sequencing Reactions in Picoliter Droplets

Optical barcodes change of color after hybridization

Questions?

Appendix

DNA Library Construction

•  DNA fragmentation via nebulization

•  Size-selection

•  Ligation of adapters A & B

•  Selection of A/B fragments via biotin selection

•  Denaturation to select single-stranded A/B fragments

•  No cloning!

Streptavidin Streptavidin

+
(A/A)

(B/B)

(A/B)

End repair

Denaturation
+

Emulsion PCR

A/B ss DNA

Emulsion PCR

•  Add DNA to capture beads (needs titration)

•  Add PCR reagents to DNA and capture beads

•  Transfer sample to oil tube or cup

•  Emulsify DNA capture beads in PCR reagents

to form water-in-oil “microreactors”

–  Emulsion with Qiagen TissueLyser (high-

speed shaker)

•  Clonal amplification in microreactors

–  Careful not to break the emulsion!

–  ~10MM copies per capture bead

•  Break emulsion and enrich for DNA positive

beads

–  Use biotinylated oligo to capture enriched

beads then denature
www.roche-applied-science.com

Algorithms in Bioinformatics
Jim Tisdall

Programming for Biology

Lecture Notes
The Problem1.
Time and Space and Algorithms2.
Using Less Time3.
Using Less Space4.
Profiling5.
Parallel Processing6.

Suggested Reading
Mastering Algorithms with Perl

by Orwant, Hietaniemi, and Macdonald
(An excellent algorithms text with implementations in Perl)

Introduction to Algorithms
by Cormen et al.
(This is the standard modern text)

Writing Efficient Code
by Jon Bentley
(Hard to find. Great book.)

Introduction to Automata Theory, Languages, and Computation
by Hopcroft and Ullman
(The standard, mathematical textbook for theoretical computer science.)

Computers and Intractability: A Guide to the Theory of NP-Completeness
by Gary and Johnson
(Very well written.)

Network Programming with Perl
by Lincoln Stein
(Client-server network programming.)

An Introduction to Parallel Algorithms
by Joseph Jaja
(For the next generation of computers.)

Programming for Biology

Jim Tisdall, James.Tisdall -- at -- DuPont.com
Last modified: Wed Oct 14 16:14:01 EDT 2009

Scientific Computing http://infoserver.cshl.edu/LectureNotes/ScientificComputing/alg...

1 of 1 10/18/10 1:47 PM

Time and Space and Algorithms
A program's use of time and space depends on the algorithms and associated data
structures used to solve a problem.

Typically there are many algorithms (ways to solve a problem in a computer.) Some ways
use less time and/or less space than other ways. Finding the good ways is the study of the
design and analysis of algorithms.

An algorithm is the design or idea of a computation. It can be expressed in terms of a
specific computer program, or more informally as in pseudocode.

A data structure is the form of the computation as it proceeds. A great deal of biological
data is organized into two-dimensional tables in relational databases. Relational
database tables are the standard workhorse for storing data in biology, and are useful in a
surprising number of situations.

It's important to know, however, that often the best algorithm will use some other data
structure such as a doubly-linked list or a tree, for example. Such data structures might
better represent graph structures, gene networks, evolutionary relationships, and so on. And,
such data structures may be used in sometimes surprising ways to speed up a computation.

The space of an algorithm is just the amount of computer memory it uses.

The time of an algorithm is usually given as a function on the size of the input. So if the input
is of size n, the algorithm might take time n2. So, for instance, if you gave such an algorithm
a hundred genes, it would take about 10000 units of time to run; if you gave it ten thousand
genes, it would take 100000000 units of time to run.

Time is roughly estimated according to the number of basic operations performed by your
program as it runs. Basic operations are adding, concatenating two strings, printing, etc. The
overall structure of the program is what is important, not an actual prediction of exactly how
many seconds the program will take.

System building and knowing what can be computed
We are primarily interested in building software to achieve easily computed, but useful,
results. We will not delve into the study of algorithms in any depth in this course. But it can
easily happen that you may want to compute something that is hard to compute in a week,
or a year, or even at all. This is a practical problem, and it's important to know what you can
do about it.

The idea is that there are limits to what can be computed. These limits take two main
forms: intractability and undecidability.

The main point:
MANY PROBLEMS CANNOT BE COMPUTED
but it's possible to get "pretty good" answers for many of them

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

1 of 4 10/18/10 1:57 PM

How algorithms are measured
Algorithms are typically classified by how fast they perform on inputs of varying sizes, by
giving their speed as a function of the size of the input. The size of the input is usually called
n.

Say for example that an algorithm gets an input of size n, and then just to write the answer it
must write an output in space of size 2n. (The amount of space that an algorithm uses is one
way to establish a lower bound for how much time the algorithm takes to complete.) Then we
say the algorithm's time complexity is "order of 2 to the n", written in a shorthand called big
Oh notation as

O(2n).

This way of measuring an algorithm is called time complexity.

Examples:
O(2n) computations: intractable (e.g. exponential) is bad
O(n2) computations: tractable (e.g. polynomial) is good
O(5n) computations: tractable (e.g. linear) is great
O(log(n)) computations: tractable (e.g. logarithmic) is amazing

If the size of the input n is 3, then all methods take a short amount of time -- 8 and 9 and 15
and about 1, respectively.

But if the size of the input n = 100 , then log(n) is about 6, 5n is 500, and n2 is 10,000 which
is still not bad. However, 2n is bigger than the number of atoms in the universe. (And is the
universe really finite? Oh well ... who's counting?)

Intractability
Intractability means that a problem cannot be computed in a reasonable amount of time.
Many biological problems are intractable.

Example: in phylogeny we learn that there are many possible trees that can be built, and that
the number of possible trees grows exponentially as you increase the number of taxa and as
you increase the evolutionary time under discussion.

To find the best solution in an exponentially-growing space, such as the space of all possible
evolutionary trees, often requires examining each possibility, and so may take an
exponentially-growing time. Problems that have this property (very loosely defined here) are
called
NP
(for non-deterministic polynomial time), and certain canonical such problems are called
NP-complete.

NP-complete problems are all essentially interchangeable; that is, they all come down to
essentially the same problem. The prototypical NP-complete problem is the

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

2 of 4 10/18/10 1:57 PM

TRAVELING SALESMAN PROBLEM:
given a set of cities and the distances between them, what is the shortest route a traveling
salesman can take to visit each one?

By the time you get to about 30 cities, the number of possible routes cannot be computed in
your lifetime; by the time you reach about 60 cities, there are more possible routes than
there are atoms in the universe. And we don't know a better way to find the best route than
to look at each one.

An aside: no one has proved that NP-complete problems must require looking at each
individual possibility. If you could find a polynomial-time algorithm for any NP-complete
problem, you would be the most famous computer scientist/mathematician around, and
would surely win a Nobel prize. Few people believe it will be done, but it's been an open
problem for many years, and no one yet can prove that it can't be done. This is called the P
=? NP problem.

The practical implications:

If you have a lot of data for your problem, and the problem is in NP, then you have no
practical solution to find the best, optimal answer except on very small data sets.

But the good news is: there are approximation algorithms that will give you a very good
answer in a reasonable amount of time, even if it's not the optimal answer. Such
approximation algorithms underlie many of the practical approaches to such problems as
phylogeny, sequence assembly, and many other problems in bioinformatics.

Undecidable problems
Less likely to be a problem for the practical bioinformatics programmer, but something to be
aware of, is that there are problems for which no solution is possible.

These problems are called undecidable, and they were first demonstrated by Alan Turing
and others in the 1930s.

Here's the most famous undecidable problem: the

HALTING PROBLEM
Write a program that can scan any other program and decide if it will eventually halt, or if it
will go on forever without coming to a stop.

In other words, write a virus checker for nonhalting programs.

As an example of such a nonhalting "virus", here's a perl program that goes on forever (until
you stop it):
while(1) {}

That looks easy to recognize. But we can prove that no program can be written that would
catch all such non-halting programs.

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

3 of 4 10/18/10 1:57 PM

The fact that such an easily-described problem as the HALTING PROBLEM has no solution
is, when you think about it, a very deep and profound statement about the limits of human
knowledge. But, nevertheless, and of a certainty, we all play on.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Time and Space and Algorithms http://infoserver.cshl.edu/LectureNotes/ScientificComputing/ti...

4 of 4 10/18/10 1:57 PM

Using Less Time
The Art and Science of Algorithm Design
You can divide knowledge into two types: procedural knowledge and declarative knowledge.

Declarative knowledge is a collection of facts. (E.g., Watson's great textbook "The Molecular Biology of the
Gene")

Procedural knowledge is knowledge of how to do things, and is the kind of knowledge captured by
computer algorithms. Procedural knowledge has been growing immensely since (programmable digital)
computers brought the ability to specify how to do something -- that is, to formulate an algorithm -- to the
very center of our economic, scientific, and cultural lives.

Algorithms are discovered by a combination of mathematics and art and science and luck and training and
talent. Much of what we do on computers relies on the accumulated procedural knowledge -- algorithms -- of
our culture.

A good algorithm is more important than a good computer
Finding a better algorithm can be much more important than getting a better, faster computer.

For the following examples I created a set of random DNA that I'll use as my "promoters". I include the code
here. (We'll return to this code later in the lecture).
#
Main program -- make promoters from random DNA
#

srand();

$dna = make_random_DNA(1000000);
open(DNA, ">genomic_data") or die;
print DNA $dna;

@promoters = make_random_DNA_set(10, 5000);
open(PROMOTERS, ">promoters") or die;
print PROMOTERS join("\n",@promoters),"\n";

exit 0;

#
Subroutines
#

Make a string of random DNA of specified length.
sub make_random_DNA {

 my($length) = @_;
 my $dna;

 for (my $i=0 ; $i < $length ; ++$i) {
 $dna .= randomnucleotide();
 }

 return $dna;

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

1 of 4 10/18/10 1:57 PM

}

Make a set of random DNA
sub make_random_DNA_set {

 my($length, $size_of_set) = @_;
 my $dna;
 my @set;

 # Create set of random DNA
 for (my $i = 0; $i < $size_of_set ; ++$i) {

 $dna = make_random_DNA ($length);
 push(@set, $dna);
 }

 return @set;
}

Select at random one of the four nucleotides
sub randomnucleotide {

 my(@nucleotides) = ('A', 'C', 'G', 'T');

 return randomelement(@nucleotides);
}

sub randomelement {

 my(@array) = @_;

 return $array[rand @array];
}

Consider this fragment of perl code, written to find a set of short sequences in a genome ("findpromoters0"):

Read the promoter data from a file
open(PROMOTERS, "promoters") or die "a horrible death: $!";
my @promoters = <PROMOTERS>;

Look for each occurence of each promoter in the genome
foreach my $promoter (@promoters) {

chomp $promoter;

Read the genome data from a file
open(GENOME, "genome_data") or die "a horrible death: $!";
my $genome = <GENOME>;

while($genome =~ /$promoter/g) {
$-[0] prints the location of the find
#print "$promoter $-[0]\n"; exit;
$db{$promoter} = $-[0];

}
}

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

2 of 4 10/18/10 1:57 PM

Now this code is good perl. It is syntactically correct, and it will produce the correct output. It will run, and in
the end you will print out all the locations of the sequence.

Let's see how long it takes to run:

-bash-3.00$ date; perl findpromoters0; date
Thu Oct 20 14:28:06 EDT 2005
Thu Oct 20 14:28:48 EDT 2005
-bash-3.00$

Okay, so 42 seconds isn't bad! But wait ... what if we had the entire human genome, and a million tags? I'll
let you do the math, or the experiment, but it takes too long.

So we try to make it faster. How? Well, we notice that for each tag, we're reading in the entire genome from
the disk. Let's rewrite the code so that it only reads the genome in once (findpromoters1):

Read the genome data from a file
open(GENOME, "genome_data") or die "a horrible death: $!";
my $genome = <GENOME>;

Read the promoter data from a file
open(PROMOTERS, "promoters") or die "a horrible death: $!";
my @promoters = <PROMOTERS>;

Look for each occurence of each promoter in the genome
foreach my $promoter (@promoters) {

chomp $promoter;
while($genome =~ /$promoter/g) {

$-[0] prints the location of the find
#print "$promoter $-[0]\n"; exit;
$db{$promoter} = $-[0];

}
}

And the time for that is:

-bash-3.00$ date; perl findpromoters1; date
Thu Oct 20 14:30:46 EDT 2005
Thu Oct 20 14:31:05 EDT 2005
-bash-3.00$

>From 42 seconds to 19 seconds -- sweet!

But can we do better? Notice that for each promoter, we're scanning through the entire genome. So we're
scanning through the entire genome 5000 times.

Is there a way we can scan through the entire genome just once? Yes, and here is one solution:
Read the genome data from a file
open(GENOME, "genome_data") or die "a horrible death: $!";
my $genome = <GENOME>;

Read the promoter data from a file
open(PROMOTERS, "promoters") or die "a horrible death: $!";
foreach $promoter (<PROMOTERS>) {

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

3 of 4 10/18/10 1:57 PM

chomp $promoter;
$promoters{$promoter} = 1;

}

Look for each occurence of each promoter in the genome
my $genomelength = length($genome);
for($i = 0; $i < $genomelength - 10 + 1; ++$i) {

my $subsequence = substr($genome, $i, 10);

Now we just look in the hash to see if this subsequence is a promoter
if($promoters{$subsequence}) {

$db{$promoter} = $i;
}

}

and we run a timing on it to get ("findpromoters2"):

-bash-3.00$ date ; perl findpromoters2 ; date
Thu Oct 20 15:42:15 EDT 2005
Thu Oct 20 15:42:16 EDT 2005
-bash-3.00$

That's one second, maybe less.

And so we've achieved a 43-fold speedup in our program. What was taking, say, two days to compute, now
takes an hour. We couldn't have achieved that speedup going to a super expensive computer (well, maybe a
cluster, which we'll discuss later.)

And so we see that finding a better algorithm is the best way to get good performance.

What, exactly, did we do? We eliminated unnecessary work. We eliminated the repetitive reading in of the
genome data from the disk; and we eliminated multiple scanning through the genome data.

These are the kinds of things that you can often find in the first version of a working program. So don't
neglect the important step of editing your code after you get a working draft.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Using Less Time http://infoserver.cshl.edu/LectureNotes/ScientificComputing/tim...

4 of 4 10/18/10 1:57 PM

Using Less Space
Here is the main problem of space in bioinformatics:
Very large strings will swamp the main memory on your computer.

(Main memory, or RAM, is where your computer holds a running program; it is much smaller than the memory
on your disks.)

When a program on your computer starts to use up too much main memory, its performance starts to
degrade. The program will first enlist a portion of disk space to hold the part of the running program that it can
no longer fit. This is called swapping.

But when a program starts swapping, which involves a lot of writing and reading to and from hard disk, it can
get increasingly slow. The program may even start thrashing, that is, repeatedly writing and reading large
amounts of data between main memory and hard disk. A program that is thrashing is going really slow, and it's
slowing down the whole computer and other programs, too.

Take this snippet of code that calls get_chromosome:

my $chromosome1 = getchromosome(1);

When getchromosome(1) returns the data from human chromosome 1 to be stored in $chromosome1, the
program uses 100Mb of memory.

Operating on the chromosome may use additional memory. For instance, in perl, when you do a regular
expression search, you often want to save the successful match by using parentheses that set the special
variables $1, $&, and so on.

$chromosome =~ /AA(GAGTC*T)/;
my $pattern = $1;

But once you use these special variables, the inner workings of perl require the use of considerable additional
memory by your program. And you may make copies of all or part of the chromosome.

Your resulting code may be clear, straightforward to understand, and correct -- all good and proper things for
code to be -- but the amount of memory usage may still seriously slow down your program.

Motto: copying large strings is slow and takes up large amounts of memory

Editing for Space
Often, a program that barely runs at all and takes many hours of clogging up the computer, can be rewritten to
run more quickly by rewriting the algorithm so that it uses only a small fraction of the memory. It will fit into
less memory, and also run a lot faster.

Use references to save space
There's one easy way to cut down on the number of big strings in a program.

Normally (without using references) a subroutine makes copies of the values passed into it, and it makes
copies of the values returned from it.

References allow subroutines to avoid the string copying.

When we pass a reference to a string as an argument to a subroutine, we don't pass a copy of the string -- we

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

1 of 5 10/18/10 1:57 PM

pass a reference to the string, which takes almost no additional space.

And when the subroutine ends, whatever we've done with the string is immediately available to the calling
program, without having to use the return function, which would also copy the string.

In our example:

load_chromosome(1, \$chromosome1);

This new subroutine has two arguments. The 1 indicates that we want the biggest human chromosome,
chromosome 1.

The second argument is a reference to a scalar variable. Inside the subroutine, the reference is most likely
used to initialize an argument $chromref, which is a reference to the genomic data. And then, in the
subroutine, the DNA data is put into the dereferenced string:

sub load_chromosome {
my($chromnumber, $chromref) = @_;

...(omitted)...

$$chromref = <CHROMOSOME1>
}

It is not necessary to return the whole chromosome from the subroutine, which would make a copy of it. The
value is passed by the reference out of the subroutine.

Using references is also a great way to pass a large amount of data into a subroutine without making copies
of it. In this case, however, the fact that the subroutine can change the contents of the referenced data is
something to watch out for.

The rule of thumb is: if you don't need two copies of the data, you can use references.

Managing Memory with Buffers
One of the most efficient ways to deal with very large strings is to deal with them a little at a time.

Here is an example of a program that searches an entire chromosome for a particular 12-base pattern, using
very little memory.

When searching for any regular expression in a chromosome, it's hard to see how you could avoid putting the
whole chromosome in a string. But very often there's a limit to the size of what you're searching for. In this
program, I'm looking for the 12-base pattern "ACGTACGTACGT."

I'm going to read the chromosome data into memory just a line or two at a time, search for the pattern, and
then reuse the memory to read in the next line or two of data.

The extra programming work involves:

First, keeping track of how much of the data has been read in, so I can report the locations in the
chromosome of successful searches.

Second, making sure I search across line breaks as well as within lines of data from the input file.

The following program reads in a FASTA file searches for my pattern in any amount of DNA--a whole
chromosome, a whole genome, a year's worth of Solexa data, even all known genetic data, while using only a
small amount of main memory.

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

2 of 5 10/18/10 1:57 PM

$ perl find_fragment human.dna

For testing purposes I made a very short FASTA DNA file, human.dna, which contains:

>human dna: ACGTACGTACGT appears at positions 10, 40, and 98
AAAAAAAAAACGTACGTACGTCCGCGCGCGCGCGCGCGCACGTACGTACG
TGGGGGGGGGGGGGGGCCCCCCCCCCGGGGGGGGGGGGAAAAAAAAAACG
TACGTACGTTTTTTTTTTTTTTTTTTTTTTTTTTT

Here's the code for the program find_fragment:

#!/usr/bin/perl

use warnings;
use strict;

$fragment: the pattern to search for
$fraglen: the length of $fragment
$buffer: a buffer to hold the DNA from the input file
$position: the position of the buffer in the total DNA

my($fragment, $fraglen, $buffer, $position) = ('ACGTACGTACGT', 12, '', 0);

The first line of a FASTA file is a header and begins with '>'
my $header = <>;

Get the first line of DNA data, to start the ball rolling
$buffer = <>;
chomp $buffer;

The remaining lines are DNA data ending with newlines
while(my $newline = <>) {

 # Add the new line to the buffer
 chomp $newline;
 $buffer .= $newline;

 # Search for the DNA fragment, which has a length of 12
 # (Report the character at string position 0 as being at position 1,
 # as usual in biology)
 while($buffer =~ /$fragment/gi) {
 print "Found $fragment at position ", $position + $-[0] + 1, "\n";
 }

 # Reset the position counter (will be true after you reset the buffer, next)
 $position = $position + length($buffer) - $fraglen + 1;

 # Discard the data in the buffer, except for a portion at the end
 # so patterns that appear across line breaks are not missed
 $buffer = substr($buffer, length($buffer) - $fraglen + 1, $fraglen - 1);
}

Here's the output of running the command
perl find_fragment human.dna:

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

3 of 5 10/18/10 1:57 PM

Found ACGTACGTACGT at position 10
Found ACGTACGTACGT at position 40
Found ACGTACGTACGT at position 98

How the Code Works
I want to search for the fragment even if it is broken by new lines, so I'll have to look at least at two lines at a
time. I get the first line, and in the while loop that follows I'll start by adding more lines to the buffer.

Then the while loop starts reading in the next lines of the FASTA file. The newline character is removed with
chomp and the new line is added to the $buffer.

Then comes the short while loop that does the regular expression pattern match of the $fragment in the
$buffer.

When the fragment is found the program simply prints out the fragment's position. The variable $position
holds the position of the beginning of the buffer in the total DNA.

I also add 1, because biologists always say that the first base in a sequence of DNA is at position 1, whereas
Perl says that the first character in a string is at position 0. So I add 1 to the Perl position to get the biologist's
position.

The last two lines of code reset the buffer. First we eliminate the beginning (already searched) of the buffer,
and then we adjust the $position counter accordingly. The buffer is shortened so that it just keeps the part at
the very end that might be part of a pattern match that spans the newlines.

The program manages to search the entire genome for the fragment, while keeping at most two lines' worth of
DNA in $buffer, It performs very quickly, compared to a program that reads in a whole genome and blows out
the memory in the process.

When You Should Bother
Programs may be developed on one computer, but run on very different computers.

A space-inefficient program might well work fine on your computer, but not work well at all when you run it on
another computer with less main memory installed. Or, it might work fine on the fly genome, but start thrashing
when you try it on the human genome.

If you know you'll be dealing with large data sets, like genomes, take the amount of space your program uses
as an important constraint when designing and coding. Then you won't have to go back and redo the entire
program when a large amount of DNA gets thrown at the program.

Data Compression
In Perl, as in any programming system, the size of the data that the program uses is an absolute lower bound
on how fast the program can perform.

Each base is typically represented in a computer language as one ASCII character taking one 8-bit byte, so 3
gigabases equals 3 gigabytes. Of course, you could represent each of the four bases using only 2 bits, so
considerable compression is possible; but such space efficiency is not commonly employed. When it is, you
can pack 4 times as much data into a given space (for nucleotides, that is.)

A 00
C 01
G 10
T 11

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

4 of 5 10/18/10 1:57 PM

If you want an exercise, try using perl functions pack and vec to compress DNA sequence data to 4 bases per
byte.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

5 of 5 10/18/10 1:57 PM

Profiling
You saw earlier an easy way on Unix to see how long a program takes:

date; perl findpromoters1; date

This prints the time, then immediately runs the program, and then immediately prints the time
again.

Perl has several much more detailed ways to examine the performance of a program.

I'll just show you one of them, called DProf. DProf reports on various aspects of your program's
performance.

The most valuable report is probably the summary by subroutine.

By seeing which subroutines are taking the most time, you can narrow your re-editing of the
program to just those subroutines, and quickly make the improvements where they count the
most.

For demonstration, I'm going to use a program with a few subroutines; namely, the makerandom
program we used earlier to make random DNA genomic sequence and putative DNA binding
sites.

First you have to load the Devel::Prof module in your program. You do this by adding the
-d:DProf command-line argument. Then when your program runs, the module makes counts of
many things in the program. Your program will take a bit longer to run, but you'll collect valuable
statistics on its performance.

So one can simply run the program as usual, adding the command-line argument. When it's
done, it will have created a file called tmon.out in my directory. I then run the dprofpp tmon.out
program to see the results of the profile of my program:

$ perl -d:DProf makerandom
$ dprofpp tmon.out
Total Elapsed Time = 5.464274 Seconds
 User+System Time = 5.354274 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 72.2 3.870 7.594 105000 0.0000 0.0000 main::randomnucleotide
 69.5 3.725 3.725 105000 0.0000 0.0000 main::randomelement
 33.7 1.807 9.402 5001 0.0004 0.0019 main::make_random_DNA
 0.22 0.012 0.525 1 0.0125 0.5250 main::make_random_DNA_set
$

If I wanted to speed this program up, I'd head straight for the randomelement and
randomnucleotide subroutines to see what I might be able to tweak in them, since my analysis
shows that they take almost all the time in the program.

Profiling http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

1 of 4 10/18/10 1:57 PM

DProf has many options, but this is how I almost always use it, as it's simple and tells me what I
need to know.

Some older perls might not have DProf installed, in which case you have to do something like
this: (you may need root permission):

$ perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.7601)
ReadLine support enabled

cpan> install Devel::DProf
CPAN: Storable loaded ok
Going to read /root/.cpan/Metadata
 Database was generated on Wed, 19 Oct 2005 22:01:03 GMT
Devel::DProf is up to date.

cpan> quit
Lockfile removed.
$

In this case perl reported that the Devel::DProf module was already installed with the latest
version; if not, it would have installed it.

You know, I wonder if I can speed up my makerandom program. Let's look at it. Hmmm. I did try a
few things out: let's see how the new program makerandom2 behaves:

$ perl -d:DProf makerandom2
$ dprofpp tmon.out
Total Elapsed Time = 1.27999 Seconds
 User+System Time = 1.27999 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 96.8 1.240 1.240 5001 0.0002 0.0002 main::make_random_DNA
 0.78 0.010 0.050 1 0.0100 0.0500 main::make_random_DNA_set
$

Cool! From over 5 seconds to a little over 1 second. A five-fold speedup!

How did I do it? Here's the new version:

srand();

my(@nucleotides) = ('A', 'C', 'G', 'T');

$dna = make_random_DNA(1000000);
open(DNA, ">genomic_data") or die;
print DNA $dna;

Profiling http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

2 of 4 10/18/10 1:57 PM

@promoters = make_random_DNA_set(10, 5000);
open(PROMOTERS, ">promoters") or die;
print PROMOTERS join("\n",@promoters),"\n";

Make a string of random DNA of specified length.
sub make_random_DNA {

 my($length) = @_;
 my $dna;

 for (my $i=0 ; $i < $length ; ++$i) {
 $dna .= $nucleotides[rand @nucleotides];
 }

 return $dna;
}

make_random_DNA_set
sub make_random_DNA_set {

 my($length, $size_of_set) = @_;
 my $dna;
 my @set;

 # Create set of random DNA
 for (my $i = 0; $i < $size_of_set ; ++$i) {

 # make a random DNA fragment
 $dna = make_random_DNA ($length);

 # add $dna fragment to @set
 push(@set, $dna);
 }

 return @set;
}

First, I moved the line

my(@nucleotides) = ('A', 'C', 'G', 'T');

out of a subroutine and up to the top of the program. This way the array doesn't have to get
reinitialized each time the program is called.

But much more importantly, I eliminated two subroutine calls entirely, and put their functionality
directly into the lines of code that were calling them. First I axed randomelement by putting its
functionality directly into the calling subroutine randomnucleotide: from

Profiling http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

3 of 4 10/18/10 1:57 PM

sub randomnucleotide {

 my(@nucleotides) = ('A', 'C', 'G', 'T');

 return randomelement(@nucleotides);
}

sub randomelement {

 my(@array) = @_;

 return $array[rand @array];
}

to

my(@nucleotides) = ('A', 'C', 'G', 'T');

sub randomnucleotide {

 return $nucleotides[rand @nucleotides];
}

and finally I eliminated randomnucleotide by putting its code directly into the calling program:
from

 $dna .= randomnucleotide();

to

 $dna .= $nucleotides[rand @nucleotides];

In short, I eliminated two subroutine calls that were each being called 105000 times, and that
made a significant speedup. Usually, you're more likely to try to improve a subroutine than to
eliminate it, but as you see eliminating a subroutine can on occasion have big payoffs.

The book by Bentley "Writing Efficient Code" discusses such "tricks" in entertaining and useful
detail.

So I hope you're convinced that DProf is worthwhile. There are other profiling methods available
in Perl too, and you might want to explore them.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Profiling http://infoserver.cshl.edu/LectureNotes/ScientificComputing/prof...

4 of 4 10/18/10 1:57 PM

There are different ways to think of parallel processing.

Parallel Algorithms
One kind of parallel processing actually uses the specific topology of the interconnections
between the CPUs to implement new kinds of algorithms. This kind of parallel processing is
fascinating and gives you very fast programs, but is way beyond the scope of this lecture or
this course. But I thought you'd like to know that it exists.

In this hard-core parallel algorithms work, you might work on special computers (e.g. "grids",
"butterfly networks") or even on purely theoretical models of parallel computation, and you
design algorithms to run on those types of parallel computers.

Parallel Processing on Networks and
Clusters
More common is this scenario: say you are doing 40 tasks, one after the other, and each one
takes an hour. It will take your working week to finish the tasks.

Now let's say you figure out a way to do all the tasks simultaneously, and each one still takes
an hour. You'll now finish the tasks, all of them, in one hour instead of one week.

One kind of parallel processing is just like this example. That's the kind of parallelism I'll talk
about here, in terms of networks and clusters and threads. You simply divide your program
up into parts that can be performed simultaneously, and then you run each part on its own
CPU. Not all problems can be divided up like this, but those that can (say running a million
blast searches) can get big speedups fairly easily.

Network Programming
One of the most successful forms of multi-processor computing has been network
programming.

Network programming involves connecting two or more computers by a communications line
and implementing a protocol that enables them to exchange information.

The development of computer networks began in earnest in the 1950s, and the various
networks were interconnected by the internet (from interconnected networks) beginning in
the late 1970s.

The protocols supported by the internet gradually expanded, until the protocols known as the
web (or "world wide web") became widely popular beginning around 1990.

It is quite possible to program several computers to interact, using the several programming
interfaces to the protocols that are available from such languages as perl.

Parallel Processing http://infoserver.cshl.edu/LectureNotes/ScientificComputing/par...

1 of 2 10/18/10 1:58 PM

Perl has supported these protocol interfaces since the beginning. I can speak from personal
experience that it's a lot of fun to build a useful network service in this way. (In 1992 I was
searching all of Genbank with regular expressions in about 35 seconds, by distributing the
job with a network service written entirely in perl.)

I recommend the book "Network Programming with Perl" by Lincoln Stein if you're interested
in these techniques.

Threads
Threads are different from, but related to, multiprocessing. Threads are multiple execution
paths built into one process, that share resources like global variables, signals, and such.
You can have a multithreading program that runs on a single processor; or, if you're running
on a multiprocessor (it's common to have from 2 to around 24 processors on a given
machine) the threads may be executed on different processors, giving you the advantage of
parallelism.

Threads are a capability that is built into an operating system (or not, as the case may be.) If
your operating system supports threads, and your programming language gives you access
to them, then you can use them in your program.

If you're interested in threads, you want to use the "threads" (not "Threads") module:

use threads;

I'm going to skip the examples of threads programs: see me if you're interested.

Clusters
Clusters are multiple CPUs joined in a simple network. They are typically used to take a
program that must compute the same way over many inputs, and run the program on all the
CPUs, dividing the input up between them.

If you have access to a (usually) Linux cluster where you work, take the time to find out how
to submit programs to it.

In a recent job I had, I had to do three computation-intensive calculations over several
genomes. Each one took a week or two to finish when running on a single computer. On the
Linux cluster, they all finished within a small number of hours, and using that precomputation
I was able to carry my search for novel genes to a successful conclusion.

This Linux cluster has about 450 CPUs, and is a fairly big one. But it's quite straightforward
-- you could do it yourself -- to buy 10 or 20 inexpensive Linux boxes and construct a Linux
cluster that can speed up your large-scale, repetitive computations by 10 or 20 times.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Parallel Processing http://infoserver.cshl.edu/LectureNotes/ScientificComputing/par...

2 of 2 10/18/10 1:58 PM

Using Less Space
Here is the main problem of space in bioinformatics:
Very large strings will swamp the main memory on your computer.

(Main memory, or RAM, is where your computer holds a running program; it is much smaller than the memory
on your disks.)

When a program on your computer starts to use up too much main memory, its performance starts to
degrade. The program will first enlist a portion of disk space to hold the part of the running program that it can
no longer fit. This is called swapping.

But when a program starts swapping, which involves a lot of writing and reading to and from hard disk, it can
get increasingly slow. The program may even start thrashing, that is, repeatedly writing and reading large
amounts of data between main memory and hard disk. A program that is thrashing is going really slow, and it's
slowing down the whole computer and other programs, too.

Take this snippet of code that calls get_chromosome:

my $chromosome1 = getchromosome(1);

When getchromosome(1) returns the data from human chromosome 1 to be stored in $chromosome1, the
program uses 100Mb of memory.

Operating on the chromosome may use additional memory. For instance, in perl, when you do a regular
expression search, you often want to save the successful match by using parentheses that set the special
variables $1, $&, and so on.

$chromosome =~ /AA(GAGTC*T)/;
my $pattern = $1;

But once you use these special variables, the inner workings of perl require the use of considerable additional
memory by your program. And you may make copies of all or part of the chromosome.

Your resulting code may be clear, straightforward to understand, and correct -- all good and proper things for
code to be -- but the amount of memory usage may still seriously slow down your program.

Motto: copying large strings is slow and takes up large amounts of memory

Editing for Space
Often, a program that barely runs at all and takes many hours of clogging up the computer, can be rewritten to
run more quickly by rewriting the algorithm so that it uses only a small fraction of the memory. It will fit into
less memory, and also run a lot faster.

Use references to save space
There's one easy way to cut down on the number of big strings in a program.

Normally (without using references) a subroutine makes copies of the values passed into it, and it makes
copies of the values returned from it.

References allow subroutines to avoid the string copying.

When we pass a reference to a string as an argument to a subroutine, we don't pass a copy of the string -- we

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

1 of 5 10/18/10 1:57 PM

pass a reference to the string, which takes almost no additional space.

And when the subroutine ends, whatever we've done with the string is immediately available to the calling
program, without having to use the return function, which would also copy the string.

In our example:

load_chromosome(1, \$chromosome1);

This new subroutine has two arguments. The 1 indicates that we want the biggest human chromosome,
chromosome 1.

The second argument is a reference to a scalar variable. Inside the subroutine, the reference is most likely
used to initialize an argument $chromref, which is a reference to the genomic data. And then, in the
subroutine, the DNA data is put into the dereferenced string:

sub load_chromosome {
my($chromnumber, $chromref) = @_;

...(omitted)...

$$chromref = <CHROMOSOME1>
}

It is not necessary to return the whole chromosome from the subroutine, which would make a copy of it. The
value is passed by the reference out of the subroutine.

Using references is also a great way to pass a large amount of data into a subroutine without making copies
of it. In this case, however, the fact that the subroutine can change the contents of the referenced data is
something to watch out for.

The rule of thumb is: if you don't need two copies of the data, you can use references.

Managing Memory with Buffers
One of the most efficient ways to deal with very large strings is to deal with them a little at a time.

Here is an example of a program that searches an entire chromosome for a particular 12-base pattern, using
very little memory.

When searching for any regular expression in a chromosome, it's hard to see how you could avoid putting the
whole chromosome in a string. But very often there's a limit to the size of what you're searching for. In this
program, I'm looking for the 12-base pattern "ACGTACGTACGT."

I'm going to read the chromosome data into memory just a line or two at a time, search for the pattern, and
then reuse the memory to read in the next line or two of data.

The extra programming work involves:

First, keeping track of how much of the data has been read in, so I can report the locations in the
chromosome of successful searches.

Second, making sure I search across line breaks as well as within lines of data from the input file.

The following program reads in a FASTA file searches for my pattern in any amount of DNA--a whole
chromosome, a whole genome, a year's worth of Solexa data, even all known genetic data, while using only a
small amount of main memory.

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

2 of 5 10/18/10 1:57 PM

$ perl find_fragment human.dna

For testing purposes I made a very short FASTA DNA file, human.dna, which contains:

>human dna: ACGTACGTACGT appears at positions 10, 40, and 98
AAAAAAAAAACGTACGTACGTCCGCGCGCGCGCGCGCGCACGTACGTACG
TGGGGGGGGGGGGGGGCCCCCCCCCCGGGGGGGGGGGGAAAAAAAAAACG
TACGTACGTTTTTTTTTTTTTTTTTTTTTTTTTTT

Here's the code for the program find_fragment:

#!/usr/bin/perl

use warnings;
use strict;

$fragment: the pattern to search for
$fraglen: the length of $fragment
$buffer: a buffer to hold the DNA from the input file
$position: the position of the buffer in the total DNA

my($fragment, $fraglen, $buffer, $position) = ('ACGTACGTACGT', 12, '', 0);

The first line of a FASTA file is a header and begins with '>'
my $header = <>;

Get the first line of DNA data, to start the ball rolling
$buffer = <>;
chomp $buffer;

The remaining lines are DNA data ending with newlines
while(my $newline = <>) {

 # Add the new line to the buffer
 chomp $newline;
 $buffer .= $newline;

 # Search for the DNA fragment, which has a length of 12
 # (Report the character at string position 0 as being at position 1,
 # as usual in biology)
 while($buffer =~ /$fragment/gi) {
 print "Found $fragment at position ", $position + $-[0] + 1, "\n";
 }

 # Reset the position counter (will be true after you reset the buffer, next)
 $position = $position + length($buffer) - $fraglen + 1;

 # Discard the data in the buffer, except for a portion at the end
 # so patterns that appear across line breaks are not missed
 $buffer = substr($buffer, length($buffer) - $fraglen + 1, $fraglen - 1);
}

Here's the output of running the command
perl find_fragment human.dna:

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

3 of 5 10/18/10 1:57 PM

Found ACGTACGTACGT at position 10
Found ACGTACGTACGT at position 40
Found ACGTACGTACGT at position 98

How the Code Works
I want to search for the fragment even if it is broken by new lines, so I'll have to look at least at two lines at a
time. I get the first line, and in the while loop that follows I'll start by adding more lines to the buffer.

Then the while loop starts reading in the next lines of the FASTA file. The newline character is removed with
chomp and the new line is added to the $buffer.

Then comes the short while loop that does the regular expression pattern match of the $fragment in the
$buffer.

When the fragment is found the program simply prints out the fragment's position. The variable $position
holds the position of the beginning of the buffer in the total DNA.

I also add 1, because biologists always say that the first base in a sequence of DNA is at position 1, whereas
Perl says that the first character in a string is at position 0. So I add 1 to the Perl position to get the biologist's
position.

The last two lines of code reset the buffer. First we eliminate the beginning (already searched) of the buffer,
and then we adjust the $position counter accordingly. The buffer is shortened so that it just keeps the part at
the very end that might be part of a pattern match that spans the newlines.

The program manages to search the entire genome for the fragment, while keeping at most two lines' worth of
DNA in $buffer, It performs very quickly, compared to a program that reads in a whole genome and blows out
the memory in the process.

When You Should Bother
Programs may be developed on one computer, but run on very different computers.

A space-inefficient program might well work fine on your computer, but not work well at all when you run it on
another computer with less main memory installed. Or, it might work fine on the fly genome, but start thrashing
when you try it on the human genome.

If you know you'll be dealing with large data sets, like genomes, take the amount of space your program uses
as an important constraint when designing and coding. Then you won't have to go back and redo the entire
program when a large amount of DNA gets thrown at the program.

Data Compression
In Perl, as in any programming system, the size of the data that the program uses is an absolute lower bound
on how fast the program can perform.

Each base is typically represented in a computer language as one ASCII character taking one 8-bit byte, so 3
gigabases equals 3 gigabytes. Of course, you could represent each of the four bases using only 2 bits, so
considerable compression is possible; but such space efficiency is not commonly employed. When it is, you
can pack 4 times as much data into a given space (for nucleotides, that is.)

A 00
C 01
G 10
T 11

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

4 of 5 10/18/10 1:57 PM

If you want an exercise, try using perl functions pack and vec to compress DNA sequence data to 4 bases per
byte.

Programming for Biology Last modified: Mon Oct 20 23:14:38 EDT 2008

Using Less Space http://infoserver.cshl.edu/LectureNotes/ScientificComputing/spa...

5 of 5 10/18/10 1:57 PM

